

Known for excellence. Built on trust.

GEOTECHNICAL ENVIRONMENTAL ECOLOGICAL WATER CONSTRUCTION MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com May 23, 2023 File No. 01.0177018.00

Mr. Ross Tsantoulis Woodard & Curran, Inc. 40 Shattuck Road, Suite 110 Andover, Massachusetts 01810

Re: Geotechnical Engineering Report North Street Culvert Replacement over White Brook Agawam, Massachusetts

Dear Mr. Tsantoulis:

In accordance with our agreement dated December 15, 2022, GZA GeoEnvironmental, Inc. (GZA) is pleased to submit this geotechnical report to Woodard & Curran, Inc. (W&C, client) for the proposed culvert replacement at North Street over White Brook in Agawam, Massachusetts. This report summarizes the results of subsurface explorations and presents recommendations for design and construction of foundations for the proposed culvert replacement and associated retaining walls.

We understand that Woodard & Curran was engaged by the Town of Agawam to provide engineering services associated with the above-referenced culvert and that engineering work associated with the culvert replacement at North Street will be reviewed by MassDOT. GZA's geotechnical evaluation has been performed with the intent to satisfy the requirements of the MassDOT LRFD Bridge Manual.

Elevations (El.) indicated in this report are in feet and are referenced to North American Vertical Datum 1988 (NAVD 88). This report is subject to the limitations in **Appendix A**.

BACKGROUND

Our understanding of the project is based on the following information:

- Emails and telephone/online conversations with W&C;
- Preliminary Design plans for the proposed culvert and retaining wall system (11 sheets) prepared by Contech Engineered Solutions LLC (Contech, culvert and retaining wall designer) entitled "ALSP Single Radius Arch W/ Full Invert 18'-0" Span x 7'8" Rise (32N) North Street, Agawam MA," dated February 26, 2023;
- Calculations (4 pages) prepared by Contech entitled "Structural Design Check for Corrugated Aluminum Plate Arch," dated February 26, 2023;
- Section view plan of the proposed culvert structure prepared by Contech entitled "Grid ALSP SRA- 18 x 7-8," transmitted on February 17, 2023;
- Preliminary Design plans prepared by W&C entitled "North Street Culvert Replacement," dated February 16, 2023;
- Site existing conditions and topographic survey plans prepared by WSP USA, Inc. entitled "190299K_NORTH STREET," transmitted on January 10, 2023;

May 23, 2023 File No. 01.0177018.00 Culvert Replacement – North Street over White Brook Page | 2

- A geotechnical letter report prepared by OTO for the proposed North Street culvert crossing over White Brook, dated January 6, 2021;
- A structural design report prepared by Koontz Bryant Johnson Williams, Inc. (KBJW Report No. 23-26882-001-02-0523 dated May 5, 2023; and
- Readily available on-line information.

EXISTING CONDITIONS

This project includes replacement of the existing culvert carrying the flow from White Brook below North Street in Agawam, Massachusetts. Refer to the attached **Figure 1** for the site location.

The existing culvert consists of an approximately 3- to 3.5-foot-diameter, 116-foot-long corrugated metal pipe (CMP) that crosses below North Street at skew angle of about 5 degrees (refer to **Photo 1**).

Photo 1: Upstream (South) End of Existing Culvert

PROPOSED CULVERT REPLACEMENT

We understand, to meet the hydraulic design requirements, the North Street culvert pipe will be replaced by an aluminum arch culvert with approximate width, height, and length dimensions in feet of 18 by 7.7 by 119, respectively. A section view of the proposed arch is shown in **Figure A**.

The existing culvert invert elevations (El.) at the upstream and downstream sides (north and south, respectively) are approximately 121.4 and 115.3 feet, respectively. No headwalls or wingwalls are present at the upstream and downstream ends of the existing culvert where grade changes transition relatively quickly from the roadway shoulder grades to the culvert invert grades at slopes of about 2 horizontal to 1 vertical (2H:1V) to 1H:1V, respectively. The slope surface cover at the upstream and downstream ends of the culvert consists of a mix of partial rip-rap coverage mixed with vegetated/wooded land.

North Street, at the location of the existing and proposed culvert, is an approximately 26-foot-wide two-lane, two-way traffic roadway that runs downhill in a generally west to east direction from approximate El. 137.5 to 134. Based on site observations and the referenced preliminary design drawings, overhead electric lines and several underground utilities (natural gas, telecommunications, drain, sanitary sewer, water) appear to be present within or adjacent to the roadway, above the existing culvert.

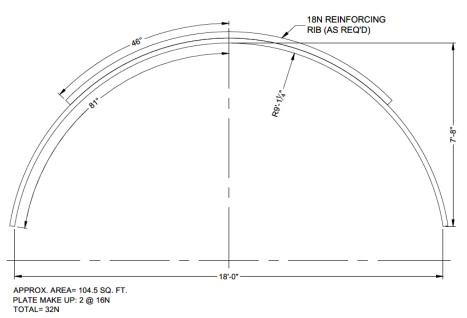


Figure A – Typical Proposed Single-Radius Aluminum Arch Culvert Transverse Section (not to scale)

Because the culvert structure span is greater than 10 feet, its replacement is subject to MassDOT design requirements and review (with respect to the structure being classified as a "bridge") in accordance with MGL Chapter 85, Section 35. The culvert designer, Contech Engineering Solutions LLC (Contech), has indicated target maximum differential and total settlement criteria for the proposed aluminum arch culvert structure are approximately 1-inch and 2-inches, respectively.

Additional information related to the existing and proposed culverts is summarized in Table A.

Location of Culvert	Existing Culvert Type & Geometry			Existing Culvert Invert El. (ft)	Proposed Culvert Invert El. (ft)
North Street over White Brook	3' to 3.5' Diameter, 115'± Long CMP Pipe	18' wide span, 7.7' high, 119' long, closed bottom Aluminum Plate Arch	(ft) 134 to 137.5	115.3 to 121.4	115.3 to 121

Table A: Summary of Existing and Proposed Culvert Information

Note: 1) Span length is as defined by MassDOT Small Bridge Program Figures 1, 2, and 3 from the MassDOT website: https://www.mass.gov/service-details/determining-if-a-structure-is-a-bri.

We understand that the proposed headwalls and wingwalls (e.g. retaining walls) at the upstream and downstream sides of the proposed culvert are anticipated to consist of corrugated aluminum panels seated on a 12-inch-thick bed of crushed stone, which will be laterally supported by steel anchor rods connected to deadmen consisting of aluminum structural plates (approximately 20-inch-tall by 29-inch-wide by 0.15-inch-thick) at approximately 4.5-foot lateral and 5.5-foot vertical center-to-center spacing. The proposed retaining walls will accommodate the proposed grade changes (proposed fill heights) of up to about 9 feet. The bottom of the wall panels will extend

approximately 2.5 feet below the proposed invert elevations of the culvert at its upstream and downstream ends and will be embedded approximately 5 to 10 feet below proposed finished grades.

We understand that North Street will be repaved as part of the project and that roadway grade changes will be negligible. We understand, however, that raises in grade (RIG) of up to about 8 or 9 feet are planned at the proposed retaining wall areas, at the upstream and downstream ends of the proposed culvert.

SUBSURFACE EXPLORATION PROGRAM

Subsurface explorations at the site include borings performed on behalf of O'Reilly, Talbot, and Okun Associates, Inc. (OTO) as part of their initial geotechnical evaluation in 2020 and the recent borings performed for this evaluation. Approximate locations of the previous and recent borings are shown on **Figure 2**.

PREVIOUS (2020) BORINGS

Two borings (designated as Nos. WB-1 and WB-2) were performed on November 12, 2020, as part of an initial geotechnical study by OTO on behalf of W&C for the proposed North Street culvert replacement design. The borings were each advanced to a maximum depth of 27 feet, corresponding to bottom of boring elevations of approximately 102 and 104 feet, and did not penetrate a silt and clay stratum encountered below the surficial fill layer.

The borings were performed using a truck rig from existing grades and advanced using hollow stem auger (HSA) techniques, with Standard Penetration Testing (SPT) and split spoon samples were obtained starting just below the bituminous asphalt pavement and at 5-foot-intervals thereafter. The SPT consisted of driving a 24-inch long, 1-3/8-inch ID split spoon sampler with a 140-pound automatic hammer falling 30 inches. The previous boring logs are included in **Appendix B**.

RECENT (2022) BORINGS

Three test borings (designated BB-01, BB-02, and BB-03) were completed by Seaboard Drilling, Inc. of Springfield, Massachusetts between December 28 and 30, 2022. The approximate locations of the borings are shown on **Figure 2**. The as-drilled boring locations are based on tape measurements from existing topographic on-site features and elevations interpolated from plans prepared by W&C. The locations and elevations should be considered accurate only to the degree implied by the methods used.

The borings were conducted using a truck-mounted drill rig. Boring BB-02 was initially advanced using hollow-stemauger (HSA) drilling techniques through the surficial pavement and then each recent boring was advanced to completion using drive and wash cased and/or open-hole drilling techniques. SPTs and spilt spoon samples for borings BB-02 and BB-03 (performed proximate to previous borings WB-1 and WB-2) were limited within the top 13 feet with an initial sample within 1 foot of ground surface level and then were then obtained at approximate 5foot intervals thereafter except for some instances at boring BB-03, where the sampling interval was increased up to 10 feet. SPT and split spoon samples for boring BB-01 were obtained continuously for the top 15 feet and then at approximate 5-foot intervals thereafter. The SPT consisted of driving a 24-inch-long, 1-3/8-inch-ID split spoon sampler with a 140-pound automatic hammer falling 30 inches. The number of blows to drive the sampler from 6 to 18 inches is the SPT blow count or N-value, a commonly used indicator of soil density and consistency. A 10-footlong, NX-sized bedrock core was obtained in boring BB-01 while bedrock appeared to be encountered at borings BB-02 and BB-03 based on 3 to 4 feet of drill resistance and cuttings observed during advancement of a roller bit. The borings were backfilled with drill cuttings and at boring BB-02, performed within the street, the top approximately 1-foot of the borehole was patched with concrete to match the existing street grade.

A GZA representative observed the borings, classified soil samples using the Modified Burmister Soil Classification System and the rock cores using the International Society of Rock Mechanics System, and prepared the boring logs. The recent boring logs are included in **Appendix C**. Photographs of the rock core obtained from boring BB-01 are provided in **Appendix D**.

LABORATORY TESTING

PREVIOUS (2020) GEOTECHNICAL LABORATORY TESTING

Geotechnical laboratory testing was conducted on two composited soil samples from the top 5 feet of the previous borings. Geotechnical laboratory testing was performed by Allied Laboratories, Inc. of Springfield, Massachusetts, and included gradation analysis of the two samples by sieve method (ASTM D6913). Geotechnical laboratory test results are included in **Appendix E**.

RECENT (2023) GEOTECHNICAL LABORATORY TESTING

Two soil samples from the recent borings were submitted to Thielsch Laboratories in Cranston, Rhode Island, for sieve analyses to confirm field classifications, help develop soil properties across the site, and evaluate the potential for soil re-use. Additionally, 8 samples of fine-grained soil from the recent borings were submitted to GeoTesting Express of Acton, Massachusetts for natural water content and Atterberg Limit Testing to evaluate the water content and plasticity characteristics of the natural varved silt & clay to help establish engineering parameters for the soil using published empirical data. Geotechnical laboratory test results are included in **Appendix F**.

SUBSURFACE CONDITIONS

The soil and groundwater conditions discussed herein are primarily based on conditions observed in the recent borings and augmented with pertinent information from the previous borings. We note the ground surface elevations shown on the logs for previous borings WB-1 and WB-2 appear to be approximately 5.5 and 3.5 feet lower, respectively, than survey spot elevations at corresponding locations in the referenced Preliminary Design plans by W&C. For this report we have assumed the survey elevations on the W&C plans are correct.

A general description of the subsurface conditions encountered from the existing ground surface is summarized below. Refer to logs of the previous and recent borings in **Appendix B** and **Appendix C**, respectively, for more detailed descriptions of subsurface conditions at specific boring locations. A generalized subsurface profile along the approximate centerline of North Street and through the proposed culvert (Section A-A') is attached as **Figure 3**.

LOCAL GEOLOGY

Geologic information in the area of the site was obtained from the MassMapper online database and the USGS website. Based on the available geologic information, the subsurface conditions in the general area of the site consist of artificial fill and floodplain alluvium overlying sedimentary bedrock (Mesozoic Basin Province). The top of bedrock is mapped at a depth of 50 feet or less below existing ground surface (bgs).

GENERALIZED SUBSURFACE CONDITIONS

Subsurface conditions generally consist of fill overlying natural varved silt and clay, glacial till, and bedrock. Subsurface conditions between the borings are expected to vary.

Soil

<u>Fill</u> – Fill was encountered in the each of the previous and recent borings and ranged from about 11 to 16.5 feet in thickness.

The nature of the fill varied significantly across different portions of the site as follows:

At the south/central portions of the proposed culvert footprint (i.e., in previous borings WB-1 & WB-2 and recent borings BB-02 and BB-03), the fill consisted of very loose to very dense, red-brown to brown/tan, fine to coarse or fine to medium sand, with up to 50 percent gravel, and up to 35 percent silt. The SPT N-values ranged from 2 to 54 blows per foot (bpf). The higher SPT N-values were generally encountered in the first sample at or just below existing ground surface and below that, the SPT N-values were typically less than 9 bpf. Previous boring WB-2 encountered trace amounts of debris (asphalt and brick), while a piece of wood was observed in the fill in recent boring BB-02.

At the north/northwest portion of the proposed culvert (boring BB-01), the top 2 feet of the fill was generally consistent with the granular fill observed in other portions of the site, but below 2 feet bgs the fill consisted of medium stiff to stiff, dark gray to brown with occasional red, fine grained soil (ranging from clayey silt to clay and silt), with up to 20 percent fine sand, and occasional trace amounts of organic matter. The SPT N-values of the fill in this area ranged from 4 to 9 bpf.

<u>Varved Silt & Clay</u> – A varved silt & clay stratum, which appears to be part of the regional Connecticut Valley Varved Clay (CVVC) deposit, was encountered in each of the borings below the fill stratum at depths between approximately 11.5 and 16.5 feet bgs. The thickness of the CVVC ranged from approximately 19 feet at boring BB-01 at the north to 43 feet at boring BB-03 at the south (i.e. the CVVC becomes thicker from north to south). The stratum consisted of gray to brown or gray with red, soft to very stiff fine-grained soil (ranging from silt & clay to silty clay) with up to 10 percent fine sand. SPT N-values ranged from 2 to 16 bpf, but the vast majority of N values in the CVVC ranged from about 2 to 8 bpf.

<u>Glacial Till</u> – Glacial till was encountered in each recent boring below the CVVC stratum at depths between approximately 35.5 and 54.5 feet bgs. The thickness of the layer ranged from about 4.5 to 8 feet. The glacial till consisted of stiff to hard gray/brown/red-brown fine-grained soil (ranging from clayey silt to silty clay) with up to 50 percent fine to coarse sand, and up to 35 percent gravel. Only one SPT N-value of 21 bpf was obtained in boring BB-01, as the remaining samples typically overlapped with the CVVC stratum above or the bedrock below the glacial till.

Bedrock

Bedrock was encountered at each recent boring at depths ranging from 42.5 to 62.5 feet bgs, corresponding to approximate elevations of 70 to 94 feet. The top of, type, and quality of the bedrock was confirmed by coring 10 feet at boring BB-01. The top of bedrock was inferred at borings BB-02 and BB-03 based on the rate of penetration using a roller bit and the cuttings observed during advancement of the roller bit approximately 3 to 4 feet into the top of apparent bedrock. The top of bedrock elevation in the northern portion of the site was approximately 24 feet

higher than the top of bedrock encountered in the southern area of the site (i.e., the bedrock surface appears to be dipping from north to south).

Based on the rock coring at boring BB-01, the bedrock consists of hard, fresh to slightly weathered, brown-red, amorphous to fine-grained Siltstone with very thin, sub-horizontal bedding and moderately close to very close sub-horizontal to sub-vertical joints/fractures. Sample recovery of the two, 5-foot-long rock core runs were approximately 92 to 97 percent and Rock Quality Designation (RQD) values (the sum of all core pieces in a recovered core greater than 4 inches in length divided by the total length of core run) were 67 and 75 percent. Photographs of the rock cores are provided in **Appendix D**.

Groundwater

Based on observations of groundwater levels made during drilling of the previous borings, the water depths at the downstream and upstream boring locations were approximately 10 and 15 feet bgs, respectively, corresponding to elevations ranging from approximately 121.3 to 122.3 feet. We understand from W&C that based on their modeling results, the Base Flood Elevation (BFE, a floor having a one percent change of being met or exceeded in any given year) for the North Street Culvert area is 123.4.

The water level readings measured during drilling in the previous borings may not be stabilized readings and may not be representative of the actual groundwater level.

Note that fluctuations in groundwater levels will occur due to variations in season, precipitation, temperature, water level in White Brook, and other factors different from those existing at the time the measurements were made.

PRIMARY GEOTECHNICAL ISSUES

Based on the existing site conditions, proposed construction, and the subsurface conditions encountered in the explorations, we have identified the following geotechnical issues associated with the design and construction of the proposed culvert and retaining walls:

- <u>Relatively thick layer of compressible fine-grained soil</u> A layer of compressible CVVC soil was observed across the site at approximately 11.5 to 16.5 feet bgs that extends to depths ranging from about 35.5 to 50 feet bgs and thicknesses varying from about 19 to 43 feet. These soils are susceptible to long-term consolidation settlement when subjected to sustained stress increases and have relatively low shear strength, requiring foundations to be designed for a relatively low bearing pressure.
- <u>Potential for Differential Settlement</u> The foundation systems selected for the proposed culvert and
 retaining wall systems will need to limit the potential for differential settlement between the culvert and
 adjacent retaining wall sections to minimize separations between the structures and mitigate the potential
 for the raveling of backfill soils through gaps between arch segments that could potentially result from
 differential settlement.
- <u>Relatively High Groundwater/Brook Water Level</u> Anticipated bottom of culvert excavation and bottom of retaining wall curtain panel elevations are anticipated to range from about 111.5 (north end) to 117 (south end). Observed groundwater and brook levels therefore appear to range from approximately 6 to 12 feet above the proposed bottom of culvert and retaining wall foundation/curtain panel elevations. Therefore, a combination of brook diversion and temporary cofferdams and construction dewatering are expected to

May 23, 2023 File No. 01.0177018.00 Culvert Replacement – North Street over White Brook Page | 8

be required for construction of the new culvert foundations. Potential flood levels and flows must also be considered during design of the permanent structures and water control systems as the BFE at the Site is approximately 6.5 to 12 feet above the proposed bottom of culvert and retaining wall foundation/curtain panel elevations.

- <u>Protection of Existing Utilities, Roadway, and Surrounding Areas During Construction</u> Temporary excavation support and/or utility support systems may be required to allow for OSHA-compliant excavation for demolition of the existing culvert and construction of the new culvert and retaining walls. The existing utilities that are not re-routed will need to be protected during construction.
- <u>Reuse of On-Site Soils</u> Many of the soils excavated during construction are anticipated to contain a relatively high fines (silt and/or clay) content, generally do not meet the gradation requirements for use as structural backfill, and may be difficult to reuse as fill, especially in wet and/or cold conditions. Also, due to the lightweight backfill materials incorporated into the design, it appears that the majority of excavated materials will not be able to be reused as backfill and will require legal off-site disposal unless the material can be used to locally grade around the site.
- <u>Existing Overhead Wires and Other Restrictions</u> Selection of equipment used to install the foundation for the proposed culvert and/or retaining walls will need to consider the presence of overhead utilities to provide adequate clearance. Construction may need to consider temporary utility outages. Selection of equipment will also need to consider wet subgrade conditions from working within the area of White Brook. There may be additional restrictions imposed from local environmental permits issued for this project.

GEOTECHNICAL DESIGN RECOMMENDATIONS

The following geotechnical recommendations for the proposed culvert and culvert headwalls/wingwalls are based on our evaluation of the available data and the design concepts provided to GZA. These recommendations are subject to the limitations contained in **Appendix A** and are based on foundation design provisions of the AASHTO LRFD Bridge Design Specifications, 9th Edition (2020 AASHTO LRFD), 2011 AASHTO Guide Specifications for LRFD Seismic Bridge Design, 2nd Edition, with 2015 Interim Revisions (2015 AASHTO LRFD Seismic), and the MassDOT LRFD Bridge Manual, 2020.

1. Foundations

The proposed culvert may be supported by either a reinforced structural mat foundation or deep foundations such as driven timber piles. However, based on our understanding of the project, it appears that the reinforced structural mat foundation will provide a simpler, easier to construct, and more cost-effective solution for support of the culvert, while still meeting Contech's required settlement criteria for the proposed arch culvert structure. Therefore, we have discounted the deep foundation option and recommendations for the structural mat foundation option are provided herein.

We understand the proposed wingwalls, which will consist of corrugated aluminum sheet panels, are relatively lightly loaded and will not require concrete foundations. The aluminum sheet panels may be supported by a minimum 6-inch-thick base-course of crushed stone, wrapped all-around by a layer of non-woven filter fabric.

Shallow Continuous Mat Foundation

The proposed culvert may be supported on a reinforced concrete mat foundation bearing on a minimum 12-inchthick layer of ¾-inch Crushed Stone (MassDOT Material No. M2.01.4) base course, which in turn bears directly on the undisturbed CVVC layer. The mat foundation should be placed either: 1) no less than 2 feet below the scour elevation, or; 2) protected from scour. In addition, the culvert foundation and the bottom of the adjacent portion of headwalls/wingwalls within 4 feet of the culvert should bear at least 4 feet below invert elevation to provide frost protection. Based on the assumed culvert invert elevations and boring information, it is expected that the bottom of the culvert foundation will be within the CVVC stratum. As a minimum, the bottom and sides of the Crushed Stone base course should be wrapped in non-woven geotextile fabric.

The recommended factored bearing resistance for the mat foundation (assumed 1-foot thick and 22-feet wide) supported on the Crushed Stone base course over the CVVC is 2 kips per square foot (ksf).

The factored bearing resistance is based on a resistance factor of 0.45 applied to the nominal bearing resistance in accordance with Table 10.5.5.2.2-1 of the AASHTO 2020 (refer to **Appendix G** for calculations).

2. <u>Settlement</u>

Based on the results of settlement analyses (see **Appendix G**), the estimated total and differential settlements for the proposed culvert mat foundation are up to approximately 1-1/2 and 3/4-inches, respectively, for the culvert mat foundation, provided the recommendations set forth herein are followed including the use of lightweight concrete for the mat foundation and lightweight fill over the culvert and in the adjacent raise-in-grade areas. Settlement is generally anticipated to be greatest in the areas of largest proposed raises-in-grade adjacent to the upstream and downstream ends of the proposed culvert.

The estimated settlements are anticipated to occur over a period of about 2 years after construction due to primary consolidation of the CVVC soils underlying the proposed culvert and adjacent fill areas. This settlement duration is based on a published value of 0.093 ft² per day for the coefficient of consolidation (c_v) for CVVC per Degroot and Lutenegger (2003), and assumes a doubly drained CVVC layer. Although we estimate that installation of wick drains could significantly reduce the duration of the primary consolidation settlement, the added cost, duration, and complexity to incorporate wick drains into the construction does not appear to be warranted given that the magnitude of anticipated settlement appears to be tolerable for the proposed structure.

The estimated total and differential settlements above assume lightweight backfill and fill materials. The recommended vertical and lateral extents of lightweight materials are summarized in **Table B**. The parameters used in the settlement analyses are summarized in **Table C**.

Area	Vertical Extent	Lateral Extent
Upstream & Downstream of Culvert	From existing subgrade to proposed bottom of topsoil	Entire raise-in-grade (RIG) area contained within headwalls and wingwalls
Culvert Area	From bottom of foundation mat slab to proposed bottom of pavement base course/bottom of topsoil	Within a 1V:2H zone extending upwards from one foot outside bottom edge of mat slab to bottom of proposed pavement base course/topsoil

Table B: Recommended Extents of Lightweight Fill/Backfill Materials

Table C - Construction Materials and Material Use Assumptions for Settlement Analysis

Material Description	Assumed Unit Weight (pcf)	Assumed Use
Reinforced Lightweight Concrete	100	Culvert mat foundation
ES-LWA 70 d		Use as a non-buoyant lightweight fill from the bottom of proposed culvert and headwall/retaining wall grades to the greater of: 1-foot above the proposed culvert and the BFE of 123.4.
UL-FGA	25	Use from the top of the ES-LWA to 1 and 1.5 feet below proposed finished grades in proposed landscaped and paved areas, respectively

Refer to **Appendix H** for manufacturer literature for the ES-LWA and UL-FGA materials, respectively. In GZA's opinion, the unit weight values for lightweight fills recommended herein for design represent conservative values of in-place materials following densification and are based on our prior experience on other projects.

3. Lateral Earth Pressure

We understand that Contech will determine the lateral earth pressures on the culvert arch structure and will design the wingwalls and headwalls, including the selection of lateral earth pressures, in accordance with the MassDOT Bridge Manual Section 3.1.6. The following fill/backfill parameters/assumptions are recommended for evaluation of lateral earth pressures:

 Estimated backfill soil (internal) friction angle (φ) of 34¹ degrees for normal-weight fill and 38 degrees (conservative in-place value) for expanded shale lightweight aggregate (ES-LWA) and ultralightweight foamed glass aggregate (UL-FGA) fills;

¹ Estimated backfill soil (internal) friction angle (ϕ) of 37 degrees may be used for normal-weight fill where the backfill meets the gradation requirements of MassDOT Gravel Borrow (material M.1.03.0).

May 23, 2023 File No. 01.0177018.00 Culvert Replacement – North Street over White Brook Page | 11

- A moist soil unit weight of 125 pounds per cubic foot (pcf) for normal weight fill, 70 pcf for ES-LWA, and 25 pcf for UL-FGA;
- Backfill slopes behind the walls matching the grading design by W&C (i.e. up to 2H:1V and 4H:1V slopes behind the proposed downstream and upstream headwalls/wingwalls, respectively);
- Wall friction angle of 17 degrees for ES-LWA and UL-FGA fills in accordance with AASHTO Table C3.11.5.3.1 for single-size hard rock fill against steel sheet piles;
- No groundwater influence (assumes water is relieved through weep holes and free-draining material (i.e. Gravel Borrow or open-graded ES-LWA or UL-FGA fills) is utilized behind retaining walls for a lateral distance of at least 3 feet).

Where the calculated earth pressure behind the below grade walls is less than 250 pounds per square foot (psf), it should be increased to approximately 250 psf to account for stresses created by compaction of fill behind the culvert wall. Additional lateral pressures due to vehicular traffic/equipment surcharge and seismic loads where applicable should be applied as required by AASHTO 2020. When considering fill in front of the wall, its passive resistance should be neglected in determining wall stability in accordance with the MassDOT <u>LRFD Bridge Manual</u>.

These recommended pressures assume that the below grade walls are backfilled with free draining material and equipped with properly designed drains and/or weepholes such that the water level outside of the culvert is not higher than the water level in the culvert. Alternatively, the below grade walls should be designed for lateral pressures assuming the effective unit weight of soil plus hydrostatic pressure, and applicable lateral surcharge pressure.

4. <u>Geotechnical Seismic Design Recommendations</u>

Seismic Site Class

Based on the subsurface conditions at the site and the SPT N-values encountered within the soil profile, we recommend the site be considered <u>Site Class E</u> in accordance with Article 3.4.2.2 of MassDOT LRFD and the 2011 AASHTO LRFD Seismic Guide Specification Table 3.4.2.1-1. Refer to **Appendix G** for the seismic Site Class analysis.

Seismic Design Parameters

Based on 2020 MassDOT LRFD Section 3.1.2, North Street is not on or over a National Highway System (NHS) route, is not designated as an "other route," and we understand that it is not a designated emergency evacuation route. Therefore, the culvert/bridge can be classified as a <u>non-critical/non-essential</u> bridge. In accordance with 2020 MassDOT LRFD Section 3.4.2.1, the seismic hazard maps provided in the 2011 AASHTO LRFD Seismic should be used to develop seismic design parameters that correspond to the 1,000-year return period.

Using the 1,000-year return period seismic hazard maps (corrected for Site Class E in accordance with Section 3.4.1 of 2011 AASHTO LRFD Seismic), we recommend the design response spectra for the bridge be constructed using the parameters in **Table D**.

Table D: Seismic Design Parameters

PGA (g)	A _s (g)	S _s (g)	S ₁ (g)	S _{DS} (g)	S _{D1} (g)
0.059	0.148	0.13	0.038	0.326	0.132

where:

As is the response spectral acceleration based on Site Class E.

 S_S is the short period spectral response acceleration coefficient.

 S_1 is the long period spectral response acceleration coefficient.

 S_{Ds} is the design spectral acceleration coefficient at 0.2-second period.

 S_{D1} is the design spectral acceleration coefficient at 1.0-second period.

In accordance with Table 3.5-1 of the 2011 AASHTO Guide Specifications for LRFD Seismic Bridge Design, and based on an $S_{D1} < 0.15$, the Seismic Design Category (SDC) for the site is SDC A.

Refer to Appendix G for a summary of the recommended seismic design parameters.

Liquefaction

Per the 2011 AASHTO Guide Specifications for LRFD Seismic Bridge Design, a liquefaction analysis is not required for bridges in SDC A. However, the culvert foundation soils are judged not to be susceptible to liquefaction.

5. Design Groundwater Elevation

Based on information provided by W&C, the 100-year Base Flood Elevation (BFE) at the Site is El. 123.4.

6. Permanent Groundwater Control

Groundwater and the BFE at the site are generally high relative to the proposed bottom of culvert foundation and wingwall excavations (approximately 3.5 to 11 feet above the anticipated bottom elevations), and it is anticipated that the proposed culvert mat foundation will need to be designed by the structural engineer to ensure adequate resistance against hydrostatic uplift.

Additionally, the potential for uplift of the proposed culvert, particularly at the downstream portion of the proposed culvert, should be evaluated by the project structural engineer to determine if uplift resistance is required in this area. These uplift resisting measures may include such options as anchoring the culvert structure to deadmen and/or helical piles.

7. <u>Utilities</u>

New and existing utilities to remain in the area of the proposed culvert construction should be protected from the potential effects of settlement. These measures may include new or retrofitted oversized sleeves to allow for differential settlements between the areas within and outside of the proposed construction, and/or consideration post-construction settlement monitoring for sensitive utilities, if warranted. Also, the civil engineer should consider the potential settlements of utilities at planned manhole connections.

CONSTRUCTION CONSIDERATIONS

1. Subgrade Preparation

Based on the boring data and estimated bottom of mat foundation and wingwall elevations ranging from approximately 111.5 to 118, we anticipate that the natural CVVC stratum will be present at the bottom of foundation and wingwall grades. We recommend that the Contractor excavate to at least 12 inches below the bottom of foundation. At least 12 inches of ¾-inch Crushed Stone, wrapped in non-woven filter fabric, should be placed to serve as a foundation base course and help protect the subgrades from disturbance.

Disturbed footing subgrades and/or loose or soft zones should be over excavated to remove loose/disturbed material and replaced with compacted ¾-inch Crushed Stone wrapped in non-woven geotextile filter fabric. If existing Fill soil is encountered at the bottom of foundation, it must over-excavated and backfilled to culvert subgrade with ¾-inch Crushed Stone wrapped in non-woven geotextile filter fabric within the zone of influence (defined as 1 foot laterally from bottom edge of footing and then sloping down at 1 horizontal to 1 vertical).

Based on the borings, soils at the bottom of excavation will be susceptible to disturbance during excavation in wet conditions. Excavations should be sequenced and conducted in such a way as to minimize disturbance of subgrades and final excavation to the undisturbed natural CVVC subgrades should be with a smooth-edged excavator bucket. Equipment should not operate directly on the natural subgrade to limit disturbance and care should be taken to avoid excess traffic on the prepared subgrades prior to placement of concrete foundations and backfill material. The exposed soil subgrade should be adequately dewatered, protected against precipitation and the subgrade should not be allowed to freeze.

2. Groundwater and Surface Water Control

The contractor should be prepared to manage and control/divert the brook flow and groundwater during foundation excavation and culvert and wingwall construction, as well as control surface water from entering excavations in order to provide a dry and stable subgrade. The method of dewatering excavations will depend on several factors, including depth of excavation, localized soil conditions encountered, time of year performed, size of the open excavation and the length of time the excavation is left open.

The contractor should be responsible for selecting dewatering methods based on their proposed methods and equipment used for excavation to achieve the desired objectives (that is, maintaining a dry condition at the bottom of the excavation during installation of structures, preparation of stable subgrades, etc.). In addition to diverting brook flow and/or constructing cofferdams to construct the foundations, we anticipate that multiple sump pumps will be required to control water during foundation construction. If utilized, local sump pumps should be surrounded by ¾-inch Crushed Stone wrapped in non-woven filter fabric to limit migration of fines. Excavation below the groundwater level may not immediately be evident due to the relatively low permeability of the CVVC, but over time seepage may become visible on excavation side slopes and/or the side slopes may become unstable and slough. Additionally, the contractor's construction methods will need to include measures for temporary diversion of the brook flow to accommodate construction.

Dewatering efforts must satisfy requirements of local, state and federal environmental and conservation authorities.

3. <u>Temporary Excavation/Utility Support</u>

We anticipate during excavation for the proposed culvert that temporary support of excavation and/or utilities systems will likely be implemented to protect existing facilities to remain, limit excavation quantities and/or to help with groundwater control. Temporary excavation/utility support systems should be designed using the soil properties in **Table E**:

Layer	Minimum Total Unit Weight (pcf)	Undrained Shear Strength (psf)	Maximum Friction Angle Φ (degrees)
Existing Fill	120	-	30
СУУС	118	500	-

Table E – Recommended Soil Properties for Temporary Excavation/Utility Support

Groundwater pressure and applicable surcharge pressures should be considered where applicable in the excavation support design.

Temporary earth/utility support systems should be selected by the contractor and designed by an experienced Professional Engineer registered in the Commonwealth of Massachusetts and retained by the contractor. Where excavation sides are unsupported, and/or cut back and sloped, they should be in accordance with Occupational Safety and Health Administration (OSHA) Construction Industry Standards.

Earth/utility support system elements installed below bottom of culvert foundation and retaining walls should be left in place. Steel elements of the support systems may be left in place above bottom of footing, provided they are cut off at least 5 feet below roadway grade. If used, all timber should be removed and replaced with approved compacted Structural Fill or Controlled Density Fill (MassDOT M.4.08.0) in confined areas when removing the earth support system. Timber components of support systems should not be utilized in locations where their removal could jeopardize the stability of the culvert, retaining walls, utilities, or other facilities to remain.

4. Backfill and Compaction

Backfill against and behind the below-grade culvert and wingwalls should consist of free-draining ES-LWA and UL-FGA fills below and above the BFE, respectively as described herein. Structural fill placed below the proposed culvert foundation, retaining walls, and roadway should be in accordance with Sections 150 and M of MassDOT Standard Specifications for Highways and Bridges. We understand the project civil engineer (W&C) is performing design of the proposed pavement section. Backfill material below the culvert foundation and headwalls/wingwalls should be in accordance with the following table.

Borrow Material	MassDOT Spec. No.	Use
Crushed Stone	M2.01.1	Culvert, Headwall and Wingwall base course layer

Table F: Backfill Material Specification & Recommended Use

Crushed Stone should be placed in lifts no greater than 12-inches-thick with each lift compacted to an unyielding surface. Crushed Stone placed in layers greater than 4 inches should be wrapped all-around in non-woven geotextile fabric. Fill should be free of frost and not be placed over frozen soil. Subgrades should be protected against frost during and after construction.

Extra care should be used when compacting adjacent to walls. Only hand-operated rollers or plate compactors weighing not more than 250 pounds should be used within a lateral distance of 5 feet of the back of a culvert wall or wingwall. Backfill and compact all fills at approximately similar elevations on each side of the culvert structure to avoid unbalanced loading.

Lightweight Aggregate Fill Placement

Typical ES-LWA fill consists of expanded shale aggregate, which is commercially available from specialty suppliers, many of which are located in New York State. It has a unit weight of about 65 to 70 pounds per cubic foot (pcf) and has an open-graded particle size distribution with a typical 3/8-inch to 3/4-inch maximum particle size. Accordingly, this lightweight fill can be placed in a manner similar to crushed stone with a filter fabric wrap to prevent migration of fine soil particles into the void space. Other gradations may be available, but may have unit weights that vary from that recommended herein for design. ES-LWA should be compacted with lightweight compaction equipment (for example, vibratory plate compacters) since heavy rollers may crush the material.

Typical UL-FGA fill consists of processed recycled glass combined with a foaming agent, which is commercially available from a specialty supplier located in Pennsylvania. UL-FGA should be placed in loose lifts not exceeding 24 inches or as required by the manufacturer; whichever is less. Each lift shall be uniformly distributed and compacted with at least two passes and a maximum of four passes of hand-operated vibratory compaction equipment until the lightweight fill appears stable during compaction. Excessive compaction should be avoided to minimize crushing of the aggregate. Use compaction equipment recommended by the aggregate manufacturer.

5. <u>Reuse of Excavated Materials</u>

Based on the soil descriptions in the boring logs, the compressibility of the existing natural CVVC stratum underlying the fill, and the importance of limiting differential settlement between the culvert headwalls and wingwalls, the existing fill and excavated CVVC should not be used as backfill behind the proposed wingwalls and headwalls or over the proposed culvert to reduce proposed total and differential settlements. Excavated soil that cannot be reused in these areas should be regraded elsewhere on site as specified by the civil engineer and as permitted by local environmental permits or removed from the site and disposed in accordance with applicable local, state and federal regulations.

May 23, 2023 File No. 01.0177018.00 Culvert Replacement – North Street over White Brook Page | 16

FINAL DESIGN AND CONSTRUCTION SERVICES

We trust that the information presented herein is sufficient for your use. A supplemental memorandum with recommendations for the subgrade modulus for design of the mat foundation will be provided under separate cover.

During construction, we recommend that GZA be engaged to assist with submittal reviews, as well as perform construction observation and testing services during the earthwork and foundation construction phases of the project, where we would observe the contractor's activities for compliance with recommendations in our geotechnical report and the contract documents.

CLOSING

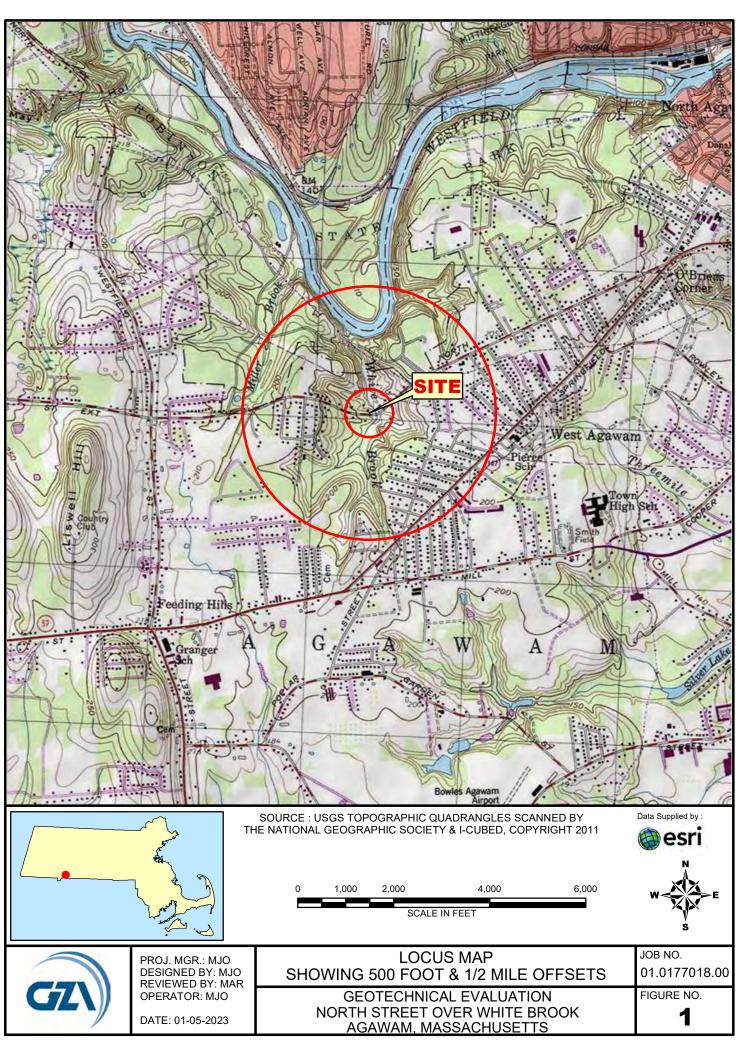
We appreciate the opportunity to work with you on this project and look forward to receipt of any questions or comments you may have.

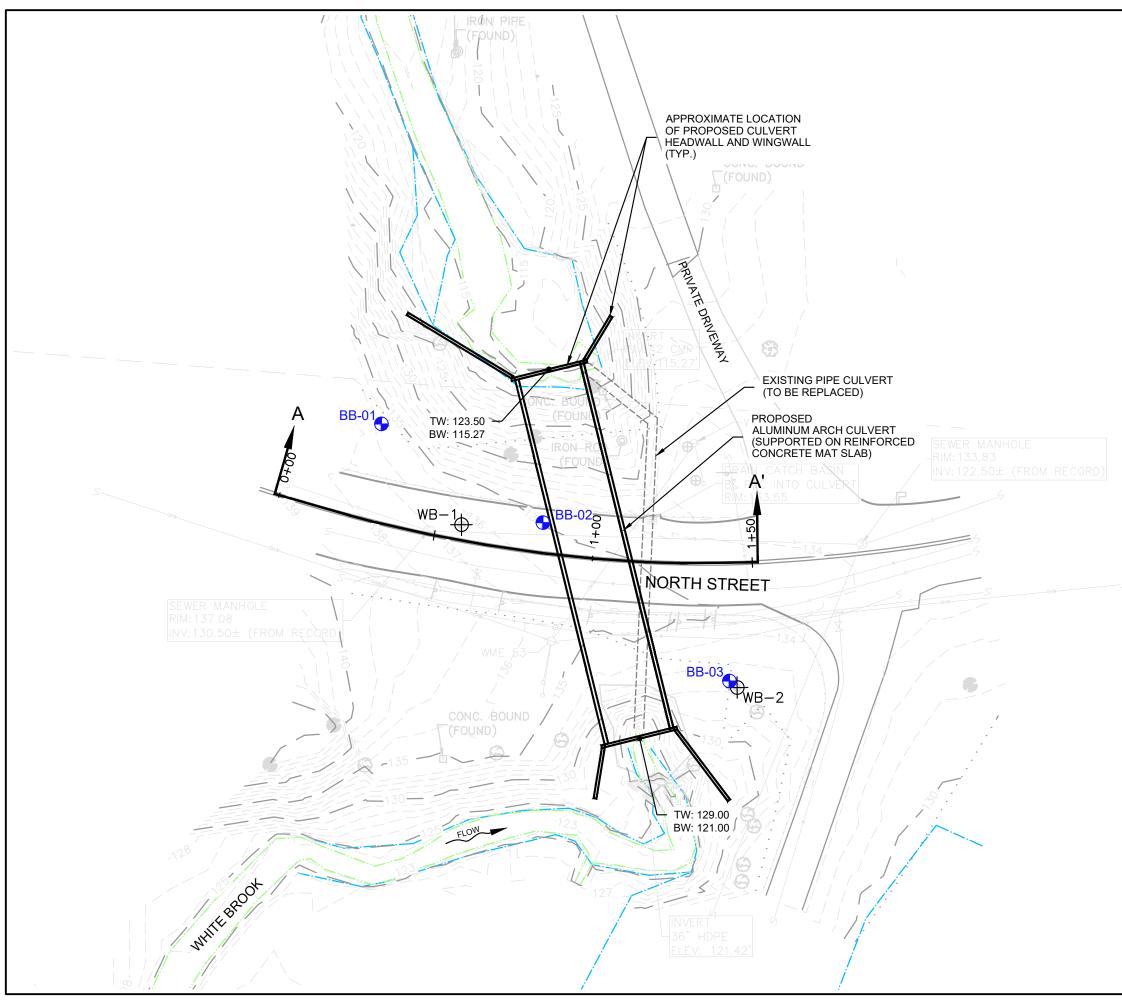
Very truly yours, GZA GEOENVIRONMENTAL, INC.

Michael Ostrowski, E.I.T. **Project Manager**

Martin A. Rodick, P.E. Principal-in-Charge

Terese M. Kwiatkowski, P.E.


Consultant/Reviewer


Attachments: Figures Appendix A – Limitations Appendix B – Previous (2020) Test Boring Logs by Others Appendix C - Recent (2022) Test Boring Logs by GZA Appendix D – 2022 Rock Core Photographs Appendix E – Previous (2020) Geotechnical Laboratory Test Results by Others Appendix F – Recent (2022) Geotechnical Laboratory Test Results Appendix G – Calculations Appendix H – Lightweight Fill Product Information

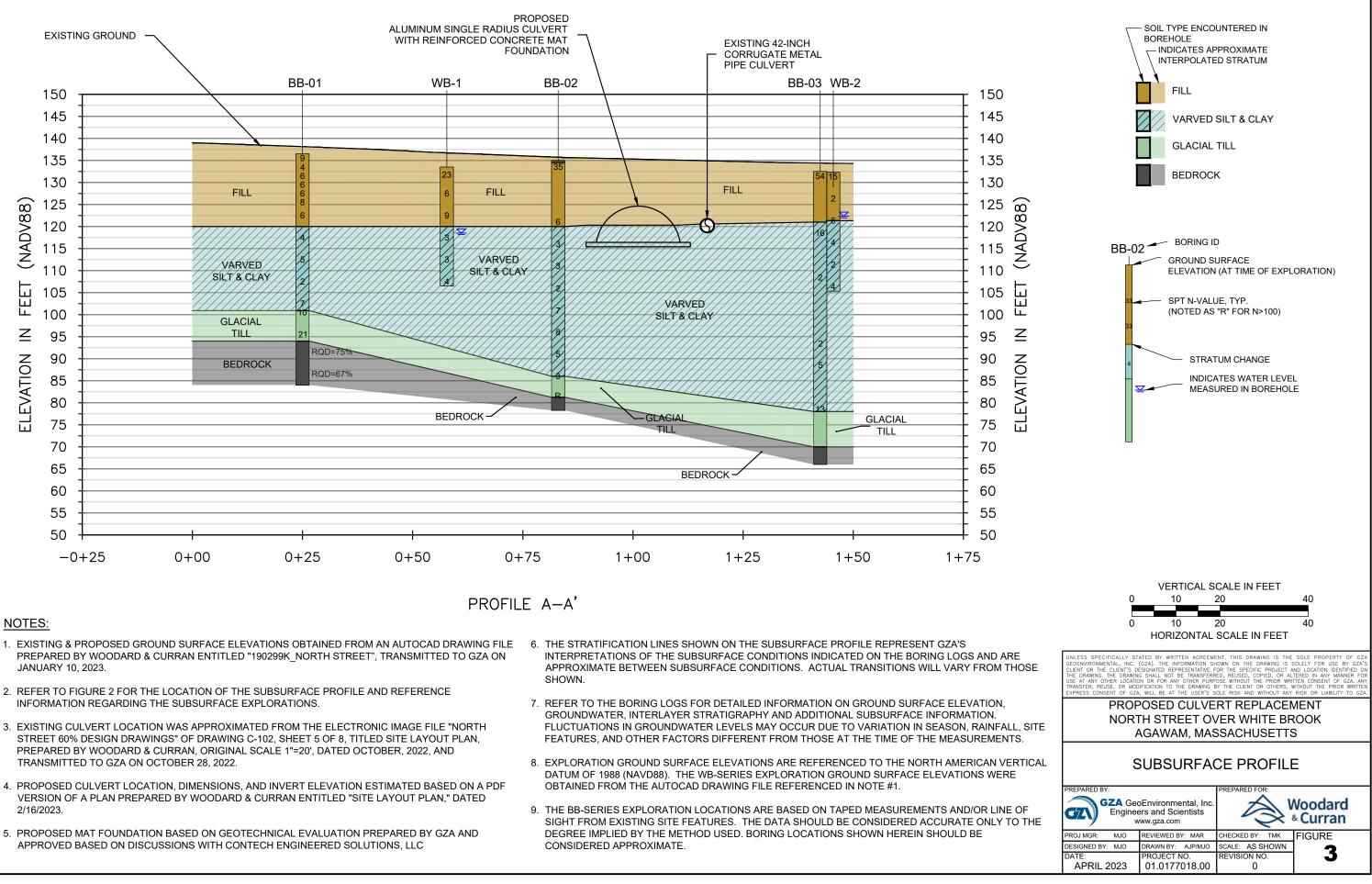
J:\170,000-179,999\177018\177018-00.MJO\WORK\Task 4 - Geotech Analyses & Reports\REPORT - North St - White Brook\177018 - North St Culvert Geotech Report 2023-05-23.docx

FIGURES

LEGEND:

BB-01

TEST BORING PERFORMED BY SEABOARD DRILLING, INC. OF SPRINGFIELD, MASSACHUSETTS ON DECEMBER 28 TO 30, 2022. OBSERVED AND LOGGED BY GZA PERSONNEL


BORING PERFORMED BY SEABOARD DRILLING, INC. OF SPRINGFIELD, MASSACHUSETTS ON NOVEMBER WB-2 12, 2020. OBSERVED AND LOGGED BY O'REILLY, TALBOT & OKUN ASSOCIATES, INC. (OTO).

> SUBSURFACE PROFILE ALIGNMENT (SEE FIGURE 3)

NOTES:

- 1. BASE MAP DEVELOPED FROM AN AUTOCAD DRAWING FILE PREPARED BY WOODARD & CURRAN ENTITLED "190299K NORTH STREET", TRANSMITTED TO GZA ON JANUARY 10, 2023.
- 2. PROPOSED FEATURES WERE APPROXIMATED FROM ELECTRONIC IMAGE FILE "NORTH STREET 60% DESIGN DRAWINGS" OF DRAWING C-102, SHEET 5 OF 8, TITLED SITE LAYOUT PLAN, PREPARED BY WOODARD & CURRAN, ORIGINAL SCALE 1"=20', DATED OCTOBER, 2022, AND TRANSMITTED TO GZA ON OCTOBER 28, 2022.
- 3. THE HORIZONTAL DATUM IS REFERENCED TO THE NORTH AMERICAN DATUM OF 1983 (NAD83). EXPLORATION GROUND SURFACE ELEVATIONS ARE REFERENCED TO THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88).
- 4. THE BB-SERIES EXPLORATION LOCATIONS ARE BASED ON TAPED MEASUREMENTS AND/OR LINE OF SIGHT FROM EXISTING SITE FEATURES. THE DATA SHOULD BE CONSIDERED ACCURATE ONLY TO THE DEGREE IMPLIED BY THE METHOD USED. BORING LOCATIONS SHOWN HEREIN SHOULD BE CONSIDERED APPROXIMATE.
- 5. THE WB-SERIES EXPLORATION LOCATIONS WERE OBTAINED FROM THE BASE MAP FILE REFERENCED IN NOTE #1.

0 15	30 LE IN FEET	60 W S	N E			
UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S LIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON THE DRAWING. THE DRAWING SHALL NOT BE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANRER FOR USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRIOR WRITTEN CONSENT OF GZA, ANY TRANSFER, REUSE, OR MODIFICATION TO THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRIOR WRITTEN EXPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LUBILITY TO GZA.						
NOR	PROPOSED CULVERT REPLACEMENT NORTH STREET OVER WHITE BROOK AGAWAM, MASSACHUSETTS					
	EXPLORATION LOCATION PLAN					
PREPARED BY: GZA GeoEnvironmental, Inc. Engineers and Scientists www.gza.com						
PROJ MGR: MJO DESIGNED BY: MJO DATE: APRIL 2023	REVIEWED BY: MAR DRAWN BY: AJP PROJECT NO. 01.0177018.00	CHECKED BY: TMK SCALE: AS SHOWN REVISION NO. 0	FIGURE 2			

NOTES:

- 3. EXISTING CULVERT LOCATION WAS APPROXIMATED FROM THE ELECTRONIC IMAGE FILE "NORTH

LEGEND:

APPENDIX A – LIMITATIONS

GEOTECHNICAL LIMITATIONS 01.0177018.00 Page | 1 April 2023

USE OF REPORT

1. GZA GeoEnvironmental, Inc. (GZA) prepared this report on behalf of, and for the exclusive use of our Client for the stated purpose(s) and location(s) identified in the Proposal for Services and/or Report. Use of this report, in whole or in part, at other locations, or for other purposes, may lead to inappropriate conclusions; and we do not accept any responsibility for the consequences of such use(s). Further, reliance by any party not expressly identified in the contract documents, for any use, without our prior written permission, shall be at that party's sole risk, and without any liability to GZA.

STANDARD OF CARE

- 2. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in Proposal for Services and/or Report, and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. If conditions other than those described in this report are found at the subject location(s), or the design has been altered in any way, GZA shall be so notified and afforded the opportunity to revise the report, as appropriate, to reflect the unanticipated changed conditions.
- 3. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made.
- 4. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

SUBSURFACE CONDITIONS

- 5. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this report.
- 6. In preparing this report, GZA relied on certain information provided by the Client, state and local officials, and other parties referenced therein which were made available to GZA at the time of our evaluation. GZA did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this evaluation.
- 7. Water level readings have been made in test holes (as described in this Report) and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this Report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The water table encountered in the course of the work may differ from that indicated in the Report.
- 8. GZA's services did not include an assessment of the presence of oil or hazardous materials at the property. Consequently, we did not consider the potential impacts (if any) that contaminants in soil or groundwater may have on construction activities, or the use of structures on the property.

9. Recommendations for foundation drainage, waterproofing, and moisture control address the conventional geotechnical engineering aspects of seepage control. These recommendations may not preclude an environment that allows the infestation of mold or other biological pollutants.

COMPLIANCE WITH CODES AND REGULATIONS

10. We used reasonable care in identifying and interpreting applicable codes and regulations. These codes and regulations are subject to various, and possibly contradictory, interpretations. Compliance with codes and regulations by other parties is beyond our control.

ADDITIONAL SERVICES

11. GZA recommends that we be retained to provide services during any future: site observations, design, implementation activities, construction and/or property development/redevelopment. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

APPENDIX B – PREVIOUS (2020) BORING LOGS BY OTHERS

BORING LOGS

O'Reilly,Talbot & Okun

ENGINEERING ASSOCIATES

SUMMARY OF THE BURMISTER SOIL CLASSIFICATION SYSTEM (MODIFIED)

RELATIVE DENSITY (of non-plastic soils) OR CONSISTENCY (of plastic soils)

STANDARD PENETRATION TEST (SPT)

Method: Samples were collected in accordance with ASTM D1586, using a 2" diameter split spoon sampler driven 24 inches. If samples were collected using direct push methodology (Geoprobe), SPTs were not performed and relative density/consistency were not reported. N-Value: The number of blows with a 140 lb. hammer required to drive the sampler the middle 12 inches.

WOR: Weight Of Rod (depth dependent) WOH: Weight Of Hammer (140 lbs.)

	COHESIONL	ESS SOILS	COHES	IVE SOILS
	BLOWS/FOOT	RELATIVE	BLOWS/FOOT	CONSISTENCY
	(SPT N-Value)	DENSITY	(SPT N-Value)	CONSISTENCT
	0-4	Very loose	<2	Very soft
	4-10	Loose	2-4	Soft
	10-30 Medium dense		4-8	Medium Stiff
	30-50 Dense		8-15	Stiff
	>50 Very dense		15-30	Very stiff
Ī	*Based upon uncorre	ected field N-values	>30	Hard

MATERIAL: (major constituent identified in CAPITAL letters)

	COHESIONL	ESS SOILS			COHESIVE SO	ILS
MATERIAL	FRACTION	GRAIN SIZE RANGE	SMALLEST PLASTICITY		IDENTITY	
GRAVEL	Coarse	3/4" to 3"		DIAMETER	FLASHOITT	
GRAVEL	Fine	1/4" to 3/4"		None	Non-plastic	SILT
	Coarse	1/16" to 1/4"		1/4" (pencil)	Slight	Clayey SILT
SAND	Medium	1/64" to 1/16"		1/8"	Low	SILT & CLAY
	Fine	Finest visible & distinguishable particles		1/16"	Medium	CLAY & SILT
SILT/CLAY	see adjacent table Cannot distinguish individual particles			1/32"	High	Silty CLAY
COBBLES	3" to 6" in diameter			1/64"	Very High	CLAY
BOULDERS > 6" in diameter				Wetted sample i	s rolled in hands to s	smallest possible
Note: Boulders an	Note: Boulders and cobbles are observed in test pits and/or auger cuttings.			diameter before		-

ORGANIC SILT: Typically gray to dark gray, often has strong H2S odor. May contain shells or shell fragments. Light weight. Fibrous PEAT: Light weight, spongy, mostly visible organic matter, water squeezed readily from sample. Typically near top of layer. Fine grained PEAT: Light weight, spongy, little visible organic matter, water squeezed from sample. Typically below fibrous peat.

DEBRIS: Detailed contents described in parentheses (wood, glass, ash, crushed brick, metal, etc.)

BEDROCK: Underlying rock beneath loose soil, can be weathered (easily crushed) or competent (difficult to crush).

ADDITIONAL CONSTITUENTS

TERM	% OF TOTAL
and	35-50%
some	20-35%
little	10-20%
trace	1-10%

COMMON TERMS

Glacial till: Very dense/hard, heterogeneous mixture of sand, silt, clay, sub-angular gravel. Deposited at base of glaciers, which covered all of New England.
Varved clay: Fine-grained, post-glacial lake sediments characterized by alternating layers (or varves) of silt, sand and clay.
Fill: Material used to raise ground, can be engineered or non-engineered.

COMMON FIELD MEASUREMENTS

Torvane: Undrained shear strength is estimated using an E285 Pocket Torvane (TV). Values in tons/ft2.

Penetrometer: Unconfined compressive strength is estimated using a Pocket Penetrometer (PP). Values in tons/ft2.

RQD: Rock Quality Designation is determined by measuring total length of pieces of core 4" or greater and dividing by the total length of the run, expressed as %. 100-90% excellent; 90-75% good; 75-50% fair; 50-25% poor; 25-0% very poor.

PID: Soil screened for volatile organic compounds (VOCs) using a photoionization detector (PID) referenced to benzene in air. Readings in parts per million by volume.

O'Reilly, Talbot & Okun

LOG OF BORING WB-1

Page 1 of 1

PROJECT		White Brook Culvert				CONTRACTOR	Seaboard Environmental Drilling		
JOB NUMBER	JOB NUMBER 2393-08-01 FINAL DEPTH (ft)		PTH (ft)	27.0	DRILLING EQUIPMENT	B-53 Truck Mounted Rig	uck Mounted Rig		
LOCATION	LOCATION Agawam, MA SURFACE B		FACE ELEV (ft) 131.0 FOREMAN Dale		Dale	CASING			
START DATE		11/12/2020	DISTURBE	D SAMPLES	6	HELPER	Mike	CASE DIAMETER	N/A
FINISH DATE		11/12/2020	UNDISTUR	BED SAMPLES	0	BIT TYPE	Hollow Stem Auger	HAMMER WGT	N/A
ENGINEER/SCIE	NTIST	Shannon Raymond		WATER LE	VEL	ROD TYPE	A (1 5/8" O.D.)	HAMMER DROP	N/A
BODINO				FIRST (ft)	15.0	SAMPLER	2" O.D. Split Spoon	ROCK CORING	INFORMATION
BORING LOCATION	Northe	east of existing culvert		LAST (ft)		HAMMER TYPE	Automatic	TYPE	N/A
LOGATION				TIME (hr)		HAMMER WGT/DROP	140 lb / 30"	SIZE	N/A

		SAMF	PLES				REMARKS/
DEPTH (ft)/ SAMPLES	PENETR. RESIST.	REC.	TYPE/	FIELD TEST	SAMPLE DESCRIPTION (MODIFIED BURMISTER)	PROFILE DEPTH (ft) EI	WELL
	(bl / 6 in)	(in)	NO.	DATA			CONSTRUCTION
	9/13/10/7	14/24	S-1 (0.75'-2.75')		9" of Asphalt Top 6" : Medium dense, red-brown, fine to medium SAND, some coarse sand, little gravel, trace silt, dry (SAND AND GRAVEL BASE) Bottom 8" : Medium dense, red-brown, fine to medium SAND, little coarse sand, trace (+) silt, trace debris (asphalt), dry (GRANULAR FILL)	ASPHALT GRANULAR BA GRANULAR FIL REWORKED SI SOILS	L/
	2/3/2/2	13/24	S-2 (5'-7')		Top 7" : Loose, brown, fine to medium SAND, little coarse sand, trace (+) silt, dry Bottom 6" : Loose, brown, fine SAND, little silt, little medium sand, trace debris (asphalt) damp		
	4/4/5/10	12/24	S-3 (10'-12')		Top 8" : Loose, brown, fine SAND, some to little silt, trace medium sand, damp Bottom 4" : Loose, light brown, fine to medium SAND, trace silt, trace gravel, damp		
	1/1/2/1	15/24	S-4 (15'-17')		Soft, grey-brown, varved SILT and CLAY, little fine sand, wet	15.0 ↓ 11 SILT AND CLA ▽ 11 Ξ	
	1/1/2/3	20/24	S-5 (20'-22')		Soft, grey, varved SILT and CLAY, little fine sand, wet		
	2/2/2/2	24/24	S-6 (25'-27')	-	Soft, grey, varved SILT and CLAY, little fine sand, wet End of exploration at 27'	27.0 ↓ 10	4.0

Remarks:	PROJECT NO.
1. Auger easily advanced beginning at 17 feet below ground surface.	<u>2393-08-01</u>
	LOG OF BORING <u>WB-1</u>

O'Reilly, Talbot & Okun

LOG OF BORING WB-2

Page <u>1</u> of <u>1</u>

PROJECT	White Brook Culvert				CONTRACTOR	Seaboard Environmental Drilling		
JOB NUMBER	2393-08-01	FINAL DEF	PTH (ft)	27.0	DRILLING EQUIPMENT	B-53 Truck Mounted Rig		
LOCATION	Agawam, MA	SURFACE	SURFACE ELEV (ft) 12		FOREMAN	Dale CASIN		ING
START DATE	TART DATE 11/12/2020 DISTURB				HELPER	Mike	CASE DIAMETER	N/A
FINISH DATE	11/12/2020	UNDISTUR	BED SAMPLES	0	BIT TYPE	Hollow Stem Auger	HAMMER WGT	N/A
ENGINEER/SCIEN	ITIST Shannon Raymond		WATER LE	VEL	ROD TYPE	A (1 5/8" O.D.)	HAMMER DROP	N/A
DODINO	FIRST (ft)	10.0	SAMPLER	2" O.D. Split Spoon	ROCK CORING	INFORMATION		
BORING LOCATION	LAST (ft)		HAMMER TYPE	Automatic	TYPE	N/A		
LOOAHON					HAMMER WGT/DROP	140 lb / 30"	SIZE	N/A

		SAMP	LES				
DEPTH (ft)/ SAMPLES	PENETR. RESIST.	REC.	TYPE/	FIELD TEST	SAMPLE DESCRIPTION (MODIFIED BURMISTER)	PROFILE	REMARKS/ WELL
SAMPLES	(bl / 6 in)	(in)	NO.	DATA		DEPTH (ft) ELEV	CONSTRUCTION
$= \setminus / =$	3/8/7/7	13/24	S-1		Top 3" : Medium dense, dark brown, fine to medium SAND, trace (+) silt,	TOPSOIL	
$\vdash X \dashv$			(0'-2')		trace organics (roots), damp (TOPSOIL) Bottom 10" : Medium dense, brown to red-brown, medium to coarse SAND, some fine sand	GRANULAR FILL/ REWORKED SITE	1.
					little to trace silt, trace gravel, trace debris (asphalt, brick), damp (GRANULAR FILL)	SOILS	
<u> </u>							
							1.
<u>⊢</u> –							
5'							
$\vdash \setminus / \dashv$	2/1/1/1	15/24	S-2 (5'-7')		Loose, brown to light brown, fine to medium SAND, little to trace silt, trace fine gravel, trace (-) organics (roots), damp		
			()		()		
<u>⊢</u> –							
10'	3/3/3/3	17/24	S-3		Top 9" : Loose, grey-brown, medium to coarse SAND, some fine sand, little silt, wet	▽ 119.0	
			(10'-12')		Middle 5" : Loose, grey, fine SAND and SILT, wet	11.0 🖌 118.0	
$\vdash \land \dashv$					Bottom 3" : Soft, grey, varved SILT and CLAY (1/16" seams of silt, 1/16" seams of clay)	SILT AND CLAY	
					(
<u>⊢</u> –							
15'							
$-\nabla 7$	2/2/2/2	18/24	S-4		Soft, grey, varved SILT and CLAY, trace fine sand, wet		
$\vdash X \dashv$			(15'-17')				
┝─ ─							
20'							
$\vdash \lor \dashv$	2/1/1/2	20/24	S-5 (20'-22')		Soft, grey, varved SILT and CLAY, trace fine sand, wet		
$F \land \exists$, ,				
\vdash \dashv							
25'	2/2/2/2	24/24	S-6		Soft, grey, varved SILT and CLAY, trace fine sand, wet		
$\Box X \exists$			(25'-27')				
$ \lfloor / \backslash \dashv $						27.0 + 102.0	
					End of exploration at 27'		

Remarks:	PROJECT NO.
1. Auger grinding at 2 and 4 feet below ground surface, suspected gravel.	<u>2393-08-01</u>
	LOG OF BORING <u>WB-2</u>

APPENDIX C – RECENT (2022) BORING LOGS BY GZA

BORING LOG LEGEND

GS Elev. = Ground Surface Elevation NAVD = North American Vertical Datum NR = No Recovery S.S. = Split Spoon Stab. = Stabilization Time for groundwater reading WOH = Weight of Hammer WOR = Weight of Rods

SOIL DESCRIPTIONS

Soil samples are described on the exploration logs by the "Modified Burmister Soil Identification System". The following provides a brief description of the Modified Burmister System.

1. Major and minor components of the soil matrix are identified as gravel, sand or fines. The relative amounts of these constituents are proportioned as:

Component	Proportional Term	Percent by Weight of Total
Major		Greater than percentage of other components
Minor	And	35-50
	Some	20-35
	Little	10-20
	Trace	1-10

2. The nature of "fines" is defined by using the following guidelines:

Degree of Plasticity	Identity	Plasticity Index
Non-plastic	SILT	0
Slight	Clayey SILT	1-5
Low	SILT & CLAY	5-10
Medium	CLAY & SILT	10-20
High	Silty CLAY	20-40
Very High	CLAY	40 and Greater

3. For boring logs, relative density or consistency is identified based on standard penetration resistance, using the following table.

Non-Pla	astic Soils	Plasti	c Soils
Blows/ft "N"	Relative Density	Blows/ft "N"	Consistency
0-4	Very Loose	<2	Very Soft
4-10	Loose	2-4	Soft
10-30	Medium Dense	4-8	Medium Stiff
30-50	Dense	8-15	Stiff
>50	Very Dense	15-30	Very Stiff
		>30	Hard

BEDROCK DESCRIPTIONS

Rock samples described on the exploration logs are generally based on the International Society of Rock Mechanics (ISRM) System, as generally described on the following page. Each rock sample was generally described using the following guideline, in the order presented:

- 1. Field hardness: very hard, hard, moderately hard, medium, soft, very soft
- 2. Weathering: fresh, very slight, slight, moderate, moderately severe, severe, very severe, complete
- 3. Rock continuity (fracturing): extremely, moderately, slightly, sound
- 4. Texture: amorphous, fine, medium, coarse, very coarse
- 5. Color
- 6. Rock type
- 7. Fractures, Bedding, and Foliation, Spacing and Attitude
- 8. Rock Quality Designation (RQD)

Forer	ng Co.: man:	Seabo Dale C					-	Truck Mobile B-53	Boring Locatio Ground Surfac Final Boring D	ce Elev. (ft.):				Datum: NA			
Logg	ed By:	Matthe	ew Brady			Drill	ing Meth	hod: Drive & Wash	Date Start - Fi	• • •	30/2022 - 12/30/2	2022	v.	Datum:NA	000		
I.D/O. Hamr	r/Casing .D.(in): ner Wei ner Fall :: S	ght (lb. (in.):	4/4.5			I.D./ Sam	pler Hm			Date No stat	Groundw Time Dilized readings of	Wate	r Depth				
	Casing Blows/			Samp Pen	le Rec.	Blows	SPT		Description an			Remark	Field Test		tratum scription		
(ft) -	Core Rate	No. S-1	(ft.) 0-2	(in) 24	(in) 4	(per 6 in.) 3 4 5 4		(Moo S-1: Loose, brown, Gravel.	dified Burmister fine to coarse S	,		1	Data	De De		ī	
-	-	S-2	2-4	24	5	3 2 2 3	4	S-2: Medium stiff, g trace Organics.	ray/brown Clay	ey SILT, little	e fine Sand,	2					
- 5 _	-	S-3	4-6	24	10	33 33	6	S-3: Medium stiff, g	ray, SILT & CL/	AY, trace (+) fine Sand.						
-	-	S-4	6-8	24	7	43 34	6	S-4: Medium stiff, d Sand.	ark gray, SILT a	& CLAY, tra	ce (-) fine						
-	-	S-5	8-10	24	15	33 33	6	S-5: Medium stiff, g	ray, CLAY & SI	LT, trace fin	e Sand.				FILL		
10 _	-	S-6	10-12	24	12	4 4 4 4	8	S-6: Stiff, gray/brow	/n/red, SILT & C	CLAY, trace	(-) fine Sand.						
- - 15 _	-	S-7	13-15	24	14	23 34	6	S-7: Medium stiff, g	ray, SILT & CL/	AY, trace (-)	fine Sand.						
-	-													16.5'		_1	
20 _	-	S-8	18-20	24	17	22 22	4	S-8 (Top 6"): Gray a Sand. S-8 (Bottom 11"): G				3 4					
- - 25 _	-	S-9	23-25	24	24	23 22	5	S-9: Medium stiff, g deposit)	ray with red, SI	LT & CLAY.	(varved			VARVED) SILT & C	LA	
		S-10	28-30	24	22	1 1 1 1	2	S-10 (Top 14"): Sof deposit)	t, gray with red,	SILT & CLA	λΥ. (varved						
1 2 3	& Curi Advan . Advan	ran and iced boi iced boi	l dated Oo rehole usi rehole usi	ctober ing ca ing op	2022. sed dr en hol	ive and was e drilling te	sh techn chniques	hy shown on preliminar iques from 0 to 18 feet s below 18 feet bgs. Clay were observed in al	below existing gr	ound surface	e (bgs).	nditio	ns Plan	" prepared b	oy Wooda	aro	

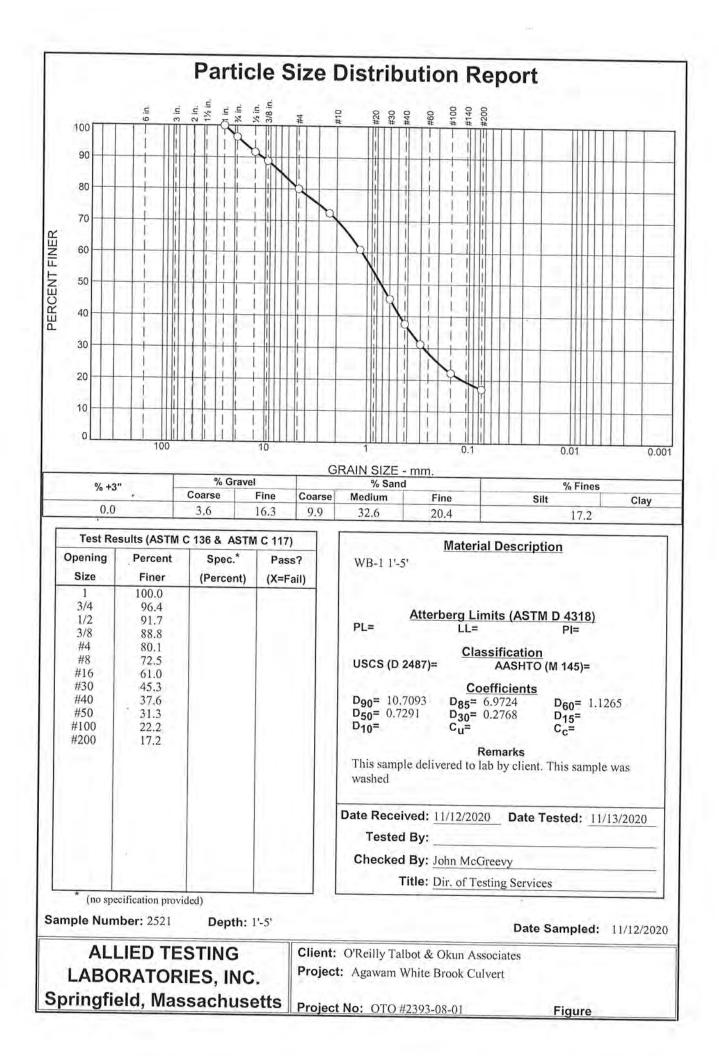
GZ		GZA GeoEi Enginee	nviron rs and S	men cientis	tal,	Inc.		Woodard & Curran Proposed Culvert Replacement North Street Culvert Agawam, Massachusetts			2 177018	.00		
Depth (ft)	Casing Blows/ Core	No.		Samp Pen.		Blows (per 6 in.)	SPT	Sample Description and Identificat (Modified Burmister Procedure)		Remark	Field Test Data	Depth (ft.)	Stratum Description	Elev.
_	Rate		(11.)		(11)		Value	S-10 (Bottom 8"): Red/gray, Silty CLAY. (varve	d deposit)		Data			
- - 35 _ -		S-11 S-12	33-35 35-37	24 24	24 14	23 45 55 55	7	S-11: Medium stiff, gray/red, Silty CLAY, traced S-12 (Top 7"): Gray/red, Silty CLAY, trace(-) fir S-12 (Bottom 7"): Gray/red/brown, Silty CLAY, coarse Sand, little Gravel.	ne Sand.			VAF 35.6'	RVED SILT & C	LAY
- - 40	min/ft	S-13	40-42	24	14	89 1212	21	S-13: Very Stiff, red/brown Silty CLAY, some fi Sand, some Gravel.	ne to coarse				glacial till	
- - 45	7:08 6:27 6:46 5:57 4:48	C-1	42.5- 47.5	60	58			C-1: Hard, fresh to slightly weathered, amorpho fine-grained, brown/red SILTSTONE, with very subhorizontal bedding and moderately close to subhorizontal to moderately dipping joints/fractu RQD=75%	thin very close	5		42.5'		
- - 50	3:50 3:10 3:53 3:29 2:43	C-2	47.5- 52.5	60	55			C-2: Hard, fresh to slightly weathered, amorpho fine-grained, brown/red SILTSTONE, with very subhorizontal bedding and close to very close s moderately dipping joints/fractures. RQD=67%	thin subhorizontal to				BEDROCK	
-								Bottom of boring at 52.5 feet.		6		52.5'		8
- 55 _ - -														
- 60 -														
- - 65														
P C C C C C C C C C C C C C C C C C C C	. Driller . Upon	noted <u>c</u> comple	greatly ind	crease hole b	ed resi backfill	stance roller led with drill	bitting cuttings	at 42.5 feet bgs and indicated the presence of bedro to ground surface.	ck. Bedrock was	then	cored s	starting	at 42.5 feet b	ogs.
								on procedures. Stratification lines represent approximate b dings have been made at the times and under the condit				Bor	ing No.:	

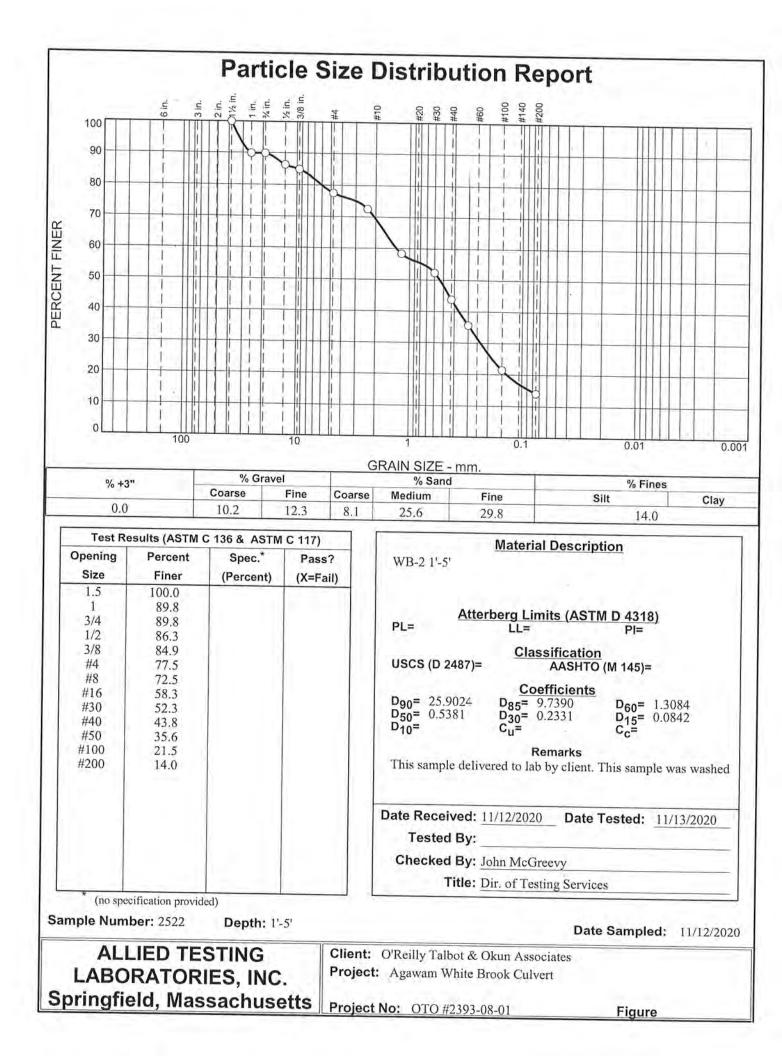
D	E	nginee	nviron ers and S	cienti.				•	lassachusetts		PROJECT NO: REVIEWED BY					
Forer	man:	Dale G	ard Drillin Griffen w Brady	ng		Rig	e of Rig: Model: ing Meth	Truck Mobile B-53 nod: Drive & Wash	Boring Locatio Ground Surfac Final Boring D Date Start - Fir	:e Elev. (ft.): epth (ft.): 56.		022		Datum: NA		
I.D/O. Hamn	r/Casing .D.(in): mer Weig mer Fall (ght (lb.) (in.):	HW 4/4.5 300 24 ammer			I.D./ Sam	, pler Hm			Ground Date Time No stabilized readings			r Depth	Depth Casing		Tin
	Casing Blows/ Core	No.		Samp Pen. (in)	1	Blows (per 6 in.	SPT	(Mor	Description and lified Burmister		on	Remark	Field Test Data		ratum cription	Fley
-	Rate	S-1	0.5-2.5	24	10	25 18 17 16	35	0-6": ASPHALT. S-1: Tan, fine to coa	arse SAND, little	e Gravel, trac	ce Silt.	1 2 3	Dutu	0.5' AS	PHALT	_13
- 5 -	-															
- - 10 _	-														FILL	
-	-	S-2	13-15	24	0	94	6	S-2: No recovery.								
- 15 -	-					23						45		15'		1
- - 20 _	-	S-3	18-20	24	5	3 1 2 1	3	S-3: Soft, gray, SILT fibers.	⁻& CLAY, little	fine Sand, lit	tle(-) Wood	6				
- - - 25	-	S-4	23-25	24	0	0 1 2 1	3	S-4: No recovery.						VARVED S	SILT AND	CL
- - 30 _	-	S-5	28-30	24	24	0 1 1 2	2	S-5: Very soft, gray,	CLAY & SILT,	trace (-) fine	Sand.					
1 2 3 4 5	& Curr Augere Advand wash v Stratur In sam Advand	an and ed throu ced bor vater. n chan ples S- ced bor	dated Oo ugh the pa ehole usi ge at 15 f -3 and S-4	ctober aveme ing ca feet bç 5 throi ing op	2022. ent the sed dr gs esti ugh S- en hol	n obtained ive and wa mated base 9 Silt & Cla e drilling te	sample s sh techni ed on the	hy shown on preliminar S-1. iques from 0.5 to 18 fee depth to the existing cu bserved in alternating s s below 18 feet bgs. Dr	t below existing of the second seco	ground surfac previous bori s).	e (bgs). Driller ng WB-1 by oth	noted ers.	the pre	esence of wo	ood in the	е


GZ	<u> ()</u> ()	GZA GeoE Enginee	nviron ers and S	men Scienti.	sts	Inc.		Woodard & Curran Proposed Culvert Replacement North Street Culvert Agawam, Massachusetts			2 177018.	.00	
Depth (ft)	Casing Blows/ Core	No.	1	Samp Pen.	Rec.	Blows	SPT	Sample Description and Identifical (Modified Burmister Procedure)	tion	Remark	Field Test	للت Stratum طق Description	Elev.
- - 35_	Rate	S-6	(ft.) 33-35	(in) 24	(in)	(per 6 in.) 3 3 4 3	7	S-6: No recovery.			Data		
- - 40		S-7	38-40	24	22	13 53	8	S-7: Stiff, gray, Silty CLAY, trace (-) fine Sand.				VARVED SILT AND	CLA
- - 45	-	S-8	43-45	24	17	32 32	5	S-8 (Top 12"): Gray, Silty CLAY, trace (-) fine S-8 (Bottom 5"): Brown, SILT and CLAY, trace					
- - 50	-	S-9	48-50	24	22	3 1 2 11	3	S-9: Soft, brown, Clayey SILT, some fine to co Gravel.	arse Sand, little			49.5'	8
- - 55	-	S-10	53- 53.8	24	2	9 50/3"	R	S-10: Brown, Clayey SILT and fine to coarse S Gravel.	GAND, some	7 8 9		GLACIAL TILL 53.8' BEDROCK	-
- - 60 -								Bottom of boring at 56.8 feet.				56.8'	7
- - 65	-												
SXS 8	over a . Driller	pproxin indicat	nately 80 ed there	minut was a	es. D 3 incł	rill cuttings a n fracture in t	ppeare he rock	eet bgs. Roller bitted from approximately 53.8 to 56. d to consist of 1/8-inch pieces of red siltstone. and was losing water. and patched the surface with concrete.	8 feet bgs using a	ppro	ximatel	y 450 psi downpress	sure
								on procedures. Stratification lines represent approximate b dings have been made at the times and under the condi				Boring No.: BB-02	

GZ	<u>)</u> (GZA GeoEi Enginee	nviron ers and S	men cientis	t al,]	Inc.	Proposed Culvert Replacement North Street Culvert				BORING NO.: BB-03 SHEET: 1 of 2 PROJECT NO: 01.0177018.00 REVIEWED BY: MJO/MAR						
Foreman: Dale Griffen Logged By: Matthew Brady Auger/Casing Type: HW I.D/O.D.(in): 4/4.5 Hammer Weight (Ib.): 300						Rig I	Rig Model: Mobile 8-53				ce Elev. (ft.): 132.5 Depth (ft.): 66.5				H. Datum: NAD83 V. Datum:NAVD88		
						I.D./0 Sam	pler Hm			Date No stab	Groundv Time bilized readings (vater Depth (Water Depth obtained					
	Casing Blows/ Core Rate	No. S-1		Samp Pen. (in) 24	le Rec. (in) 14	Blows (per 6 in.) 27 30	SPT Value	(Mod	Description and ified Burmister wn/red/tan/white	Procedure)		L Remark	Field Test Data	⊟ta (j; Des	ratum . cription ≜ ⊞		
-						24 22		coarse SAND, little S				2					
- 5 _ -															FILL		
- - 10												3		11.5'	12		
- - 15		S-2	13-15	24	7	98 86	16	S-2: Very stiff, gray, Sand, trace (-) Grave		Y, little fine t	to coarse	4					
- - 20 -														VARVED	SILT & CLAY		
- - 25		S-3	23-25	24	24	1 1 1 1	2	S-3: Soft, gray, CLA	Y and SILT, tra	ce (-) fine S	Sand.						
			ce elevati dated Oo				opograp	bhy shown on preliminar	y design plan NC	0. C-100 entit	tled "Existing Co	onditio	ns Plar	n" prepared b	/ Woodard		
1 1 1 1	. Advan . Stratu . In sam	ced bor n chan iples S-	ehole fro ge estima 2 through	m 0 to ated at າ S-6 ໃ	o 13 fe t 11.5 i Silt & 0	et below ex feet bgs bas Clay were o	sed on r bserved	ound surface (bgs) using earby previous boring V in alternating sub-layers a drilling techniques.	B-2 by others.	d wash techr	niques.						
bedro	ck types	. Actual	transitions	s may	be gra	dual. Water	level rea	on procedures. Stratification dings have been made at times the measurements w	the times and un					Boring BB-(No.:		

ows/ Depth Pen. Rec. Blows SPT Sample Description and Identification Image: Construction of the second	GZN		GZA GeoEnvironmental, Inc. Engineers and Scientists														
S-4 33-35 24 24 1 1 1 2 S-4: Soft, gray and little red, Silty CLAY, trace (-) fine Sand. Image: Comparison of the sendence of the senden	Depth (ft)	Casing Blows/ Core		Depth	Pen.	Rec.	Blows		Sample Description and Identification			Test	لي Stratum Descripti في Descripti	n <u>s</u>			
S-5 43-45 24 24 24 5 S-5: Medium stiff, gray/reddish, Silty CLAY. Image: Classical strain	- - 35 _ -	Rate	S-4				1 1		S-4: Soft, gray and little red, Silty CLAY, trace	(-) fine Sand.							
S-5 43-45 24 24 24 5 S-5: Medium stiff, gray/reddish, Silty CLAY. Image: Classical strain	- - 40 -												VARVED SILT.	& CLAY			
10.9 10.9 S-6 (Bottom 5"): Brown/red, Clayey SILT and fine to coarse 54.5' 7 SAND, little Gravel. GLACIAL TILL GLACIAL TILL 6 6 GLACIAL TILL 6 6 6 6 6 Drill noted bedrock at 62.5 feet bgs. Roller bitted with a 4-inch roller bit form 02.5 to 66.5 feet. 53.00 psi downpressure in approximately 45 minutes. 6 66.5' 6	- 45 _ - -		S-5	43-45	24	24		5	S-5: Medium stiff, gray/reddish, Silty CLAY.								
10.9 10.9 S-6 (Bottom 5"): Brown/red, Clayey SILT and fine to coarse 54.5' 7 SAND, little Gravel. GLACIAL TILL GLACIAL TILL 6 6 GLACIAL TILL 6 6 6 6 6 Drill noted bedrock at 62.5 feet bgs. Roller bitted with a 4-inch roller bit form 0cf boring at 66.5 feet. 6 6 6 6	- 50 _ - -																
bill noted bedrock at 62.5 feet bgs. Roller bitted with a 4-inch roller bit from 02.5 to 66.5 feet. 6 6 6 6 6 6 6 6 6 6 5 6 6 6 5 6 6 5 6 6 5 6 6 5 6 5 6 6 5 6 6 5 5 6 5 5 6 5 5 6 5 5 5 5 5 5	- - 55 _ -		S-6	53-55	24	24		13	S-6 (Bottom 5"): Brown/red, Clayey SILT and	fine to coarse			54.5'	7			
bill noted bedrock at 62.5 feet bgs. Roller bitted with a 4-inch roller bit from 62.5 to 66.5 feet. he drill cuttings appeared to consist of 1/16- to 1/4-inch reddish siltstone. 66 66.5' 66	- 60 _ -												GLACIAL T	ILL			
Drill noted bedrock at 62.5 feet bgs. Roller bitted with a 4-inch roller bit from 62.5 to 66.5 feet bgs under 300 psi downpressure in approximately 45 minutes.	-										6						
Bottom of boring at 66.5 feet. Prill noted bedrock at 62.5 feet bgs. Roller bitted with a 4-inch roller bit from 62.5 to 66.5 feet bgs under 300 psi downpressure in approximately 45 minutes. The drill cuttings appeared to consist of 1/16- to 1/4-inch reddish siltstone.	00 _ -										7		66 5'	F			
	S	The d	rill cutti	ngs appe	ared t	o cons	sist of 1/16- t	o 1/4-in	ch reddish siltstone.	00 psi downpressu	7	approxi	BEDRO				




APPENDIX D – 2022 ROCK CORE PHOTOGRAPHS

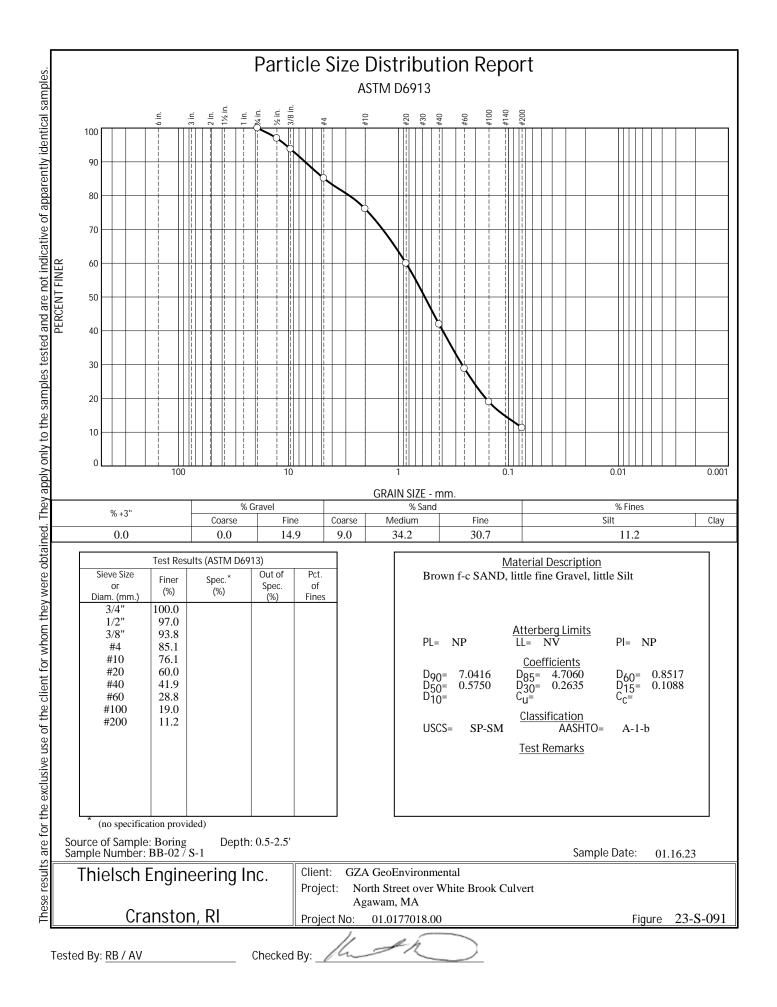
APPENDIX E – PREVIOUS (2020) GEOTECHNICAL LABORATORY TEST RESULTS BY OTHERS

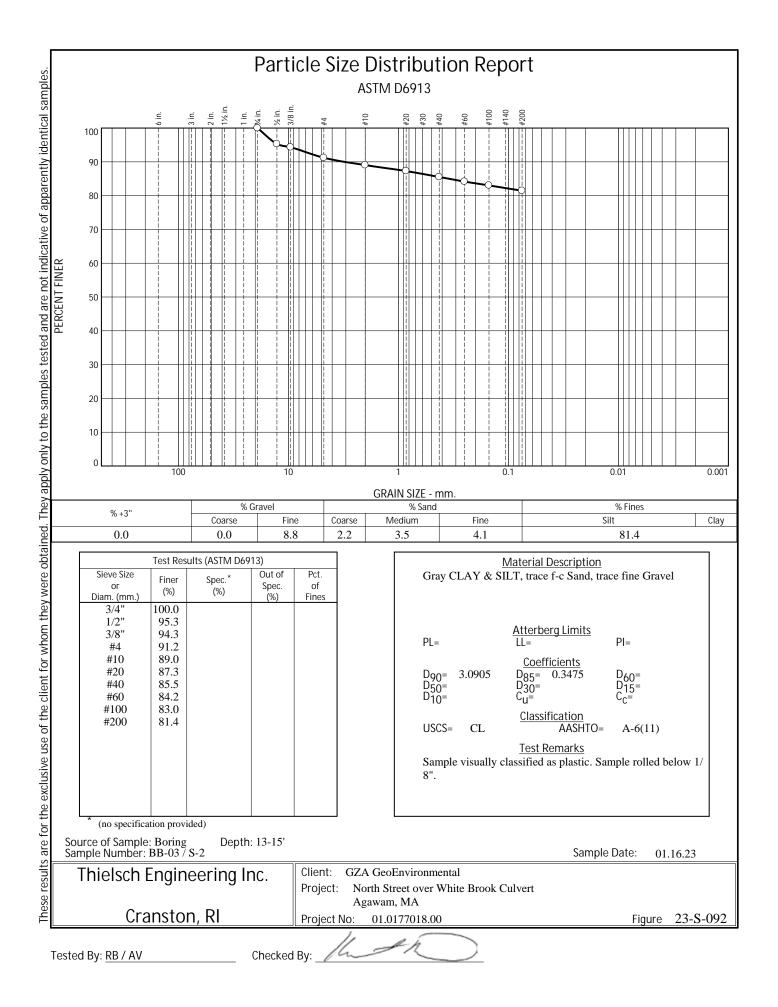
APPENDIX F – RECENT (2022) GEOTECHNICAL LABORATORY TEST RESULTS

	195 Frances Avenue Cranston RI, 02910	Client Information: GZA GeoEnvironmental	Project Information North Street over White B		
Thielsch 🌉	Phone: (401)-467-6454	Norwood, MA 02062	Agawam, MA		
	Fax: (401)-467-2398	PM: Michael Ostrowski	Project Number: 01.0177018.00		
DIVISION OF THE RISE GROUP	thielsch.com	Assigned By: Michael Ostrowski	Summary Page:	1 of 1	
	Let's Build a Solid Foundation	Collected By: Matt Brady	Report Date:	01.16.23	

LABORATORY TESTING DATA SHEET, Report No.: 7423-A-119

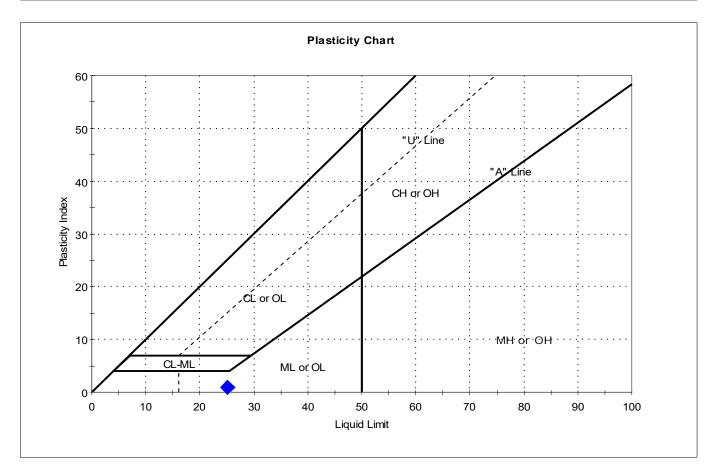
				Identification Tests Proctor / CBR / Permeability Tests																
Boring No.	Sample No.	Depth (ft)	Laboratory No.	As Rcvd Moisture Content %	LL %	PL %	Gravel %	Sand %	Fines %	Org. %	рН	Dry unit wt. (pcf)	Test Moisture Content %		γ_d <u>MAX (pcf)</u> W_{opt} (%) (Corr.)	Target Test Setup as % of Proctor	CBR @ 0.1"	CBR @ 0.2"	Permeability cm/sec	Laboratory Log and Soil Description
				D2216	D4	318		D6913		D2974	D4792			D1	557					
BB-02	S-1	0.5-2.5	23-S-091				14.9	73.9	11.2											Brown f-c SAND, little fine Gravel, little Silt
BB-03	S-2	13-15	23-S-092				8.8	9.8	81.4											Gray CLAY & SILT, trace f-c Sand, trace fine Gravel


Date Received:

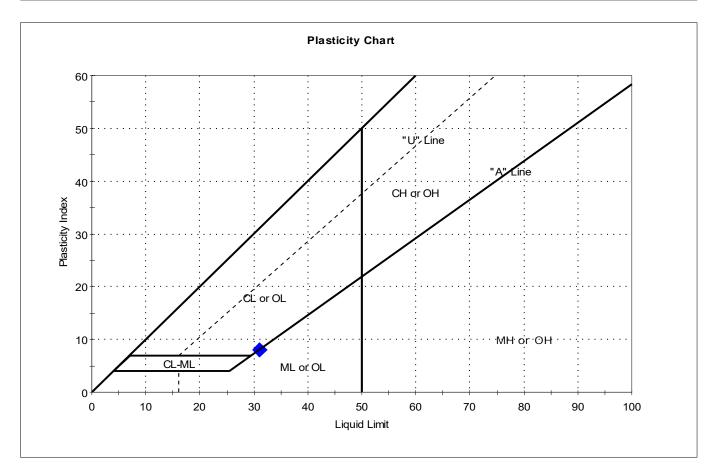

01.10.23

Reviewed By:

Date Reviewed: *01.16.23*


This report only relates to items inspect and/or tested. No warranty, expressed or implied, is made. This report shall not be reproduced, except in full, without prior written approval from the Agency, as defined in ASTM E329.

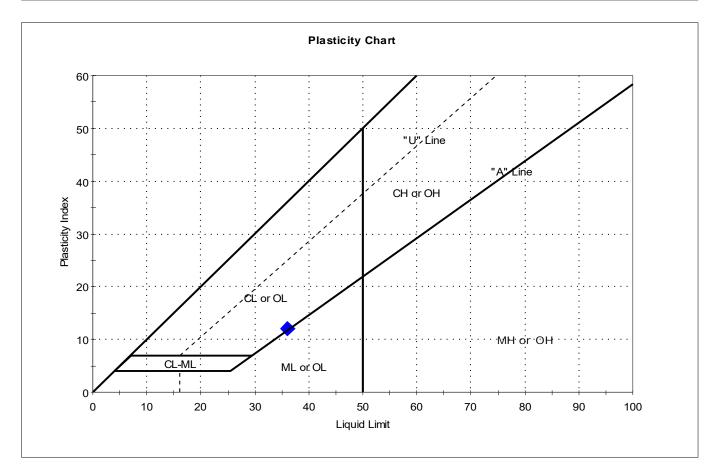
	Client:	GZA GeoEr	ZA GeoEnvironmental, Inc.								
	Project:	North Stre	treet Culvert Replace								
	Location:	Agawam, M	AN			Project No:	GTX-316793				
9	Boring ID:	BB-01		Sample Type:	jar	Tested By:	cam				
	Sample ID:	S-8A		Test Date:	02/17/23	Checked By:	ank				
	Depth :	18-18.5'		Test Id:	705933						
	Test Comm	ent:									
	Visual Desc	ription:	Wet, brownish	gray silt							
	Sample Cor	mment:									



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-8A	BB-01	18-18.5'	35	25	24	1	11.4	

Sample Prepared using the WET method

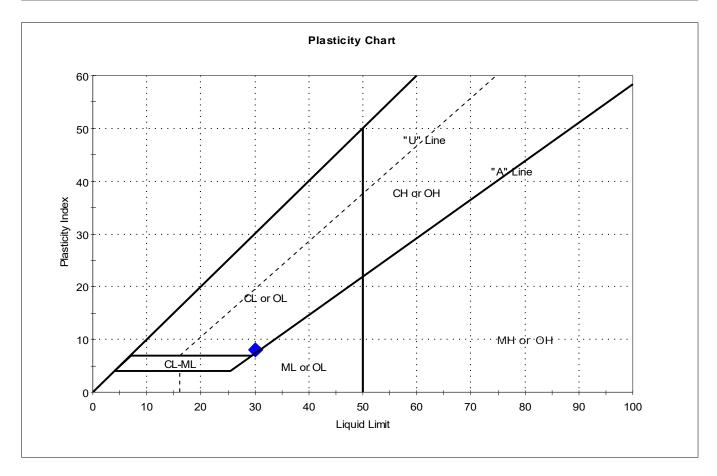
Client:	GZA GeoE	nvironmental, I	nc.						
Project:	North Stre	Street Culvert Replace							
Location:	Agawam, I	MA			Project No:	GTX-316793			
Boring ID:	BB-02		Sample Type:	jar	Tested By:	cam			
Sample ID:	S-3		Test Date:	02/17/23	Checked By:	ank			
Depth :	18-20'		Test Id:	705934					
Test Comm	ent:								
Visual Desc	ription:	Wet, grayish k	prown clay						
Sample Cor	mment:								



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-3	BB-02	18-20'	38	31	23	8	1.9	

Sample Prepared using the WET method

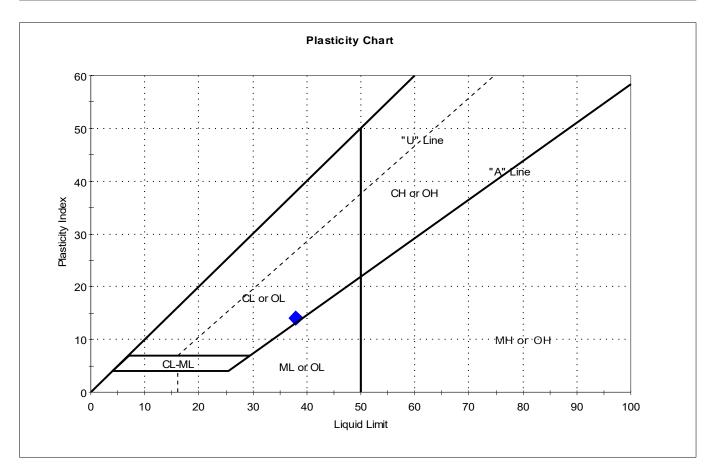
Client:	GZA GeoE	nvironmental, I	nc.						
Project:	North Stre	et Culvert Replace							
Location:	Agawam, I	MA			Project No:	GTX-316793			
Boring ID:	BB-02		Sample Type:	jar	Tested By:	cam			
Sample ID:	S-5		Test Date:	02/17/23	Checked By:	ank			
Depth :	28-30'		Test Id:	705935					
Test Comm	ent:								
Visual Desc	ription:	Wet, brownish	n gray clay						
Sample Cor	mment:								



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-5	BB-02	28-30'	40	36	24	12	1.3	

Sample Prepared using the WET method

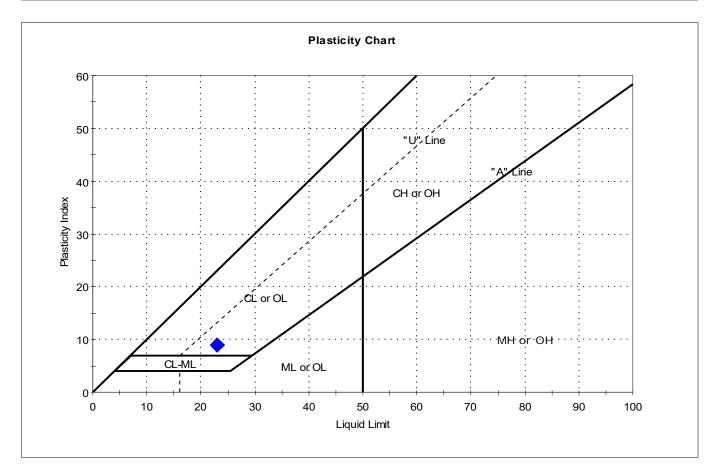
Client:	GZA GeoEnvironmental, Inc.								
Project:	North Stre	et Culvert Repl	ace						
Location:	Agawam,	MA			Project No:	GTX-316793			
Boring ID:	BB-02		Sample Type:	jar	Tested By:	cam			
Sample ID:	S-7		Test Date:	02/17/23	Checked By:	ank			
Depth :	38-40'		Test Id:	705936					
Test Comm	ent:								
Visual Desc	ription:	Wet, brownish	n gray clay						
Sample Cor	mment:								


Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-7	BB-02	38-40'	40	30	22	8	2.3	

Sample Prepared using the WET method

Dry Strength: n/a Dilatancy: n/a Toughness: n/a

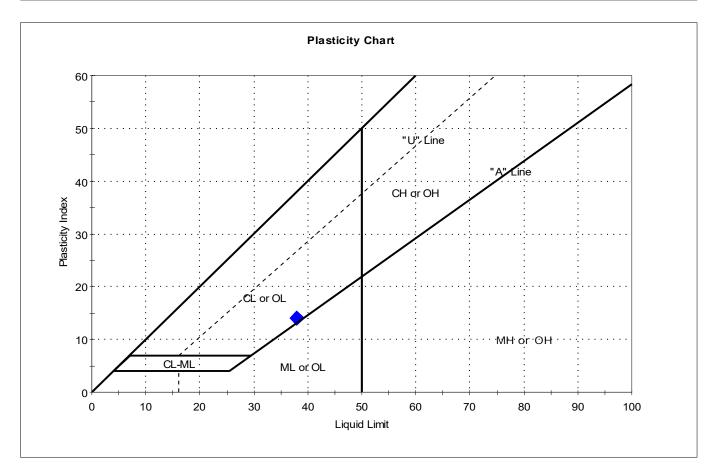
Client:	GZA GeoE	GZA GeoEnvironmental, Inc.								
Project:	North Stre	et Culvert Replace								
Location:	Agawam,	MA			Project No:	GTX-316793				
Boring ID:	BB-03		Sample Type:	jar	Tested By:	cam				
Sample ID:	S-3		Test Date:	02/17/23	Checked By:	ank				
Depth :	23-25'		Test Id:	705938						
Test Comm	ent:									
Visual Desc	ription:	Wet, grayish b	prown clay							
Sample Cor	mment:									



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-3	BB-03	23-25'	47	38	24	14	1.7	

Sample Prepared using the WET method

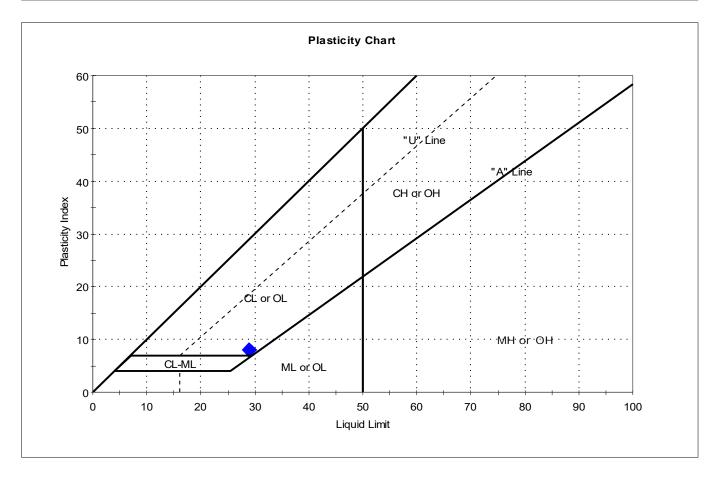
	Client:	GZA GeoFi	nvironmental, I	nc						
	Project:	North Stre	et Culvert Repla	et Culvert Replace						
	Location:	Agawam, M	AN			Project No:	GTX-316793			
1	Boring ID:	BB-02		Sample Type:	jar	Tested By:	cam			
	Sample ID:	S-9		Test Date:	02/17/23	Checked By:	ank			
	Depth :	48-50'		Test Id:	705937					
	Test Comm	ent:								
	Visual Description: Moist, brown of		clay							
	Sample Cor	mment:								



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-9	BB-02	48-50'	13	23	14	9	-0.1	

Sample Prepared using the WET method

	Client:	GZA GeoE	GZA GeoEnvironmental, Inc.								
	Project:	North Stre	et Culvert Replace								
	Location:	Agawam, M	AN			Project No:	GTX-316793				
1	Boring ID:	BB-03		Sample Type:	jar	Tested By:	cam				
	Sample ID:	S-4		Test Date:	02/17/23	Checked By:	ank				
	Depth :	33-35'		Test Id:	705939						
	Test Comm	ent:									
	Visual Description: Moist, brownis		sh gray clay								
	Sample Cor	mment:									



Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-4	BB-03	33-35'	39	38	24	14	1.1	

Sample Prepared using the WET method

	Client:	GZA GeoEr	GZA GeoEnvironmental, Inc.								
	Project:	North Stre	et Culvert Repla	ace							
	Location:	Agawam, N	AN			Project No:	GTX-316793				
3	Boring ID:	BB-03		Sample Type:	jar	Tested By:	cam				
	Sample ID:	S-5		Test Date:	02/17/23	Checked By:	ank				
	Depth :	43-45'		Test Id:	705940						
	Test Comm	ent:									
	Visual Desc	ription:	Moist, brown o	lay							
	Sample Cor	nment:									

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
•	S-5	BB-03	43-45'	24	29	21	8	0.4	

Sample Prepared using the WET method

APPENDIX G – CALCULATIONS

LRFD Bearing Resistance - North Street over White Brook Culvert Replacement - Abutments

Project: Culvert Replacement - North Street over White Brook

Location: Agawam, M	IA		
Calculated By:	MJO	Date:	3/30/2023
Checked By:	JBH	Date:	3/30/2023

Purpose: Evaluate factored bearing resistance for the assumed reinforced concrete mat foundation at the new North Street over White Brook culvert using the methodology contained in the AASHTO LRFD Bridge Design Specification, 9th Edition (2020). The proposed culvert is being analyzed as an AASHTO Bridge in accordance with MGL Chapter 85, Section 35 and is anticipated to be a single-span aluminum arch structure with abutment ends supported on a continuous shallow mat foundation bearing on existing natural fine-grained soils.

References: 1) MassDOT Bridge Design Manual, 2013 with 2020 updates. 2) AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020.

> 3) Subsurface conditions based on recent borings BB-01 through BB-03 completed from December 28 to 30, 2022, by Seaboard Drilling, Inc. of Springfield, Massachusetts, observed and logged by GZA. Subsurface conditions from the recent borings supplemented by subsurface conditions based on previous borings WB-1 and WB-2 completed on November 12, 2020, by Seaboard Drilling, Inc. of Springfield, Massachusetts, observed and logged by O'Rielly, Talbot & Okun.

> 4) Email from Contech Engineered Solutions LLC transmitted on March 29, 2023 indicating preliminary settlement results by GZA, transmitted 3/24/2023, for the proposed culvert supported by a 22-foot-wide mat foundation are acceptable.
> 5) Appendix G Attachments 1 and 2 - Preliminary Design Progress Print showing plan and section views of the proposed culvert prepared by Woodard & Curran (W&C), respectively, dated February 16, 2023 with PDF markups by GZA.

Subsurface Conditions: The proposed culvert mat foundation below North Street is assumed to bear at approximately 19.5 to 20 feet below proposed roadway grades (correspond to approximate elevations or El.s ranging from 115 to 116) and slopes upward from north to south based on plans provided by Woodard & Curran dated 2/16/2023. Subsurface conditions at the proposed culvert generally consist of soft to very stiff natural silt & clay. For the purpose of this calculation, assume the bearing stratum is soft natural silt & clay.

Analysis Assumptions: 1) Based on subsurface conditions at the bearing subgrade (soft to very stiff fine-grained soil), use <u>phi=0 degrees</u> for bearing soils. Use a unit weight of <u>110 pcf</u>.

2) Footings are not considered to be within a slope and considerations for sloping ground conditions are not required for the evaluation of bearing resistance.

3) Perform calculation evaluating proposed roadway (North Street) section of the culvert foundation, 10-ft embedment below the proposed grades, based a cross-section view in Attachment G.2.

4) Based on groundwater levels measured in the 2020 borings during drilling, assume groundwater is at El 121.3 to 122.3 or about 12.7 to 13.7 feet below the proposed roadway grade elevations. Therefore, assume groundwater at about 12.7 feet below the proposed roadway grade elevation.

5) Footing widths (B) for the proposed new culvert are not known at this time. For purpose of this calculation, consider effective footing widths ranging from 15 to 22 feet. 22-foot footing width corresponds to full-width continuous concrete mat slab.

6) Evaluate the factored bearing resistance for the strength limit state. Primary consolidation settlement of the foundation (provided under separate cover) will be used to evaluate the service limit state.

7) Footing length for the proposed culvert, as measured along the longitudinal dimension of the culvert (not including wingwalls), is approximately 119 feet based on the attached plans of Reference #5.

LRFD Bearing Resistance - North Street over White Brook Culvert Replacement - Abutments

Project: Culvert Replacement - North Street over White Brook

Location: Agawam, M	1A		
Calculated By:	MJO	Date:	3/30/2023
Checked By:	JBH	Date:	3/30/2023

Results: The following table summarizes the nominal and factored bearing resistance of the soil anticipated for support of the proposed new culvert for the strength limit state.

Effective Footing Width, B' (ft) (See Note 1)	Nominal Bearing Resistance (ksf)	STRENGTH LIMIT STATE Factored Bearing Resistance (ksf)	
15	4.4	2.0	1
16	4.4	2.0	
17	4.4	2.0	
18	4.4	2.0	
19	4.4	2.0	
20	4.4	2.0	
21	4.4	2.0	
22	4.4	2.0	Selected foundation option

Notes

1. The effective footing width B'=B-2e, where e is the eccentricity of the applied footing loads. Per AASHTO LRFD, the maximum permitted eccentricity is one-third of the footing width. The 11-foot footing width corresponds to a full-width continuous concrete mat slab.

 Attachments:
 Bearing Capacity Calculations, Preliminary Design Drawings of proposed culvert with GZA markups

 (Attachments 1 and 2 of Appendix G), Figures comparing published and recent CVVC Atterberg Limit laboratory test results, Consolidation Settlement & Undrained Shear Strength Estimate calculation files

	GZA GeoEnvironmental, Inc.	PROJECT: <u>C</u> LOCATION: ^A	Culvert Replacement - North Street over White Brook				
GZ	249 Vanderbilt Ave Norwood, MA 02062 781-278-3700	CALCULATED BY CHECKED BY	MJO JBH	DATE	3/30/2023 3/30/2023		
	http://www.gza.com						
OBJECTIVE:	Evaluate factored net bearing resist	ance of the proposed fou	undation fo	or the propo	sed culvert.		
REFERENCE:	See cover page.						
ASSUMPTIONS AND INPUT							

GENERAL ASSUMPTIONS

- See assumptions on calculation package cover page.

ASSUMED SOIL INPUT PARAMETERS

Soil Unit Weight, γ =	110	pcf
Friction Angle, ϕ =	0	degrees
Cohesion Bearing Capacity Factor, $N_c =$	5.1	
Embedment Bearing Capacity Factor, N_q =	1.0	
Unit Weight Bearing Capacity Factor, N_{γ} =	0.0	
Poisson's Ratio, v=	0.40	
Young's Modulus, E _s =	1.74	ksi
Cohesion, c =	500	psf
Depth to Groundwater, D_w =	12.7	ft

ASSUMED FOOTING PARAMETERS

Footing Length, L =	119	ft
Footing Embedment Depth, D_f =	19.5	ft
Footing Eccentricity, e =	varies	ft

Basis for Assumption (if applicable)
See assumptions
See assumptions
AASHTO LRFD Table 10.6.3.1.2a-1
AASHTO LRFD Table 10.6.3.1.2a-1
AASHTO LRFD Table 10.6.3.1.2a-1
AASHTO LRFD Table C10.4.6.3-1
AASHTO LRFD Table C10.4.6.3-1
Refer to Undrained Shear Strength Estimate attachment
See cover page assumptions

Basis for Assumption (if applicable)
See cover page assumptions
See cover page assumptions
See cover page assumptions

ASSUMED BEARING RESISTANCE FACTOR

Bearing Resistance Factor, $\phi_b = 0.45$

Basis for Assumption (if applicable) AASHTO LRFD Table 10.5.5.2.2-1 Note: for the extreme limit state, use a resistance factor of 1.0 (AASHTO 10.5.5.3.3), i.e. qr = qn

DESIRED OUTPUT

Enter up to 15 Footing Widths for calculation, in ascending order. Leave unused cells blank.

	1	2	3	4	5	6	7	8
Effective Footing Width, B' (ft)	15	16	17	18	19	20	21	22

GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062 781-278-3700

PROJECT:	Culvert Replace	ulvert Replacement - North Street over White Brook							
LOCATION:	Agawam, MA								
CALCULATED BY	MJO	DATE	3/30/2023						
CHECKED BY	JBH	DATE	3/30/2023						

 $q_r = q_n \phi_b$

http://www.gza.com

CALCULATIONS

- Determine effective footing width, B', to account for eccentric loading:

(AASHTO LRFD Eqn 10.6.1.3-1)

- Account for groundwater using factors C_{wq} and C_{wy} using AASHTO LRFD Table 10.6.3.1.2a-2 - Shape Correction Factors s_c, s_y, and s_q determined using equation in AASHTO LRFD Table 10.6.3.1.2a-3

- Depth Correction Factor d_q estimated using AASHTO LRFD Equation 10.6.3.1.2a-10

- Load inclination factors ic, iv, and ia conservatively assumed to be 1.0 based on unknown loading conditions

- Nominal Bearing Resistance, $q_{\rm n}$ determined using AASHTO LRFD Equation 10.6.3.1.2a-1

 $q_n = cN_{cm} + \gamma D_f N_{qm}C_{wq} + 0.5\gamma B'N_{\gamma m}C_{w\gamma}$

where: $N_{qm} = N_q s_q d_q i_q$ $N_{\gamma m} = N_\gamma s_\gamma i_\gamma$ $N_{cm} = N_c s_c i_c$

Factored Bearing Resistance, q_r, estimated using AASHTO LRFD Equation 10.6.3.1.1-1:

- Sloping ground conditions accounted for (if applicable) using correction factor RC_{BC}, developed in accordance with AASHTO LRFD 10.6.3.1.2c. If no correction use RCBC = 1.

B' = B - 2e

DETERMINE FACTORED BEARING RESISTANCE, q_r

В'	B'/L	D _f /B'	C _{wq}	C _{wγ}	N _{cq}	Ν _{cγ}	S _c	sγ	s _q	dq
[ft]					(if applicable)	(if applicable)				
15.0	0.13	1.30	0.83	0.50			1.03	1.00	1.00	1.00
16.0	0.13	1.22	0.83	0.50			1.03	1.00	1.00	1.00
17.0	0.14	1.15	0.83	0.50			1.03	1.00	1.00	1.00
18.0	0.15	1.08	0.83	0.50			1.03	1.00	1.00	1.00
19.0	0.16	1.03	0.83	0.50			1.03	1.00	1.00	1.00
20.0	0.17	0.98	0.83	0.50			1.03	1.00	1.00	1.00
21.0	0.18	0.93	0.83	0.50			1.04	1.00	1.00	1.00
22.0	0.18	0.89	0.83	0.50			1.04	1.00	1.00	1.00

calculation continued on next page

GZA

GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062 781-278-3700

PROJECT: Culvert Replacement - North Street over White Brook	<
--	---

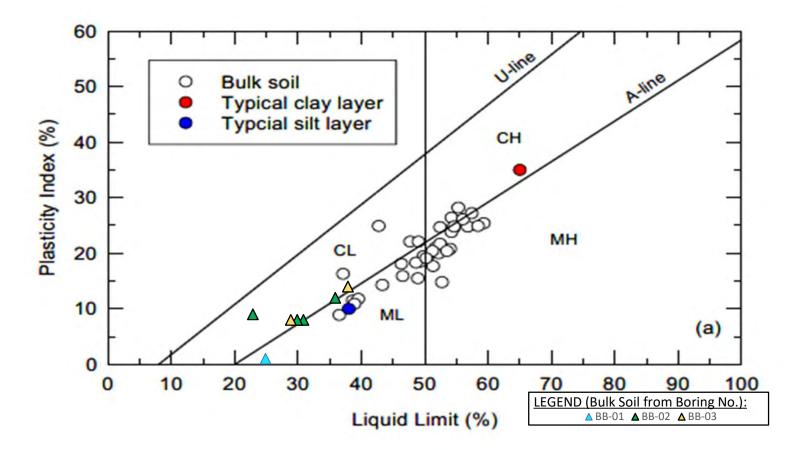
LOCATION: Agawam, MA CALCULATED BY MJO

DATE 3/30/2023 DATE

CHECKED BY JBH

3/30/2023

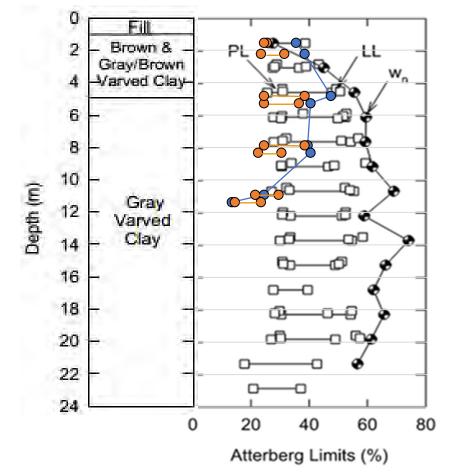
http://www.gza.com


В'	RC _{BC}	N _{qm}	Nγm	N _{cm}	q _n	q _r
[ft]					[psf]	[psf]
15	1	1.0	0.0	5.3	4,406	1,983
16	1	1.0	0.0	5.3	4,410	1,985
17	1	1.0	0.0	5.3	4,414	1,986
18	1	1.0	0.0	5.3	4,419	1,988
19	1	1.0	0.0	5.3	4,423	1,990
20	1	1.0	0.0	5.3	4,427	1,992
21	1	1.0	0.0	5.3	4,432	1,994
22	1	1.0	0.0	5.3	4,436	1,996

L/B	Bz
цD	[unitless]
7.9	1.41
7.4	1.41
7.0	1.38
6.6	1.32
6.3	1.28
6.0	1.25
5.7	1.22
5.4	1.20

FIGURE G.1-1

Atterberg Limit Result Comparison No. G.1-1: Umass Amherst (2003) vs. Recent (2023) Results


Notes: 1) Recent borings BB-01 through BB-03 performed between December 28 and 30, 2022 by Seaboard Drilling, Inc., observed and logged by GZA.
 2) Laboratory results for BB-01 through BB-03 prepared by GeoTesting Express dated 2/17/2023.

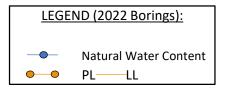

Source Document: Degroot, D.J., & Lutenegger, A.J. (2003). "Engineering Properties of Connecticut Valley Varved Clay."

FIGURE G.1-2

Atterberg Limit Result Comparison No. G.1-2: Umass Amherst (2003) vs. Recent (2023) Results

Notes: 1) Recent borings BB-01 through BB-03 performed between December 28 and 30, 2022 by Seaboard Drilling, Inc., observed and logged by GZA.
 2) Laboratory results for BB-01 through BB-03 prepared by GeoTesting Express dated 2/17/2023. The depths of the 2023 results were corrected to reduce the fill thickness to 1 meter for the purpose of the comparison.

3) Abbreviations: Wn = Natural Water content, PL = Plastic Limit, LL = Liquid Limit.

Source Document: Degroot, D.J., & Lutenegger, A.J. (2003). "Engineering Properties of Connecticut Valley Varved Clay."

Estimated Footing Reactions & Applied Bearing Pressures - Proposed Culvert at North Street over White Brook Proposed Culvert

Project: Culvert Replacement - North Street over White Brook Location: Agawam, MA MJO Calculated By: 4/11/2023 Date: Checked By: MAR 4/11/2023 Date:

Purpose: To estimate unfactored footing reaction loads for the proposed footings at the North Street over White Brook replacement culvert using the methodology in accordance with MassDOT LRFD Bridge Design Manual, which references the AASHTO LRFD Bridge Design Specification, 9th Edition (2020). The proposed culvert is anticipated to be a single-span aluminum structural plate single radius arch structure with abutment ends supported on a shallow foundation bearing on existing natural fine-grained soils. The three culvert sections to be evaluated are designated areas: C1 - the upstream 1/3, C2 - the middle 1/3, and C3 - the downstream 1/3.

References: 1) MassDOT Bridge Design Manual, 2013 with 2020 updates.

2) AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020.

3) Subsurface conditions based on recent borings BB-01 through BB-03 completed from December 28 to 30, 2022, by Seaboard Drilling, Inc. of Springfield, Massachusetts, observed and logged by GZA. Subsurface conditions from the recent borings supplemented by subsurface conditions based on previous borings WB-1 and WB-2 completed on November 12, 2020, by Seaboard Drilling, Inc. of Springfield, Massachusetts, observed and logged by O'Rielly, Talbot & Okun.

4) Email from Woodard & Curran (W&C) with calculations prepared by Contech Engineered Solutions LLC (Contech) for Structural Plate Footing Reactions per AASHTO Standard Specification for Highway Bridges, Section 12, dated February 15, 2023.

5) Appendix G Attachments 1 and 2 - Preliminary Design Progress Print showing plan and section views of the proposed culvert prepared by Woodard & Curran (W&C), respectively, dated February 16, 2023 with PDF markups by GZA.

Subsurface Proposed top of culvert elevations for settlement evaluation area Nos. C1, C2, and C3 are depicted as ranging between approximately 10 and Conditions: 19.5 feet below the proposed North Street culvert area replacement grades in the longitudinal culvert profile view prepared by W&C of sheet C-102 entitled "Site Layout Plan," dated February 2023.

1) Culvert dimensions and location as depicted in Reference #5. Analysis

Assumptions: 2) Culvert foundation assumed to be a 22-foot-wide continuous mat foundation as depicted in Reference #5.

3) Fill materials over the proposed culvert and culvert foundation: Compacted expanded shale lightweight aggregate (ES-LWA, assumed unit weight of 70 pounds per cubic foot [pcf]) fill to between approximately 1- to 1.5-feet above the proposed culvert, compacted ultralightweight foamed glass aggregate (UL-FGA, assumed unit weight of 25 pcf) fill on top of the ES-LWA to between 1- and 1.5-feet from proposed ground surface level and 1 to 1.5 feet of compacted normal-weight (NW, assumed unit weights of 118 and 125 pcf for topsoil and granular fill/asphalt, respectively) granular fill to proposed ground surface level.

4) Evaluate vehicular live loads for the footing reactions assuming HL-93 tandem vehicle loading. Per AASHTO Figure C12.8.4.2-1, vehicular live loads (LLs) calculated are adjusted based on the lateral distance of the Culvert Area to the LL (overlapping two and single vehicle load conditions assumed to extend to approx. 31 and 44 feet from the North Street centerline, respectively).

5) Neglect the effects of the loose 2-foot-thick streambed cover material over the proposed culvert footings.

Results: The following table summarizes the unfactored vertical dead and live loads per footing section area for the proposed culvert at North Street over White Brook:

		Vert. Dead	Vert. Live	Total Load:			
		Load, DL	Load, LL	DL + LL	Avg. Bearing Pressure	Avg. Bearing Pressure over 22-ft	
Culvert Area ID - Description	Calculation No.	(k / ft /	(k / ft /	(k / ft /	over 22-ft mat	mat foundation, DL+LL (ksf)	
	Calculation No.	footing)	footing)	footing)	foundation, DL (ksf)		
C1 - Upstream (Low side)	DL-1L	4.5	0.0	4.5	0.51	0.52	
C1 - Upstream (High side)	DL+LL-1H	6.7	0.2	6.9	0.51	0.52	
C2 - Mid-length (Low side)	DL+LL-2L	5.3	2.2	7.5	0.40	0.69	
C2 - Mid-length (High side)	DL+LL-2H	5.5	2.1	7.6	0.49	0.69	
C3 - Downstream (Low side)	DL-3L	4.8	0.0	4.8	0.54	0.59	
C3 - Downstream (High side)	DL+LL-3H	7.2	1.1	8.2	0.54	0.59	

LRFD Load Factors for DL, LL (from AASHTO LRFD Tables 3.4.1-2 & 3.4.1-1, respectively) = 1.5, 1.75

Factored Avg. Bearing Pressure over 22-ft mat foundation at highest load combination Area, Calc No. DL+LL-3H (ksf) = 1.1 2.0

Factored Bearing Resistance from GZA Calculation (ksf) =

Yes

Factored Bearing Resistance > Calculated Avg. Bearing Pressure?

Attachments:

Calculations by GZA, Calculations by Contech, Preliminary Design Drawings of proposed culvert with GZA markups (Attachments 1 and 2 of Appendix G)

GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062 781-278-3700

http://www.gza.com

CALCULATION NO. DL-1L

PROJECT: Culvert Replacement - North Street over White Brook

LOCATION:	Agawam, MA			
CALCULATED BY	MJO	DATE	4/11/2023	
CHECKED BY	MAR	DATE	4/11/2023	

Evaluate unfactored dead load (DL) footing reactions of the North Street over White Brook proposed culvert

replacement at the approximate low point of settlement evaluation area No. C1.

OBJECTIVE:

REFERENCE:

ASSUMPTIONS AND INPUT

GENERAL ASSUMPTIONS

- See assumptions on calculation package cover page.

Culvert Shape =	ALSP 18'0" Span x 7'-8" Rise	
Span (S) =	18	ft
Total Lateral footing projection beyond culvert span (L_{FP}) =	4	ft
Arch Top Rise (Rt) =	7.7	ft
Bottom Span =	18.0	ft
Area of Top Rise (At) =	104.5	sq ft
Footing contact angle (fca) =	8.94	degrees
Total Height of Cover (Ht) =	10	ft
Height of Cover over Culvert (H) =	2.3	ft
Axle Load Type =	0	lbs
Number of Lanes =	0	
Axle Load (AL) =	0	lbs
ES-LWA Soil Density (γ ES-LWA) =	70	pcf
Height of ES-LWA fill cover over Culvert (H_{ES-LWA}) =	1.3	ft
UL-FGA Soil Density (γ_{UL-FGA}) =	25	pcf
Height of UL-FGA fill cover over Culvert (H_{UL-FGA}) =	0	ft
Topsoil Soil Density (^γ νw) =	118	pcf
Height of Normal Weight fill cover over Culvert (H_{NW}) =	1	ft

See cover.

Reference #3 of cover page
Reference #3 of cover page
See cover page assumptions for foundation width
Reference #3 of cover page
Reference #4
See cover page assumptions
Reference #3 of cover page
Reference #4
Reference #3 of cover page
See cover page assumptions
See cover page assumptions, topsoil
See cover page assumptions

LOAD ON STRUCTURE

Live Load		
Live Load, LL =	AL / (8 + 2(H + Rt)) / 1000	_
Live Load =	0	kips / ft per footing
Dead Load		
Dead Load, DL =	Weight of Soil overlying Culver	t Footing
Weighted area average for Soil Unit Weight		
· _ · _ · _ · _ · _ · _ · _ · _ ·		
Cross-sectional area of ES-LWA over Culvert $(A_{ES-LWA}) =$	(S + L _{FP}) x (Rt + H _{ES-LWA}) - At	_
Cross-sectional area of ES-LWA over Culvert (A _{ES-LWA}) =	92.8	_sq ft
Cross-sectional area of UL-FGA over Culvert (A_{UL-FGA}) =	$H_{UL-FGA} \times (S + L_{FP})$	
Cross-sectional area of UL-FGA over Culvert (A_{UL-FGA}) =	0.0	sq ft
Cross-sectional area of NW fill over Culvert (A_{NW}) =	$H_{NW} \times (S + L_{FP})$	
Cross-sectional area of NW fill over Culvert (A _{NW}) =	22	sq ft
Weighted Soil Unit Weight		_
Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) =	(^{γ} ul-fga x Aul-fga + $^{\gamma}$ es-lwa x Aes-lwa + $^{\gamma}$	NW X (ANW))/(AUL-FGA + AES-LWA + ANW)
Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) =	79.2	pcf
<u>Soil Weight</u>		_
Soil Weight =	((S + L _{FP}) x (H + Rt) - At) x We	ighted Soil Density / 1000 lb/kip
Soil Weight =	9.1	kips / ft
Dead Load =	4.6	kips / ft per footing
Total Load		
Total Load, V =	Live Load + Dead Load	_
Total Load, V =	4.6	_ kips / ft per footing

Page 1 of 2

GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062

781-278-3700 http://www.gza.com

CALCULATION NO. DL-1L

PROJECT: Culvert Replacement - North Street over White Brook
LOCATION: Agawam, MA

CALCULATED BY	OLM	DATE	4/11/2023
CHECKED BY	MAR	DATE	4/11/2023

Page 2 of 2

Evaluate unfactored dead load (DL) footing reactions of the North Street over White Brook proposed culvert

replacement at the approximate low point of settlement evaluation area No. C1.

OBJECTIVE:

REFERENCE:

FOOTING REACTIONS Vertical

 $R_{v} = \underbrace{V \times \cos(fca)}_{R_{v,LL}}$ $R_{v,LL} = \underbrace{0.0}_{kips / ft per footing}$ $R_{v,DL} = \underbrace{4.5}_{kips / ft per footing}$ $R_{v,DL} = \underbrace{4.5}_{kips / ft per footing}$

See cover.

Horizontal

$R_{V,DL} =$	4.5	kips / ft per footing
R _v Total =	4.5	kips / ft per footing
R _H =	V x sin(fca)	

	e x sin(rea)		
R _{H,LL} =	0.0	kips / ft per footing	
R _{H,DL} =	0.7	kips / ft per footing	
R _H Total =	0.7	kips / ft per footing	<u>outward</u>

GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062 781-278-3700

http://www.gza.com

CALCULATION NO. DL+LL-1H

PROJECT: Culvert Replacement - North Street over White Brook

LOCATION:	Agawam, MA			
CALCULATED BY	OLM	DATE	4/11/2023	
CHECKED BY	MAR	DATE	4/11/2023	

Page 1 of 2

Evaluate unfactored dead and live load (DL and LL, respectively) footing reactions of the North Street over White Brook proposed culvert replacement at the approximate high point of settlement evaluation area No. C1.

OBJECTIVE:

REFERENCE:

ASSUMPTIONS AND INPUT

GENERAL ASSUMPTIONS

- See assumptions on calculation package cover page.

Culvert Shape =	ALSP 18'0" Span x 7'-8" Rise	
Span (S) =	18	ft
Total Lateral footing projection beyond culvert span (L_{FP}) =	4	ft
Arch Top Rise (Rt) =	7.7	ft
Bottom Span =	18.0	ft
Area of Top Rise (At) =	104.5	sq ft
Footing contact angle (fca) =	8.94	degrees
Total Height of Cover (Ht) =	18.5	ft
Height of Cover over Culvert (H) =	10.8	ft
Axle Load Type =	Tandem (HL-93)	lbs
Number of Lanes =	1	
Axle Load (AL) =	50,000	lbs
ES-LWA Soil Density (γ _{ES-LWA}) =	70	pcf
Height of ES-LWA fill cover over Culvert (H_{ES-LWA}) =	1	ft
UL-FGA Soil Density (γ_{UL-FGA}) =	25	pcf
Height of UL-FGA fill cover over Culvert (H_{UL-FGA}) =	8.8	ft
Topsoil Soil Density (γ_{NW}) =	118	pcf
Height of Normal Weight fill cover over Culvert (H_{NW}) =	1	ft

See cover.

Reference #3 of cover page
Reference #3 of cover page
See cover page assumptions for foundation width
Reference #3 of cover page
Reference #4
See cover page assumptions
Reference #3 of cover page
Reference #4
Reference #3 of cover page
See cover page assumptions
See cover page assumptions, topsoil
See cover page assumptions

LOAD ON STRUCTURE

Live Load		
Live Load, LL =	AL / (8 + 2(H + Rt)) / 1000	_
Live Load =	0.2	kips / ft per footing
Dead Load		
Dead Load, DL =	Weight of Soil overlying Culver	rt Footing
Weighted area average for Soil Unit Weight		
Cross-sectional area of ES-LWA over Culvert (A_{ES-LWA}) =	(S + L _{FP}) x (Rt + H _{FS-I WA}) - At	
		- ,
Cross-sectional area of ES-LWA over Culvert (A _{ES-LWA}) =	86.2	sq ft
Cross-sectional area of UL-FGA over Culvert (A _{UL-FGA}) =	$H_{UL-FGA} \times (S + L_{FP})$	
Cross-sectional area of UL-FGA over Culvert (A_{UL-FGA}) =	194.3	sq ft
Cross-sectional area of NW fill over Culvert (A _{NW}) =	$H_{NW} \times (S + L_{FP})$	
Cross-sectional area of NW fill over Culvert (A _{NW}) =	22	sq ft
Weighted Soil Unit Weight		_
Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = ($(\gamma_{\text{ul-FGA}} \times A_{\text{ul-FGA}} + \gamma_{\text{es-lwa}} \times A_{\text{es-lwa}} + \gamma_{\text{ul-FGA}} \times A_{\text{ul-FGA}} + \gamma_{\text{ul-FGA}} \times A_{\text{ul-FGA}} + \gamma_{\text{ul-FGA}} \times A_{\text{ul-FGA}} + \gamma_{\text{ul-FGA}} \times A_{\text{ul-FGA}} \times A_{ul-FGA$, NW X (ANW))/(AUL-FGA + AES-LWA + ANW)
Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) =	44.6	pcf
<u>Soil Weight</u>		_
Soil Weight =	((S + L _{FP}) x (H + Rt) - At) x We	ighted Soil Density / 1000 lb/kip
Soil Weight =	13.5	kips / ft
Dead Load =	6.7	kips / ft per footing
Total Load		
Total Load, V =	Live Load + Dead Load	_
Total Load, V =	7.0	_ kips / ft per footing

GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062

781-278-3700 http://www.gza.com

CALCULATION NO. DL+LL-1H

PROJECT: Culvert Replacement - North Street over White Brook

200.000	0 ,			
CALCULATED BY	MJO	DATE	4/11/2023	
CHECKED BY	MAR	DATE	4/11/2023	

Page 2 of 2

Evaluate unfactored dead and live load (DL and LL, respectively) footing reactions of the North Street over White Brook proposed culvert replacement at the approximate high point of settlement evaluation area No. C1.

OBJECTIVE:

REFERENCE:

FOOTING REACTIONS Vertical

See cover.

Horizontal

R _H =	V x sin(fca)	
R _{H,LL} =	0.0	kips / ft per footing
R _{H,DL} =	1.0	kips / ft per footing
R _H Total =	1.1	kips / ft per footing <u>outward</u>

GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062 781-278-3700 http://www.gza.com

CALCULATION NO. DL+LL-2L

PROJECT: Culvert Replacement - North Street over White Brook Agawam, MA

LOCATION:	Agawam, IVIA			
CALCULATED BY	OIM	DATE	4/11/2023	
CHECKED BY	MAR	DATE	4/11/2023	

Evaluate unfactored dead and live load (DL and LL, respectively) footing reactions of the North Street over White Brook proposed culvert replacement at the approximate low point of settlement evaluation area No. C2.

OBJECTIVE:

REFERENCE:

ASSUMPTIONS AND INPUT

GENERAL ASSUMPTIONS

- See assumptions on calculation package cover page.

Culvert Shape =	ALSP 18'0" Span x 7'-8" Rise		Reference #3 of cove
Span (S) =	18	ft	Reference #3 of cove
Total Lateral footing projection beyond culvert span (L_{FP}) =	0	ft	See cover page assun
Arch Top Rise (Rt) =	7.7	ft	Reference #3 of cove
Bottom Span =	18.0	ft	Reference #3 of cove
Area of Top Rise (At) =	104.5	sq ft	Reference #3 of cove
Footing contact angle (fca) =	8.94	degrees	Reference #3 of cove
Total Height of Cover (Ht) =	18.5	ft	Reference #4
Height of Cover over Culvert (H) =	10.8	ft	See cover page assum
Axle Load Type =	Tandem (HL-93)	lbs	Reference #3 of cove
Number of Lanes =	2		Reference #4
Axle Load (AL) =	100,000	lbs	Reference #3 of cove
ES-LWA Soil Density (γ ES-LWA) =	70	pcf	See cover page assun
Height of ES-LWA fill cover over Culvert (H_{ES-LWA}) =	1	ft	See cover page assum
UL-FGA Soil Density (γ_{UL-FGA}) =	25	pcf	See cover page assum
Height of UL-FGA fill cover over Culvert (H_{UL-FGA}) =	8.33	ft	See cover page assum
Topsoil Soil Density (γ_{NW}) =	125	pcf	See cover page assun
Height of Normal Weight fill cover over Culvert (H_{NW}) =	1.5	ft	See cover page assum

See cover.

LOAD ON STRUCTURE

Live Load		
Live Load, LL =	AL / (8 + 2(H + Rt)) / 1000	
Live Load =	2.2	kips / ft per footing
Dead Load		
Dead Load, DL =	Weight of Soil overlying Culve	ert Footing
Weighted area average for Soil Unit Weight		
Cross-sectional area of ES-LWA over Culvert (A_{FS-IWA}) =	(S + L _{EP}) x (Rt + H _{ES-1 WA}) - At	
-		_
Cross-sectional area of ES-LWA over Culvert $(A_{ES-LWA}) =$	51.6	sq ft
Cross-sectional area of UL-FGA over Culvert (A _{UL-FGA}) =	$H_{UL-FGA} \times (S + L_{FP})$	
Cross-sectional area of UL-FGA over Culvert (A _{UL-FGA}) =	149.9	sq ft
Cross-sectional area of NW fill over Culvert (A_{NW}) =	$H_{NW} \times (S + L_{FP})$	—
Cross-sectional area of NW fill over Culvert (A_{NW}) =	27	sq ft
Weighted Soil Unit Weight		—
Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) =	(γ ul-fga x Aul-fga + γ es-lwa x Aes-lwa +	^Y NW X (ANW))/(AUL-FGA + AES-LWA + ANW)
Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) =	47.0	pcf
Soil Weight		
Soil Weight =	((S + L _{FP}) x (H + Rt) - At) x W	eighted Soil Density / 1000 lb/kip
Soil Weight =	10.7	kips / ft
Dead Load =	5.4	kips / ft per footing
Total Load		
Total Load, V =	Live Load + Dead Load	
Total Load, V =	7.6	kips / ft per footing

Page 1 of 2

	Reference #3 of cover page
	Reference #3 of cover page
	See cover page assumptions for foundation width
	Reference #3 of cover page
	Reference #3 of cover page
	Reference #3 of cover page
5	Reference #3 of cover page
	Reference #4
	See cover page assumptions
	Reference #3 of cover page
	Reference #4
	Reference #3 of cover page
	See cover page assumptions

GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062

781-278-3700 http://www.gza.com

CALCULATION NO. DL+LL-2L

 PROJECT:
 Culvert Replacement - North Street over White Brook

 LOCATION:
 Agawam, MA

CALCULATED BY	MJO	DATE	4/11/2023	
CHECKED BY	MAR	DATE	4/11/2023	

OBJECTIVE:

REFERENCE:

Evaluate unfactored dead and live load (DL and LL, respectively) footing reactions of the North Street over White Brook proposed culvert replacement **at the approximate low point of settlement evaluation area No. C2.** See cover.

ING REACTIONS					Page 2 of 2
Vertical					
	R _v =	V x cos(fca)			
	R _{V,LL} =	2.2	kips / ft per footing		
	R _{V,DL} =	5.3	kips / ft per footing		
	R _v Total =	7.5	kips / ft per footing		
Horizontal					
	R _H =	V x sin(fca)			
	R _{H,LL} =	0.3	kips / ft per footing		
	R _{H,DL} =	0.8	kips / ft per footing		
	R _H Total =	1.2	kips / ft per footing	outward	

GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062 781-278-3700 http://www.gza.com

CALCULATION NO. DL+LL-2H

PROJECT: Culvert Replacement - North Street over White Brook

LOCATION:	Agawam, IVIA			
CALCULATED BY	MJO	DATE	4/11/2023	
CHECKED BY	MAR	DATE	4/11/2023	

Evaluate unfactored dead and live load (DL and LL, respectively) footing reactions of the North Street over White Brook proposed culvert replacement at the approximate high point of settlement evaluation area No. C2.

OBJECTIVE:

REFERENCE:

ASSUMPTIONS AND INPUT

GENERAL ASSUMPTIONS

- See assumptions on calculation package cover page.

Culvert Shape =	ALSP 18'0" Span x 7'-8" Rise		Reference #3 of cover page
Span (S) =	18	ft	Reference #3 of cover page
Total Lateral footing projection beyond culvert span (L_{FP}) =	0	ft	See cover page assumptions for foundation width
Arch Top Rise (Rt) =	7.7	ft	Reference #3 of cover page
Bottom Span =	18.0	ft	Reference #3 of cover page
Area of Top Rise (At) =	104.5	sq ft	Reference #3 of cover page
Footing contact angle (fca) =	8.94	degrees	Reference #3 of cover page
Total Height of Cover (Ht) =	19.5	ft	Reference #4
Height of Cover over Culvert (H) =	11.8	ft	See cover page assumptions
Axle Load Type =	Tandem (HL-93)	lbs	Reference #3 of cover page
Number of Lanes =	2		Reference #4
Axle Load (AL) =	100,000	lbs	Reference #3 of cover page
ES-LWA Soil Density (γ ES-LWA) =	70	pcf	See cover page assumptions
Height of ES-LWA fill cover over Culvert (H _{ES-LWA}) =	1	ft	See cover page assumptions
UL-FGA Soil Density (γ UL-FGA) =	25	pcf	See cover page assumptions
Height of UL-FGA fill cover over Culvert (H_{UL-FGA}) =	9.33	ft	See cover page assumptions
Topsoil Soil Density (γ_{NW}) =	125	pcf	See cover page assumptions
Height of Normal Weight fill cover over Culvert (H_{NW}) =	1.5	ft	See cover page assumptions

See cover.

LOAD ON STRUCTURE

Live Load, LL = $AL / (8 + 2(H + Rt)) / 1000$ Live Load = 2.1 kips / ft per footing Dead Load, DL = Weight of Soil overlying Culvert Footing Weighted area overage for Soil Unit Weight Cross-sectional area of ES-LWA over Culvert (A _{ES-LWA}) = $(S + L_{FP}) \times (Rt + H_{ES-LWA}) - At$ Cross-sectional area of ES-LWA over Culvert (A _{LL+GA}) = 51.6 sq ft Cross-sectional area of UL-FGA over Culvert (A _{UL+GA}) = $H_{UL+GA} \times (S + L_{FP})$ Cross-sectional area of NW fill over Culvert (A _{UL+GA}) = 167.9 sq ft Cross-sectional area of NW fill over Culvert (A _{NW}) = $H_{NW} \times (S + L_{FP})$ Cross-sectional area of NW fill over Culvert (A _{NW}) = 27 sq ft Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = $(Y_{UL+GA} \times A_{UL-FGA} + Y_{ES-LWA} \times A_{ES-LWA} + Y_{NW} \times (A_{NW}))/(A_{UL+GA} + A_{ES-LWA} + A_{NW})$ Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = 45.4 pcf Soil Weight = $((S + L_{FP}) \times (H + Rt) - At) \times Weighted Soil Density / 1000 lb/kip$ Soil Weight = 11.2 kips / ft Dead Load = 5.6 kips / ft per footing	Live Load		
Dead LoadDead Load, DL =Weight of Soil overlying Culvert FootingWeighted area average for Soil Unit WeightCross-sectional area of ES-LWA over Culvert (A_{ES-LWA}) =($S + L_{FP}$) x ($Rt + H_{ES-LWA}$) - AtCross-sectional area of ES-LWA over Culvert (A_{ES-LWA}) =51.6sq ftCross-sectional area of UL-FGA over Culvert (A_{UL-FGA}) =H _{UL-FGA} x ($S + L_{FP}$)Cross-sectional area of UL-FGA over Culvert (A_{UL-FGA}) =167.9sq ftCross-sectional area of NW fill over Culvert (A_{NW}) =27sq ftWeighted Soil Density (ES-LWA, UL-FGA and NW Fills) =($Y_{UL-FGA} \times A_{UL-FGA} + Y_{ES-LWA} \times A_{ES-LWA} + Y_{NW} \times (A_{NW})$)/($A_{UL-FGA} + A_{ES-LWA} + A_{NW}$)Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) =($Y_{UL-FGA} \times A_{UL-FGA} + Y_{ES-LWA} \times A_{ES-LWA} + Y_{NW} \times (A_{NW})$)/($A_{UL-FGA} + A_{ES-LWA} + A_{NW}$)Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) =($Y_{UL-FGA} \times A_{UL-FGA} + Y_{ES-LWA} \times A_{ES-LWA} + Y_{NW} \times (A_{NW})$)/($A_{UL-FGA} + A_{ES-LWA} + A_{NW}$)Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) =($Y_{UL-FGA} \times A_{UL-FGA} + Y_{ES-LWA} \times A_{ES-LWA} + Y_{NW} \times (A_{NW})$)/($A_{UL-FGA} + A_{ES-LWA} + A_{NW}$)Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) =($Y_{UL-FGA} \times A_{UL-FGA} + Y_{ES-LWA} \times A_{ES-LWA} + Y_{NW} \times (A_{NW})$)/($A_{UL-FGA} + A_{ES-LWA} + A_{NW}$)Soil Weight = <td< td=""><td>Live Load, LL =</td><td>AL / (8 + 2(H + Rt)) / 1000</td><td></td></td<>	Live Load, LL =	AL / (8 + 2(H + Rt)) / 1000	
$Dead Load, DL = \underline{Weight of Soil overlying Culvert Footing}$ $\underline{Weighted area average for Soil Unit Weight}$ Cross-sectional area of ES-LWA over Culvert (A _{ES-LWA}) = (S + L _{FP}) x (Rt + H _{ES-LWA}) - At Cross-sectional area of ES-LWA over Culvert (A _{ES-LWA}) = 51.6 sq ft Cross-sectional area of UL-FGA over Culvert (A _{UL-FGA}) = H _{UL-FGA} x (S + L _{FP}) Cross-sectional area of UL-FGA over Culvert (A _{UL-FGA}) = 167.9 sq ft Cross-sectional area of NW fill over Culvert (A _{NW}) = 27 sq ft $\underline{Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = (Y^{UL-FGA} x A_{UL-FGA} + Y^{ES-LWA} X A_{ES-LWA} + Y_{NW} x (A_{NW}))/(A_{UL-FGA} + A_{ES-LWA} + A_{NW})$ Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = 45.4 pcf Soil Weight = (((S + L _{FP}) x (H + Rt) - At) x Weighted Soil Density / 1000 lb/kip Soil Weight = 11.2 kips / ft	Live Load =	2.1	kips / ft per footing
$Dead Load, DL = \underline{Weight of Soil overlying Culvert Footing}$ $\underline{Weighted area average for Soil Unit Weight}$ Cross-sectional area of ES-LWA over Culvert (A _{ES-LWA}) = (S + L _{FP}) x (Rt + H _{ES-LWA}) - At Cross-sectional area of ES-LWA over Culvert (A _{ES-LWA}) = 51.6 sq ft Cross-sectional area of UL-FGA over Culvert (A _{UL-FGA}) = H _{UL-FGA} x (S + L _{FP}) Cross-sectional area of UL-FGA over Culvert (A _{UL-FGA}) = 167.9 sq ft Cross-sectional area of NW fill over Culvert (A _{NW}) = 27 sq ft $\underline{Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = (Y^{UL-FGA} x A_{UL-FGA} + Y^{ES-LWA} X A_{ES-LWA} + Y_{NW} x (A_{NW}))/(A_{UL-FGA} + A_{ES-LWA} + A_{NW})$ Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = 45.4 pcf Soil Weight = (((S + L _{FP}) x (H + Rt) - At) x Weighted Soil Density / 1000 lb/kip Soil Weight = 11.2 kips / ft			
$\frac{Weighted area average for Soil Unit Weight}{Cross-sectional area of ES-LWA over Culvert (A_{ES-LWA}) = (S + L_{FP}) \times (Rt + H_{ES-LWA}) - At$ $Cross-sectional area of ES-LWA over Culvert (A_{ES-LWA}) = 51.6 sq ft$ $Cross-sectional area of UL-FGA over Culvert (A_{UL-FGA}) = H_{UL-FGA} \times (S + L_{FP})$ $Cross-sectional area of NW fill over Culvert (A_{UL-FGA}) = 167.9 sq ft$ $Cross-sectional area of NW fill over Culvert (A_{NW}) = 27 sq ft$ $Weighted Soil Unit Weight$ Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = (^Y UL-FGA X AUL-FGA + ^Y ES-LWA X AES-LWA + ^Y NW X (ANW))/(AUL-FGA + AES-LWA + ANW) Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = 45.4 pcf $Soil Weight = ((S + L_{FP}) \times (H + Rt) - At) \times Weighted Soil Density / 1000 lb/kip$ $Soil Weight = 11.2 kips / ft$			
Cross-sectional area of ES-LWA over Culvert $(A_{ES-LWA}) =$ (S + L _{FP}) x (Rt + H _{ES-LWA}) - AtCross-sectional area of ES-LWA over Culvert $(A_{ES-LWA}) =$ 51.6sq ftCross-sectional area of UL-FGA over Culvert $(A_{UL-FGA}) =$ $H_{UL-FGA} x (S + L_{FP})$ sq ftCross-sectional area of NW fill over Culvert $(A_{UL-FGA}) =$ 167.9sq ftCross-sectional area of NW fill over Culvert $(A_{NW}) =$ $H_{NW} x (S + L_{FP})$ sq ftCross-sectional area of NW fill over Culvert $(A_{NW}) =$ 27sq ftWeighted Soil Unit Weight 27 sq ftWeighted Soil Density (ES-LWA, UL-FGA and NW Fills) = $({^{\gamma}_{UL-FGA} x AuL-FGA + {^{\gamma}_{ES-LWA} x Aes-LWA + {^{\gamma}_{NW} x (Anw)})/(AuL-FGA + Aes-LWA + Anw)}Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) =45.4pcfSoil Weight =Soil Weight =((S + L_{FP}) x (H + Rt) - At) x Weighted Soil Density / 1000 lb/kipSoil Weight =11.2kips / ft$	Dead Load, DL =	Weight of Soil overlying Culve	ert Footing
Cross-sectional area of ES-LWA over Culvert $(A_{ES-LWA}) =$ (S + L _{FP}) x (Rt + H _{ES-LWA}) - AtCross-sectional area of ES-LWA over Culvert $(A_{ES-LWA}) =$ 51.6sq ftCross-sectional area of UL-FGA over Culvert $(A_{UL-FGA}) =$ $H_{UL-FGA} x (S + L_{FP})$ sq ftCross-sectional area of NW fill over Culvert $(A_{UL-FGA}) =$ 167.9sq ftCross-sectional area of NW fill over Culvert $(A_{NW}) =$ $H_{NW} x (S + L_{FP})$ sq ftCross-sectional area of NW fill over Culvert $(A_{NW}) =$ 27sq ftWeighted Soil Unit Weight 27 sq ftWeighted Soil Density (ES-LWA, UL-FGA and NW Fills) = $({^{\gamma}_{UL-FGA} x AuL-FGA + {^{\gamma}_{ES-LWA} x Aes-LWA + {^{\gamma}_{NW} x (Anw)})/(AuL-FGA + Aes-LWA + Anw)}Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) =45.4pcfSoil Weight =Soil Weight =((S + L_{FP}) x (H + Rt) - At) x Weighted Soil Density / 1000 lb/kipSoil Weight =11.2kips / ft$	Weighted area average for Soil Unit Weight		
Cross-sectional area of ES-LWA over Culvert $(A_{ES-LWA}) =$ 51.6sq ftCross-sectional area of UL-FGA over Culvert $(A_{UL-FGA}) =$ $H_{UL-FGA} \times (S + L_{FP})$ sq ftCross-sectional area of UL-FGA over Culvert $(A_{UL-FGA}) =$ 167.9sq ftCross-sectional area of NW fill over Culvert $(A_{NW}) =$ $H_{NW} \times (S + L_{FP})$ sq ftCross-sectional area of NW fill over Culvert $(A_{NW}) =$ 27 sq ftWeighted Soil Unit Weight 27 sq ftWeighted Soil Density (ES-LWA, UL-FGA and NW Fills) = $({^{\gamma}_{UL-FGA} \times AuL-FGA + {^{\gamma}_{ES-LWA} \times Aes-LWA + {^{\gamma}_{NW} \times (Anw)})/(AuL-FGA + Aes-LWA + Anw)}Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) =45.4pcfSoil Weight =Soil Weight =((S + L_{FP}) \times (H + Rt) - At) \times Weighted Soil Density / 1000 lb/kip$	· _ · · · · · · · · · · · · · · ·	(S + L _{EP}) x (Rt + H _{ES-I WA}) - At	
Cross-sectional area of UL-FGA over Culvert $(A_{UL-FGA}) =$ $H_{UL-FGA} \times (S + L_{FP})$ Cross-sectional area of UL-FGA over Culvert $(A_{UL-FGA}) =$ 167.9 Sq ft $H_{NW} \times (S + L_{FP})$ Cross-sectional area of NW fill over Culvert $(A_{NW}) =$ $H_{NW} \times (S + L_{FP})$ Cross-sectional area of NW fill over Culvert $(A_{NW}) =$ 27 Sq ft $Weighted Soil Unit Weight$ Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = $({}^{V}_{UL-FGA} \times A_{UL-FGA} + {}^{V}_{ES-LWA} \times A_{ES-LWA} + {}^{V}_{NW} \times (A_{NW}))/(A_{UL-FGA} + A_{ES-LWA} + A_{NW})$ Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = 45.4 pcf Soil Weight = Soil Weight = $((S + L_{FP}) \times (H + Rt) - At) \times Weighted Soil Density / 1000 lb/kip$			sa ft
Cross-sectional area of UL-FGA over Culvert $(A_{UL-FGA}) = 167.9$ sq ft Cross-sectional area of NW fill over Culvert $(A_{NW}) = H_{NW} \times (S + L_{FP})$ Cross-sectional area of NW fill over Culvert $(A_{NW}) = 27$ sq ft <u>Weighted Soil Unit Weight</u> Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = $({}^{\gamma}_{UL-FGA} \times A_{UL-FGA} + {}^{\gamma}_{ES-LWA} \times A_{ES-LWA} + {}^{\gamma}_{NW} \times (A_{NW}))/(A_{UL-FGA} + A_{ES-LWA} + A_{NW})$ Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = 45.4 pcf <u>Soil Weight</u> Soil Weight = $((S + L_{FP}) \times (H + Rt) - At) \times Weighted Soil Density / 1000 lb/kip$ Soil Weight = 11.2 kips / ft			
$\begin{array}{c} \text{Cross-sectional area of NW fill over Culvert (A_{NW}) = & H_{NW} \times (S + L_{FP}) \\ \hline \\ \text{Cross-sectional area of NW fill over Culvert (A_{NW}) = & 27 & \text{sq ft} \\ \hline \\ \underline{Weighted Soil Unit Weight} \\ \text{Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = & (^{\gamma}_{UL-FGA} \times A_{UL-FGA} + ^{\gamma}_{ES-LWA} \times A_{ES-LWA} + ^{\gamma}_{NW} \times (A_{NW}))/(A_{UL-FGA} + A_{ES-LWA} + A_{NW}) \\ \text{Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = & 45.4 & \text{pcf} \\ \hline \\ \underline{Soil Weight} \\ \text{Soil Weight = & ((S + L_{FP}) \times (H + Rt) - At) \times Weighted Soil Density / 1000 \text{ lb/kip} \\ \text{Soil Weight = & 11.2 & kips / ft \\ \end{array}}$			
Cross-sectional area of NW fill over Culvert (A _{NW}) = 27 sq ft <u>Weighted Soil Unit Weight</u> Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = $({}^{\gamma}_{UL-FGA} \times A_{UL-FGA} + {}^{\gamma}_{ES-LWA} \times A_{ES-LWA} + {}^{\gamma}_{NW} \times (A_{NW}))/(A_{UL-FGA} + A_{ES-LWA} + A_{NW})$ Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = 45.4 pcf <u>Soil Weight</u> Soil Weight = $((S + L_{FP}) \times (H + Rt) - At) \times Weighted Soil Density / 1000 lb/kip$ Soil Weight = 11.2 kips / ft			sqit
Weighted Soil Unit Weight Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = (^y _{UL-FGA} x AuL-FGA + ^y _{ES-LWA} x AES-LWA + ^y _{NW} x (ANW))/(AuL-FGA + AES-LWA + ANW) Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = 45.4 Soil Weight Soil Weight = Soil Weight = ((S + L _{FP}) x (H + Rt) - At) x Weighted Soil Density / 1000 lb/kip Soil Weight = 11.2		$H_{NW} \times (S + L_{FP})$	
Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = $\frac{({}^{\gamma}_{UL-FGA} \times A_{UL-FGA} + {}^{\gamma}_{ES-LWA} \times A_{ES-LWA} + {}^{\gamma}_{NW} \times (A_{NW}))/(A_{UL-FGA} + A_{ES-LWA} + A_{NW})}{Soil Weight}$ Soil Weight = $\frac{45.4}{((S + L_{FP}) \times (H + Rt) - At) \times Weighted Soil Density / 1000 lb/kip}{Soil Weight}$	Cross-sectional area of NW fill over Culvert (A_{NW}) =	27	sq ft
Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = <u>45.4</u> pcf <u>Soil Weight</u> Soil Weight = ((S + L _{FP}) x (H + Rt) - At) x Weighted Soil Density / 1000 lb/kip Soil Weight = <u>11.2</u> kips / ft			
Soil Weight Soil Weight = $((S + L_{FP}) \times (H + Rt) - At) \times Weighted Soil Density / 1000 lb/kip Soil Weight = 11.2 kips / ft $	Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) =	(^{γ} ul-fga x Aul-fga + ^{γ} es-lwa x Aes-lwa +	^Y NW X (ANW))/(AUL-FGA + AES-LWA + ANW)
Soil Weight =((S + L _{FP}) x (H + Rt) - At) x Weighted Soil Density / 1000 lb/kipSoil Weight =11.2kips / ft	Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) =	45.4	pcf
Soil Weight = <u>11.2</u> kips / ft	Soil Weight		
	Soil Weight =	((S + L _{FP}) x (H + Rt) - At) x W	eighted Soil Density / 1000 lb/kip
Dead Load = 5.6 kips / ft per footing	Soil Weight =	11.2	kips / ft
	Dead Load =	5.6	kips / ft per footing
Total Load	Total Load		
Total Load, V =Live Load + Dead Load	Total Load, V =	Live Load + Dead Load	
Total Load, V = <u>7.7</u> kips / ft per footing	Total Load, V =	7.7	kips / ft per footing

Page 1 of 2

GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062

781-278-3700 http://www.gza.com

CALCULATION NO. DL+LL-2H

 PROJECT:
 Culvert Replacement - North Street over White Brook

 LOCATION:
 Agawam, MA

CALCULATED BY	OIM	DATE	4/11/2023	
CHECKED BY	MAR	DATE	4/11/2023	

OBJECTIVE:

REFERENCE:

Evaluate unfactored dead and live load (DL and LL, respectively) footing reactions of the North Street over White Brook proposed culvert replacement **at the approximate high point of settlement evaluation area No. C2.** See cover.

FOOTING REACTIONS					Page 2 of 2
Vertical					
	R _v =	V x cos(fca)			
	R _{V,LL} =	2.1	kips / ft per footing		
	R _{V,DL} =	5.5	kips / ft per footing		
	R _v Total =	7.6	kips / ft per footing		
Horizontal					
Horizontai	R _H =	V x sin(fca)			
	R _{H,LL} =	0.3	kips / ft per footing		
	R _{H,DL} =	0.9	kips / ft per footing		
	R _H Total =	1.2	kips / ft per footing	outward	

GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062 781-278-3700 http://www.gza.com

CALCULATION NO. DL-3L

See cover.

PROJECT: Culvert Replacement - North Street over White Brook

LOCATION:	Agawam, IVIA			
CALCULATED BY	OſM	DATE	4/11/2023	
CHECKED BY	MAR	DATE	4/11/2023	

Page 1 of 2

Evaluate unfactored dead load (DL) footing reactions of the North Street over White Brook proposed culvert

replacement at the approximate low point of settlement evaluation area No. C3.

OBJECTIVE:

REFERENCE:

ASSUMPTIONS AND INPUT

GENERAL ASSUMPTIONS

- See assumptions on calculation package cover page.

Culvert Shape =	ALCD 19/0" Cross v 7' 9" Dise		Deference #2 of cover page
	•	-	Reference #3 of cover page
Span (S) =	18	ft	Reference #3 of cover page
Total Lateral footing projection beyond culvert span (L_{FP}) =	4	ft	See cover page assumptions for foundation width
Arch Top Rise (Rt) =	7.7	ft	Reference #3 of cover page
Bottom Span =	18.0	ft	Reference #3 of cover page
Area of Top Rise (At) =	104.5	sq ft	Reference #3 of cover page
Footing contact angle (fca) =	8.94	degrees	Reference #3 of cover page
Total Height of Cover (Ht) =	10.5	ft	Reference #4
Height of Cover over Culvert (H) =	2.8	ft	See cover page assumptions
Axle Load Type =	0	lbs	Reference #3 of cover page
Number of Lanes =	0		Reference #4
Axle Load (AL) =	0	lbs	Reference #3 of cover page
ES-LWA Soil Density (γ_{ES-LWA}) =	70	pcf	See cover page assumptions
Height of ES-LWA fill cover over Culvert (H _{ES-LWA}) =	1.5	ft	See cover page assumptions
UL-FGA Soil Density ($^{\gamma}$ UL-FGA) =	25	pcf	See cover page assumptions
Height of UL-FGA fill cover over Culvert (H_{UL-FGA}) =	0.3	ft	See cover page assumptions
Topsoil Soil Density (γ_{NW}) =	118	pcf	See cover page assumptions, topsoil
Height of Normal Weight fill cover over Culvert (H_{NW}) =	1	ft	See cover page assumptions

LOAD ON STRUCTURE

Live Load		
Live Load, LL =	AL / (8 + 2(H + Rt)) / 1000	
Live Load =	0.0	kips / ft per footing
Dead Load		
Dead Load, DL = _	Weight of Soil overlying Culve	rt Footing
Weighted area average for Soil Unit Weight		
Cross-sectional area of ES-LWA over Culvert (A_{ES-LWA}) =	(S + L _{FP}) x (Rt + H _{ES-LWA}) - At	
Cross-sectional area of ES-LWA over Culvert (A _{ES-LWA}) =	97.2	sq ft
Cross-sectional area of UL-FGA over Culvert (A_{UL-FGA}) =	H _{UL-FGA} x (S + L _{FP})	
Cross-sectional area of UL-FGA over Culvert (A_{UL-FGA}) =	6.6	sq ft
Cross-sectional area of NW fill over Culvert (A _{NW}) =	$H_{NW} \times (S + L_{FP})$	_
Cross-sectional area of NW fill over Culvert (A_{NW}) =	22	sq ft
Weighted Soil Unit Weight		_
Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = ($\gamma_{\text{UL-FGA}} \times A_{\text{UL-FGA}} + \gamma_{\text{ES-LWA}} \times A_{\text{ES-LWA}} +$	[/] NW X (ANW))/(AUL-FGA + AES-LWA + ANW)
Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) =	76.0	pcf
Soil Weight		
Soil Weight =	((S + L _{FP}) x (H + Rt) - At) x We	eighted Soil Density / 1000 lb/kip
Soil Weight =	9.6	kips / ft
Dead Load =	4.8	kips / ft per footing
Total Load		
Total Load, V =	Live Load + Dead Load	_
Total Load, V = _	4.8	_kips / ft per footing

GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave Norwood, MA 02062

781-278-3700 http://www.gza.com

CALCULATION NO. DL-3L

 PROJECT:
 Culvert Replacement - North Street over White Brook

 LOCATION:
 Agawam, MA

 CALCULATED BY
 MJO
 DATE
 4/11/2023

CHECKED BY	MAR	DATE	4/11/2023
_			

OBJECTIVE:

REFERENCE:

Evaluate unfactored dead load (DL) footing reactions of the North Street over White Brook proposed culvert replacement at the approximate low point of settlement evaluation area No. C3. See cover.

FOOTING REACTIONS				Page 2 c	of 2
Vertical					
	R _v =	V x cos(fca)			
	R _{V,LL} =	0.0	kips / ft per footing		
	R _{V,DL} =	4.8	kips / ft per footing		
	R _v Total =	4.8	kips / ft per footing		
Horizontal					
	R _H =	V x sin(fca)			
	R _{H,LL} =	0.0	kips / ft per footing		
	R _{H,DL} =	0.7	kips / ft per footing		
	R _H Total =	0.7	kips / ft per footing	outward	

GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062 781-278-3700

http://www.gza.com

CALCULATION NO. DL+LL-3H

PROJECT: Culvert Replacement - North Street over White Brook

LOCATION:	Agawam, MA			
CALCULATED BY	OſM	DATE	4/11/2023	
CHECKED BY	MAR	DATE	4/11/2023	

Evaluate unfactored dead and live load (DL and LL, respectively) footing reactions of the North Street over White Brook proposed culvert replacement **at the approximate high point of settlement evaluation area No. C3.**

OBJECTIVE:

REFERENCE:

ASSUMPTIONS AND INPUT

GENERAL ASSUMPTIONS

- See assumptions on calculation package cover page.

Culvert Shape =	ALSP 18'0" Span x 7'-8" Rise		Reference #3 of co
Span (S) =	18	ft	Reference #3 of co
Total Lateral footing projection beyond culvert span (L_{FP}) =	4	ft	See cover page ass
Arch Top Rise (Rt) =	7.7	ft	Reference #3 of cov
Bottom Span =	18.0	ft	Reference #3 of cov
Area of Top Rise (At) =	104.5	sq ft	Reference #3 of cov
Footing contact angle (fca) =	8.94	degrees	Reference #3 of cor
Total Height of Cover (Ht) =	19.5	ft	Reference #4
Height of Cover over Culvert (H) =	11.8	ft	See cover page ass
Axle Load Type =	Tandem (HL-93)	lbs	Reference #3 of co
Number of Lanes =	1	_	Reference #4
Axle Load (AL) =	50,000	lbs	Reference #3 of co
ES-LWA Soil Density (γ _{ES-LWA}) =	70	pcf	See cover page ass
Height of ES-LWA fill cover over Culvert (H _{ES-LWA}) =	1.5	ft	See cover page ass
UL-FGA Soil Density (γ _{UL-FGA}) =	25	pcf	See cover page ass
Height of UL-FGA fill cover over Culvert (H _{UL-FGA}) =	9.33	ft	See cover page ass
Topsoil Soil Density (⁷ NW) =	118	pcf	See cover page ass
Height of Normal Weight fill cover over Culvert (H_{NW}) =	1	ft	See cover page ass

See cover.

LOAD ON STRUCTURE

Live Load		
Live Load, LL =	AL / (8 + 2(H + Rt)) / 1000	
Live Load =	1.1	kips / ft per footing
Dead Load		
Dead Load, DL = _	Weight of Soil overlying Culve	rt Footing
Weighted area average for Soil Unit Weight		
Cross-sectional area of ES-LWA over Culvert (A _{ES-LWA}) =	(S + L _{FP}) x (Rt + H _{ES-LWA}) - At	
Cross-sectional area of ES-LWA over Culvert (A_{ES-LWA}) =	97.2	sq ft
Cross-sectional area of UL-FGA over Culvert (A_{UL-FGA}) =	$H_{UL-FGA} \times (S + L_{FP})$	
Cross-sectional area of UL-FGA over Culvert (A _{UL-FGA}) =	205.3	sq ft
Cross-sectional area of NW fill over Culvert (A_{NW}) =	H _{NW} x (S + L _{FP})	_
Cross-sectional area of NW fill over Culvert (A_{NW}) =	22	sq ft
Weighted Soil Unit Weight		_
Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) = $\frac{1}{2}$	$\gamma_{\text{UL-FGA}} \times A_{\text{UL-FGA}} + \gamma_{\text{ES-LWA}} \times A_{\text{ES-LWA}} + \gamma_{\text{ES-LWA}} + \gamma_{\text{ES-LWA}$	[/] NW X (ANW))/(AUL-FGA + AES-LWA + ANW)
Weighted Soil Density (ES-LWA, UL-FGA and NW Fills) =	44.8	_pcf
Soil Weight		
Soil Weight =	((S + L _{FP}) x (H + Rt) - At) x Weighted Soil Density / 1000 lb/kip	
Soil Weight =	14.5	kips / ft
 Dead Load =	7.3	kips / ft per footing
Total Load		
Total Load, V =	Live Load + Dead Load	_
Total Load, V =	8.3	_kips / ft per footing

Page 1 of 2

Reference #3 of cover page
Reference #3 of cover page
See cover page assumptions for foundation width
Reference #3 of cover page
Reference #4
See cover page assumptions
Reference #3 of cover page
Reference #4
Reference #3 of cover page
See cover page assumptions
See cover page assumptions, topsoil
See cover page assumptions

GZA GeoEnvironmental, Inc. 249 Vanderbilt Ave

Norwood, MA 02062

781-278-3700 http://www.gza.com

CALCULATION NO. DL+LL-3H

PROJECT: Culvert Replacement - North Street over White Brook

LUCATION:	Agawaiii, wiA			
CALCULATED BY	OſM	DATE	4/11/2023	
CHECKED BY	MAR	DATE	4/11/2023	

OBJECTIVE:

REFERENCE:

Evaluate unfactored dead and live load (DL and LL, respectively) footing reactions of the North Street over White Brook proposed culvert replacement **at the approximate high point of settlement evaluation area No. C3.** See cover.

<u>REACTIONS</u>					Page 2 of 2
Vertical					
	R _v =	V x cos(fca)			
	R _{V,LL} =	1.1	kips / ft per footing		
	R _{V,DL} =	7.2	kips / ft per footing		
	R _v Total =	8.2	kips / ft per footing		
Horizontal					
	R _H =	V x sin(fca)			
	R _{H,LL} =	0.2	kips / ft per footing		
	R _{H,DL} =	1.1	kips / ft per footing		
	R _H Total =	1.3	kips / ft per footing	outward	

Structural Plate Footing Reactions

Per AASHTO Standard Specifications for Highway Bridges, Section 12

Project Name:

Location:

Tandem (HL93)	Live Load	
Corrugation =	ALSP	
Shape =	ALSP 18'-0" Span x 7'-8" Rise	
Span (S) =	18.00	ft.
Rise (R) =	7.67	ft.
Arch Top Rise (Rt) =	7.67	ft.
Bottom Span =	18.00	ft.
Area (A) =	104.5	sq. ft.
Area of Top Rise (At) =	104.5	sq. ft.
Footing contact angle (fca) =	8.94	degrees
Height of cover (H) =	10.00	ft.
Axle Load =	Tandem (HL93)	lbs.
Number of Lanes =	2	
Axle Load (AL) =	100,000	lbs.
Soil Density =	120	lbs./cu. ft.

LOAD ON STRUCTURE

R_{H11} =

 $R_{H,DL} =$

R_H Total =

Total Load, V = Live Load + Dead Load

Live Load, LL =	AL/(8 + 2(H + R))	
Live Load =	2,307	lbs./foot/footing

MULTI-PLATE & Aluminum Structural Plate Single Radius Arch

Dead Load, DL = Soil weight					
Soil weight = (S x (H	nsity				
Soil weight =	25,627	lbs./foot			
Dead Load per footing =	12,814	lbs./foot/footing			

Dead Load =	12,814	lbs./foot/footing
Total Load, V =	15,121	lbs./foot/footing
FOOTING REACTIONS Vertical		
R _v =	V x cos(fca)	
R _{v,ll} =	2,279	
R _{v,dl} =	12,658	
R _v Total =	14,937	lbs./foot/footing
Horizontal		
R _H =	V x sin(fca)	

359

1,992

2,350

Use these Unfactored Reactions for preliminary footing design unless it is known that Factored Reactions are required.

These results are submitted to you as a guideline only, without liability on the part of Contech Engineered Solutions LLC for accuracy or suitability to any particular application, and are subject to your verification.

lbs./foot/footing

outward

Merlin #:

Date: 2/15/2023

GZA NOTE: INITIAL LOADING CALCULATED BY THE MANUFACTURER BUT DOES NOT INCLUDE WEIGHT OF SOIL OVERLYING PORTION OF FOOTING EXTENDING BEYOND THE SPAN ENDS OF THE CULVERT.

Comparison of Consolidation Pressures: Existing and Proposed Conditions - North Street over White Brook Proposed Culvert

Project: Culvert Replacement - North Street over White Brook Location: Agawam, MA

Location. Agawam, wir	1			
Calculated By:	OIM	Date:	4/4/2023	
Checked By:		Date:		
		· · · · · · · · · · · · · · · · · · ·		

Purpose: Evaluate pre- and post-construction consolidation pressures for select foundation footprint areas of the proposed North Street over White Brook replacement culvert in general accordance with the MassDOT LRFD Bridge Design Manual, which references the AASHTO LRFD Bridge Design Specification, 9th Edition (2020). The proposed culvert is being analyzed as an AASHTO Bridge in accordance with MGL Chapter 85, Section 35 and is anticipated to be a single-span aluminum structural plate single radius arch structure with culvert/abutment ends supported on a shallow foundation bearing on existing natural fine-grained soils. The evaluation sections will be selected from three general culvert footprint areas: C1 - the upstream 1/3 where a raise-in-grade (RIG) is proposed, C2 - the middle 1/3 (generally no RIG proposed), and C3 - the downstream 1/3 where a RIG is proposed. Post-construction consolidation pressures less than or equal to pre-consolidation pressures will be used to evaluate recompression settlement while post-construction consolidation pressures greater than pre-consolidation pressures will be used to evaluate virgin settlement in a separate calculation.

References: 1) MassDOT Bridge Design Manual, 2013 with 2020 updates.

2) AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020.
 3) Subsurface conditions based on recent borings BB-01 through BB-03 completed from December 28 to 30, 2022, by Seaboard Drilling, Inc. of Springfield, Massachusetts, observed and logged by GZA. Subsurface conditions from the recent borings supplemented by subsurface conditions based on previous borings WB-1 and WB-2 completed on November 12, 2020, by Seaboard Drilling, Inc. of Springfield, Massachusetts, observed and logged by O'Rielly, Talbot & Okun.

4) Email from Woodard & Curran (W&C) with calculations prepared by Contech Engineered Solutions LLC (Contech) for Structural Plate Footing Reactions per AASHTO Standard Specification for Highway Bridges, Section 12, dated February 15, 2023.
5) Appendix G Attachments 1 and 3 - Preliminary Design Progress Print showing plan and section views of the proposed culvert prepared by Woodard & Curran (W&C), respectively, dated February 16, 2023 with PDF markups by GZA.

Subsurface Conditions: Estimated bottom of foundation base course grades at area Nos. C1, C2, and C3 are depicted as approximately 4 to 21 feet below the existing ground surface grades, which correspond to approximately 10 to 21 feet below proposed ground surface grades based on the longitudinal culvert profile view in Reference #5.

Analysis Assumptions: 1) Proposed culvert dimensions and location as depicted in Reference #5.

2) Proposed culvert foundation assumed to be a 22-foot-wide continuous reinforced lightweight concrete mat foundation over a 1-foot-thick crushed stone base course as depicted in the mark ups in Reference #5.

3) Pre-consolidation pressures assumed to consist only of existing soil, neglecting the effects of hydrostatic pore pressures.

4) Post-construction consolidation pressures determined using the weight of the 1-foot of 3/4-inch crushed stone (CS) base course fill, a 1-foot-thick reinforced lightweight concrete mat foundation, 2-feet of streambed (SB) fill material, and the following fill materials over the proposed culvert and culvert foundation: Compacted expanded shale lightweight aggregate (ES-LWA) fill to between approximately 1- to 1.5-feet above the proposed culvert, compacted ultra-lightweight foamed glass aggregate (UL-FGA) fill on top of the ES-LWA to between 1- and 1.5-feet from proposed ground surface level and 1 to 1.5 feet of compacted normal-weight (NW) fill for the topsoil and roadway granular fill/asphalt to the proposed ground surface level. The pressures neglect the effects of hydrostatic pore pressures.

Results: The following table summarizes the pre-consolidation and post-construction consolidation pressures at the bottom of the proposed foundation base course grades for select areas of the proposed culvert at North Street over White Brook:

			Comparison of	
Culvert Settlement Evaluation	Preconsolidation	Consolidation Pressure:	Consolidation Pressures	
Area ID - Description	Pressure: Existing	Post Construction (psf)	Pre- minus Post-	
Alea ID - Description	Condition (psf)		Construction (psf)	Notes
C1A - Upstream End	600	779	-179	net increased pressure
C1B - Upstream	1090	836	254	net decreased pressure
C1C - Upstream	814	814	0	-
C2A - Mid-length	2520	1061	1459	net decreased pressure
C3A - Downstream	1296	957	339	net decreased pressure
C3B - Downstream End	420	842	-422	net increased pressure
C3C - Downstream	947	947	0	-

Attachments: Calculations by GZA, Preliminary Design Drawings of proposed culvert with GZA markups (Attachments 1 and 3 of Appendix G)

781-278-3700 http://www.gza.com

CALCULATION: AREA C1A

PROJECT: Culvert Replacement - North Street over White Brook

 LOCATION:
 Agawam, MA

 CALCULATED BY
 MJO
 DATE
 4/4/2023

 CHECKED BY
 0
 DATE
 1/0/1900

OBJECTIVE: REFERENCE:

Evaluate the existing preconsolidation and proposed consolidation pressures **for proposed foundation section area C1A** of the North Street over White Brook proposed culvert replacement. See cover.

ENERAL ASSUMPTIONS			
See assumptions on calculation package cover page.			
kisting/Pre-Construction Conditions at Proposed Culvert Area			
Approx. existing ground surface elevation/El. (El _{ex}) =	122	ft	Reference #5 of cover page
Existing Soil estimated unit weight (γ_{EX}) =	120	ft	Reference #3 of cover page
roposed Culvert Dimensions Culvert Shape =	ALSP 18'0" Span x 7'-8" Rise		Deference #E of cover page
Culvert Span (S) =	18	ft	Reference #5 of cover page Reference #5 of cover page
Total Lateral footing projection beyond culvert span (LFP)	4	ft	See cover page
Rise (R) =	7.7	ft	Reference #5 of cover page
Area (A) =	104.5	sq ft	Reference #5 of cover page
roposed Materials			
Approx. proposed ground surface elevation/El. (El _{PR}) =	129	ft	Reference #5 of cover page
Proposed El. for bottom of crushed stone for foundation (El _{BCS}) =	117	ft	Reference #5 of cover page
Unit Weight: NW fill $(\gamma_{NW}) =$	118	pcf	See cover page, topsoil
Unit Weight: ES-LWA fill ($\gamma_{\text{ES-LWA}}$) =	70	pcf	-
Unit Weight: UL-FGA fill $\left(\frac{\gamma}{ _{+FGA}}\right) =$	25	pcf	
Unit Weight: Streambed Material (γ_{SR}) =	100	pcf	
Unit Weight: Reinforced Lightweight Concrete $\binom{v_{1}}{v_{1}}$ =	100	pcf	
Unit Weight: $3/4$ -inch Crushed Stone (γ_{cs}) =	115	pcf	
	115		
Thickness: NW fill (t _{NW}) =	1	ft	See cover page
	8.7	ft	See cover page
	0.3	ft	See cover page
Thickness: Streambed Material (t _{sb}) =	2	ft	See cover page
Thickness: Reinforced Lightweight Concrete (t _{LWC}) =	1	ft	See cover page
Thickness: $3/4$ -inch Crushed Stone (t_{cs}) =	1	ft	See cover page
ALCULATION: EXISTING/PRE-CONSTRUCTION PRE-CONSOLIDATION PRESS Existing Soil thickness (t_{rx}) =	El _{EX} - El _{BCS}	ft	
Existing Soil thickness (t _{FX}) =	5	-"ft	
Cross-sectional area of NW fill over Culvert El _{BCS} (A _{NW}) =	t _{EX} x (S + L _{FP})		
	LA 1 IF		
Cross-sectional area of NW fill over Culvert El _{BCS} (A _{NW}) =	110	sq ft	
Cross-sectional area of NW fill over Culvert El _{BCS} (A _{NW}) = Existing Pre-Consolidation Pressure (P _{FX})		sq ft	
Cross-sectional area of NW fill over Culvert El _{BCS} (A _{NW}) = Existing Pre-Consolidation Pressure (P _{EX}) = Existing Pre-Consolidation Pressure (P _{EX}) =	110 ^γ _{EX} x A _{NW} / (S + L _{FP}) 600	_	
Existing Pre-Consolidation Pressure (P _{EX}) =	$\gamma_{\rm EX} \times A_{\rm NW} / (S + L_{\rm FP})$	sq ft psf	
Existing Pre-Consolidation Pressure (P _{EX}) = Existing Pre-Consolidation Pressure (P _{EX}) = ALCULATION: PROPOSED/POST-CONSTRUCTION CONSOLIDATION PRESSU	$\frac{\gamma_{EX} \times A_{NW} / (S + L_{FP})}{600}$	_	
Existing Pre-Consolidation Pressure (P _{EX}) = Existing Pre-Consolidation Pressure (P _{EX}) = ALCULATION: PROPOSED/POST-CONSTRUCTION CONSOLIDATION PRESSU Cross-sectional area of ES-LWA over Culvert foundation (A _{ES-LWA}) =	$\frac{\gamma_{EX} \times A_{NW} / (S + L_{FP})}{600}$ JRE $(S + L_{FP}) \times (t_{ES-LWA}) - A$	_	
Existing Pre-Consolidation Pressure (P _{EX}) = Existing Pre-Consolidation Pressure (P _{EX}) = ALCULATION: PROPOSED/POST-CONSTRUCTION CONSOLIDATION PRESSU Cross-sectional area of ES-LWA over Culvert foundation (A _{ES-LWA}) = Cross-sectional area of ES-LWA over Culvert foundation (A _{ES-LWA}) =	$\frac{\gamma_{EX} \times A_{NW} / (S + L_{FP})}{600}$ JRE (S + L_{FP}) x (t_{ES-LWA}) - A 86.2	_	
Existing Pre-Consolidation Pressure (P _{EX}) = Existing Pre-Consolidation Pressure (P _{EX}) = ALCULATION: PROPOSED/POST-CONSTRUCTION CONSOLIDATION PRESSU Cross-sectional area of ES-LWA over Culvert foundation (A _{ES-LWA}) = Cross-sectional area of ES-LWA over Culvert foundation (A _{ES-LWA}) = Cross-sectional area of UL-FGA over Culvert foundation (A _{UL-FGA}) =	$\frac{\gamma_{EX} \times A_{NW} / (S + L_{FP})}{600}$ JRE $(S + L_{FP}) \times (t_{ES-LWA}) - A$ $\frac{86.2}{t_{UL-FGA} \times (S + L_{FP})}$	psf sq ft	
Existing Pre-Consolidation Pressure (P _{EX}) = Existing Pre-Consolidation Pressure (P _{EX}) = ALCULATION: PROPOSED/POST-CONSTRUCTION CONSOLIDATION PRESSU Cross-sectional area of ES-LWA over Culvert foundation (A _{ES-LWA}) = Cross-sectional area of ES-LWA over Culvert foundation (A _{ES-LWA}) = Cross-sectional area of UL-FGA over Culvert foundation (A _{UL-FGA}) = Cross-sectional area of UL-FGA over Culvert foundation (A _{UL-FGA}) =	$\frac{\gamma_{EX} \times A_{NW} / (S + L_{FP})}{600}$ JRE $(S + L_{FP}) \times (t_{ES-LWA}) - A$ $\frac{86.2}{t_{UL-FGA} \times (S + L_{FP})}$ 7.3	psf	
Existing Pre-Consolidation Pressure (P _{EX}) = Existing Pre-Consolidation Pressure (P _{EX}) = ALCULATION: PROPOSED/POST-CONSTRUCTION CONSOLIDATION PRESSU Cross-sectional area of ES-LWA over Culvert foundation (A _{ES-LWA}) = Cross-sectional area of ES-LWA over Culvert foundation (A _{ES-LWA}) = Cross-sectional area of UL-FGA over Culvert foundation (A _{UL-FGA}) = Cross-sectional area of UL-FGA over Culvert foundation (A _{UL-FGA}) = Cross-sectional area of UL-FGA over Culvert foundation (A _{UL-FGA}) = Cross-sectional area of NW fill over Culvert foundation (A _{NW}) =	$\frac{\gamma_{EX} \times A_{NW} / (S + L_{FP})}{600}$ JRE $(S + L_{FP}) \times (t_{ES-LWA}) - A$ $\frac{86.2}{t_{UL-FGA} \times (S + L_{FP})}$ $\frac{7.3}{t_{NW} \times (S + L_{FP})}$	psf sq ft sq ft	
Existing Pre-Consolidation Pressure (P _{EX}) = Existing Pre-Consolidation Pressure (P _{EX}) = ALCULATION: PROPOSED/POST-CONSTRUCTION CONSOLIDATION PRESSU Cross-sectional area of ES-LWA over Culvert foundation (A _{ES-LWA}) = Cross-sectional area of ES-LWA over Culvert foundation (A _{ES-LWA}) = Cross-sectional area of UL-FGA over Culvert foundation (A _{UL-FGA}) = Cross-sectional area of UL-FGA over Culvert foundation (A _{UL-FGA}) = Cross-sectional area of UL-FGA over Culvert foundation (A _{UL-FGA}) = Cross-sectional area of NW fill over Culvert foundation (A _{NW}) = Cross-sectional area of NW fill over Culvert foundation (A _{NW}) =	$\frac{\gamma_{EX} \times A_{NW} / (S + L_{FP})}{600}$ JRE $(S + L_{FP}) \times (t_{ES-LWA}) - A$ 86.2 $t_{UL-FGA} \times (S + L_{FP})$ 7.3 $t_{NW} \times (S + L_{FP})$ 22	psf sq ft	
$ \begin{array}{l} \label{eq:result} Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ \end{array} \\ \begin{array}{l} \label{eq:result} \end{tabular} \\ ta$	$\frac{\gamma_{EX} \times A_{NW} / (S + L_{FP})}{600}$ JRE $(S + L_{FP}) \times (t_{ES-LWA}) - A$ 86.2 $t_{UL-FGA} \times (S + L_{FP})$ 7.3 $t_{NW} \times (S + L_{FP})$ 22 $A_{ES-LWA} + A_{UL-FGA} + A_{NW}$	psf sq ft sq ft sq ft sq ft	
$ \begin{array}{l} \label{eq:rescaled} Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ \end{array} \\ \begin{array}{l} \label{eq:rescaled} \\ \label{eq:rescaled}$	$\frac{\gamma_{EX} \times A_{NW} / (S + L_{FP})}{600}$ JRE $(S + L_{FP}) \times (t_{ES-LWA}) - A$ 86.2 $t_{UL-FGA} \times (S + L_{FP})$ 7.3 $t_{NW} \times (S + L_{FP})$ 22 $A_{ES-LWA} + A_{UL-FGA} + A_{NW}$ 115.5	psf sq ft sq ft	
$ \begin{array}{l} \label{eq:result} Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ \end{array} \\ \begin{array}{l} \label{eq:result} \end{tabular} \\ \label{eq:result} \end{tabular} \end{tabular} \\ \label{eq:result} \end{tabular} \end{tabular} \end{tabular} \\ \label{eq:result} \end{tabular} $	$\frac{\gamma_{EX} \times A_{NW} / (S + L_{FP})}{600}$ JRE $(S + L_{FP}) \times (t_{ES-LWA}) - A$ 86.2 $t_{UL-FGA} \times (S + L_{FP})$ 7.3 $t_{NW} \times (S + L_{FP})$ 22 $A_{ES-LWA} + A_{UL-FGA} + A_{NW}$ 115.5 $t_{SB} \times S$	psf sq ft sq ft sq ft sq ft sq ft sq ft	
$ \begin{array}{c} \mbox{Existing Pre-Consolidation Pressure (P_{EX}) = \\ \mbox{Existing Pre-Consolidation (A_{ES}) = \\ \mbox{Existing Pre-Consolidation (A_{LI-FGA}) = \\ \mbox{Existing Pre-Consolidation (A_{UL-FGA}) = \\ Existing Pre-Consolidation (A_{UL-FG	$\frac{\gamma_{EX} \times A_{NW} / (S + L_{FP})}{600}$ JRE $(S + L_{FP}) \times (t_{ES-LWA}) - A$ 86.2 $t_{UL-FGA} \times (S + L_{FP})$ 7.3 $t_{NW} \times (S + L_{FP})$ 22 $A_{ES-LWA} + A_{UL-FGA} + A_{NW}$ 115.5	psf sq ft sq ft sq ft sq ft	
$ \begin{array}{l} \label{eq:result} Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ \end{array} \\ \begin{array}{l} \label{eq:result} \end{tabular} \\ \label{eq:result} \end{tabular} \end{tabular} \\ \label{eq:result} \end{tabular} \end{tabular} \end{tabular} \\ \label{eq:result} \end{tabular} $	$\frac{\gamma_{EX} \times A_{NW} / (S + L_{FP})}{600}$ JRE (S + L_{FP}) × (t _{ES-LWA}) - A 86.2 t _{UL-FGA} × (S + L_{FP}) 7.3 t _{NW} × (S + L_{FP}) 22 A _{ES-LWA} + A _{UL-FGA} + A _{NW} 115.5 t _{SB} × S 36.0	psf sq ft sq ft sq ft sq ft sq ft sq ft	'(Aul-fga + Aes-lwa + Anw)
Existing Pre-Consolidation Pressure (P_{EX}) = Existing Pre-Consolidation Pressure (P_{EX}) = ALCULATION: PROPOSED/POST-CONSTRUCTION CONSOLIDATION PRESSU Cross-sectional area of ES-LWA over Culvert foundation (A_{ES-LWA}) = Cross-sectional area of ES-LWA over Culvert foundation (A_{ES-LWA}) = Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = Total Cross-sectional area: All Proposed fills (A_{PR}) = Total Cross-sectional area: Streambed Material (A_{SB}) = Cross-sectional area: Streambed Material (A_{SB}) = Cross-sectional area: Streambed Material (A_{SB}) =	$\frac{\gamma_{EX} \times A_{NW} / (S + L_{FP})}{600}$ JRE (S + L_{FP}) × (t _{ES-LWA}) - A 86.2 t _{UL-FGA} × (S + L_{FP}) 7.3 t _{NW} × (S + L_{FP}) 22 A _{ES-LWA} + A _{UL-FGA} + A _{NW} 115.5 t _{SB} × S 36.0	psf sq ft sq ft sq ft sq ft sq ft sq ft	'(Aulfga + Aes-lwa + Anw)
$ \begin{array}{l} \label{eq:rescaled} Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ \end{array} \\ \begin{array}{l} \label{eq:rescaled} \\ \label{eq:rescaled}$	$\frac{\gamma_{EX} \times A_{NW} / (S + L_{FP})}{600}$ <u>JRE</u> (S + L_{FP}) x (t _{ES-LWA}) - A 86.2 t _{UL-FGA} x (S + L _{FP}) 7.3 t _{NW} x (S + L _{FP}) 22 A _{ES-LWA} + A _{UL-FGA} + A _{NW} 115.5 t _{SB} x S 36.0 'uL-FGA x AUL-FGA +'ES-LWA x AES-LWA +	psf sq ft sq ft sq ft sq ft sq ft sq ft sq ft sq ft pcf	

781-278-3700 http://www.gza.com

CALCULATION: AREA C1B

PROJECT: Culvert Replacement - North Street over White Brook

LOCATION: Agawam, MA CALCULATED BY MJO DATE 4/4/2023 CHECKED BY 0 DATE 1/0/1900

OBJECTIVE: REFERENCE: Evaluate the existing preconsolidation and proposed consolidation pressures **for proposed foundation section area C1B** of the North Street over White Brook proposed culvert replacement. See cover.

ASSUMPTIONS AND INPUT GENERAL ASSUMPTIONS - See assumptions on calculation package cover page. Existing/Pre-Construction Conditions at Proposed Culvert Area Approx. existing ground surface elevation/El. (EI_{EX}) = 125 5 ft Reference #5 of cover page Existing Soil estimated unit weight (γ_{EX}) = 120 Reference #3 of cover page ft **Proposed Culvert Dimensions** ALSP 18'0" Span x 7'-8" Rise Culvert Shape = Reference #5 of cover page Culvert Span (S) = 18 ft Reference #5 of cover page Total Lateral footing projection beyond culvert span (L_{FP}) = 4 ft See cover page Rise (R) = 7.7 ft Reference #5 of cover page Area (A) = 104.5 sq ft Reference #5 of cover page **Proposed Materials** Approx. proposed ground surface elevation/El. (El_{PR}) = 130.7 ft Reference #5 of cover page Proposed El. for bottom of crushed stone for foundation (El_{BCS}) = 116.4 ft Reference #5 of cover page Unit Weight: NW fill (γ_{NW}) = 118 See cover page, topsoil pcf Unit Weight: ES-LWA fill ($^{\gamma}_{\text{ES-LWA}}$) = 70 pcf Unit Weight: UL-FGA fill ($^{\gamma}_{\text{UL-FGA}}$) = 25 pcf Unit Weight: Streambed Material ($_{SB}^{\gamma}$) = 100 pcf Unit Weight: Reinforced Lightweight Concrete (γ_{LWC}) = 100 pcf Unit Weight: 3/4-inch Crushed Stone (γ_{CS}) = 115 pcf Thickness: NW fill (t_{NW}) = ft See cover page 1 Thickness: ES-LWA fill (t_{ES-LWA}) = 8.7 ft See cover page Thickness: UL-FGA fill (t_{UL-FGA}) = ft 2.6 See cover page Thickness: Streambed Material (t_{sp}) = ft 2 See cover page Thickness: Reinforced Lightweight Concrete (t_{LWC}) = ft See cover page 1 Thickness: 3/4-inch Crushed Stone (t_{cs}) = ft 1 See cover page CALCULATION: EXISTING/PRE-CONSTRUCTION PRE-CONSOLIDATION PRESSURE El_EX - El_BCS Existing Soil thickness $(t_{EX}) =$ ft Existing Soil thickness (t_{EX}) = 9.08 ft Cross-sectional area of NW fill over Culvert EI_{BCS} (A_{NW}) = $t_{EX} x (S + L_{FP})$ Cross-sectional area of NW fill over Culvert EI_{BCS} (A_{NW}) = 199.76 sq ft Existing Pre-Consolidation Pressure (P_{EX}) = $V_{EX} \times A_{NW} / (S + L_{FP})$ Existing Pre-Consolidation Pressure (P_{EX}) = 1089.6 psf CALCULATION: PROPOSED/POST-CONSTRUCTION CONSOLIDATION PRESSURE Cross-sectional area of ES-LWA over Culvert foundation (A_{ES-LWA}) = (S + L_{FP}) x (t_{ES-LWA}) - A Cross-sectional area of ES-LWA over Culvert foundation (A_{ES-LWA}) = 86.2 sq ft Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = t_{UL-FGA} x (S + L_{FP}) Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = 56.8 sq ft Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = $t_{NW} x (S + L_{FP})$ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = 22 sq ft Total Cross-sectional area: All Proposed fills (A_{PR}) = A_{ES-LWA} + A_{UL-FGA} + A_{NW} Total Cross-sectional area: All Proposed fills (A_{PR}) = 165.0 sq ft Cross-sectional area: Streambed Material (A_{SB}) = t_{sb} x S Cross-sectional area: Streambed Material (A_{SB}) = 36.0 sq ft Weighted Soil Unit Weight Weighted Soil Density (ES-LWA, UL-FGA and NW Fills, γ_{PR}) = ('uL-FGA X AUL-FGA +'ES-LWA X AES-LWA + 'NW X ANW)/(AUL-FGA + AES-LWA + ANW) Weighted Soil Density (ES-LWA, UL-FGA and NW Fills, ^r_{PR}) = 60.9 pcf **Post-Construction Consolidation Pressure** Proposed / Post-Consolidation Pressure (P_{PR}) = $\frac{\left(\frac{\gamma_{PR}}{P_{PR}} \times A_{PR} + \frac{\gamma_{SB}}{P_{SB}} \times A_{SB}\right) / (S + L_{FP}) + \frac{\gamma_{LWC}}{L_{LWC}} \times t_{LWC} + \frac{\gamma_{CS}}{C_{SS}} \times t_{CS}}{2836}$ Proposed / Post-Consolidation Pressure (P_{PR}) = $\frac{836}{P_{SB}}$

781-278-3700 http://www.gza.com

CALCULATION: AREA C1C

PROJECT: Culvert Replacement - North Street over White Brook
LOCATION: Agawam, MA

 CALCULATED BY
 MJO
 DATE
 4/4/2023

 CHECKED BY
 0
 DATE
 1/0/1900

OBJECTIVE: REFERENCE:

Evaluate the existing preconsolidation and proposed consolidation pressures for proposed foundation section area C1C of the North Street over White Brook proposed culvert replacement.

See cover.

GENERAL ASSUMPTIONS			
- See assumptions on calculation package cover page.			
Evicting/Dro Construction Conditions at Drongsod Culturet Area			
Existing/Pre-Construction Conditions at Proposed Culvert Area Approx. existing ground surface elevation/El. (El _{FX}) =	123.6	ft	Reference #5 of cover page
Existing Soil estimated unit weight ${\binom{y}{Ex}}$	120	ft	
	120		Reference #3 of cover page
Proposed Culvert Dimensions			
Culvert Shape =	ALSP 18'0" Span x 7'-8" Rise		Reference #5 of cover page
Culvert Span (S) =	18	ft	Reference #5 of cover page
Total Lateral footing projection beyond culvert span (L _{FP}) =	4	ft	See cover page
Rise (R) =	7.7	ft	Reference #5 of cover page
Area (A) =	104.5	sq ft	Reference #5 of cover page
Proposed Materials			
Approx. proposed ground surface elevation/El. (El _{PR}) =	130.2	ft	Reference #5 of cover page
Proposed El. for bottom of crushed stone for foundation (El_{RCS}) =	116.8	ft	Reference #5 of cover page
Unit Weight: NW fill $({}^{\gamma}_{NW}) =$	118	pcf	See cover page, topsoil
Unit Weight: ES-LWA fill $\left(\sum_{s=LWA}^{\gamma} \right) =$	70	- ¹ .	-
Unit Weight: UL-FGA fill $\left(V_{UL-FGA} \right) =$	25	pcf	
Unit Weight: Streambed Material (V_{SR}) =		pcf	
Unit Weight: Streambed Material (r_{sb}) =	100	pcf	-
	100	pcf	-
Unit Weight: 3/4-inch Crushed Stone (γ_{cs}) =	115	pcf	-
Thickness: NW fill (t _{NW}) =	1	ft	See cover page
Thickness: ES-LWA fill (t _{ES-LWA}) =	8.7	ft	See cover page
Thickness: UL-FGA fill (t _{UL-FGA}) =	1.7	ft	See cover page
Thickness: Streambed Material (t _{sp}) =	2	ft	See cover page
Thickness: Reinforced Lightweight Concrete $(t_{IWC}) =$	1	ft	See cover page
Thickness: 3/4-inch Crushed Stone (t _{cs}) =	1	ft	See cover page
_		_	
CALCULATION: EXISTING/PRE-CONSTRUCTION PRE-CONSOLIDATION PRESS			
Existing Soil thickness $(t_{EX}) = $	El _{EX} - El _{BCS}	ft	
Existing Soil thickness (t _{EX}) =	6.8	ft	
_			
Cross-sectional area of NW fill over Culvert $EI_{BCS}(A_{NW}) = $	t _{EX} x (S + L _{FP})		
Cross-sectional area of NW fill over Culvert EI_{BCS} (A _{NW}) = Cross-sectional area of NW fill over Culvert EI_{BCS} (A _{NW}) =	t _{EX} x (S + L _{FP}) 149.3	sq ft	
		sq ft	
Cross-sectional area of NW fill over Culvert El_{BCS} (A _{NW}) =	149.3	sq ft psf	
Cross-sectional area of NW fill over Culvert EI_{BCS} (A_{NW}) = Existing Pre-Consolidation Pressure (P_{EX}) = Existing Pre-Consolidation Pressure (P_{EX}) =	149.3 ⁷ _{EX} x A _{NW} / (S + L _{FP}) 814	_ `	
$\label{eq:cross-sectional area of NW fill over Culvert El_{BCS}(A_{NW}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ \\ \hline \\ \hline$	149.3 ⁷ _{EX} × A _{NW} / (S + L _{FP}) 814 JRE	_ `	
$\label{eq:cross-sectional area of NW fill over Culvert El_{BCS}(A_{NW}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ \hline \\$	$ 149.3 \gamma_{EX} \times A_{NW} / (S + L_{FP}) 814 $	psf	
$\label{eq:cross-sectional area of NW fill over Culvert El_{BCS}(A_{NW}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ \\ \hline \\ \hline$	$ 149.3 \gamma_{EX} \times A_{NW} / (S + L_{FP}) 814$	_ `	
$ \begin{array}{l} Cross-sectional area of NW fill over Culvert El_{BCS}(A_{NW}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ \end{array} \\ \hline \\ \begin{array}{l} \hline \\ \hline $		psf sq ft	
$ \begin{array}{l} Cross-sectional area of NW fill over Culvert El_{BCS}(A_{NW}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ \end{array} \\ \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \hline \end{array} $ \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \\ \\	$ 149.3 \gamma_{EX} \times A_{NW} / (S + L_{FP}) 814$	psf	
$ \begin{array}{l} Cross-sectional area of NW fill over Culvert El_{BCS} (A_{NW}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ \end{array} \\ \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \\ \hline \end{array} $ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \end{array} \\ \\ \\ \\ \\ \\ \\ \hline \\ \\	$ \begin{array}{r} 149.3 \\ \frac{\gamma_{EX} \times A_{NW} / (S + L_{FP})}{814} \\ \hline \\ (S + L_{FP}) \times (t_{ES-LWA}) - A \\ \hline \\ 86.2 \\ \hline \\ t_{UL-FGA} \times (S + L_{FP}) \\ \hline \\ 37.9 \\ \hline \\ t_{NW} \times (S + L_{FP}) \end{array} $	psf sq ft sq ft	
$ \begin{array}{l} Cross-sectional area of NW fill over Culvert El_{BCS}(A_{NW}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Calculation: PROPOSED/POST-CONSTRUCTION CONSOLIDATION PRESSURE (Cross-sectional area of ES-LWA over Culvert foundation (A_{ES-LWA}) = \\ Cross-sectional area of ES-LWA over Culvert foundation (A_{ES-LWA}) = \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of VL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ \end{array}{}$	$ \begin{array}{r} 149.3 \\ $	psf sq ft	
$ \begin{array}{l} Cross-sectional area of NW fill over Culvert El_{BCS}(A_{NW}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Cross-sectional area of ES-LWA over Culvert foundation (A_{ES-LWA}) = \\ Cross-sectional area of ES-LWA over Culvert foundation (A_{ES-LWA}) = \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of VL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of VL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ Cross-sectional area of NW fill over Culvert foundation (A_{PR}) = \\ \end{array}$	$ \begin{array}{c} 149.3 \\ \begin{array}{c} \gamma_{EX} \times A_{NW} / (S + L_{FP}) \\ \hline \\ 814 \\ \end{array} \\ \hline \\ (S + L_{FP}) \times (t_{ES-LWA}) - A \\ \hline \\ 86.2 \\ \hline \\ t_{UL-FGA} \times (S + L_{FP}) \\ \hline \\ 37.9 \\ \hline \\ \\ t_{NW} \times (S + L_{FP}) \\ \hline \\ 22 \\ \hline \\ A_{ES-LWA} + A_{UL-FGA} + A_{NW} \\ \end{array} $	psf sq ft sq ft sq ft sq ft	
$ \begin{array}{l} Cross-sectional area of NW fill over Culvert El_{BCS} (A_{NW}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ \end{array} \\ \begin{array}{l} \end{array} \\ \begin{array}{l} \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \begin{array}{l} \hline \end{array} \\ \end{array} \\$		psf sq ft sq ft	
$ \begin{array}{l} Cross-sectional area of NW fill over Culvert El_{BCS}(A_{NW}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Cross-sectional area of ES-LWA over Culvert foundation (A_{ES-LWA}) = \\ Cross-sectional area of ES-LWA over Culvert foundation (A_{ES-LWA}) = \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of VL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of VL-FGA over Culvert foundation (A_{NW}) = \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ Total Cross-sectional area: All Proposed fills (A_{P_R}) = \\ Total Cross-sectional area: Streambed Material (A_{SB}) = \\ \end{array}$	$\begin{array}{c} 149.3 \\ \begin{array}{c} \gamma_{EX} \times A_{NW} / (S + L_{FP}) \\ \hline 814 \\ \end{array}$	psf sq ft sq ft sq ft sq ft sq ft	
$\begin{array}{l} Cross-sectional area of NW fill over Culvert El_{BCS} (A_{NW}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ \end{array}$		psf sq ft sq ft sq ft sq ft	
$ \begin{array}{l} Cross-sectional area of NW fill over Culvert El_{BCS} (A_{NW}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ \end{array} \\ \begin{array}{l} \hline \\ Cross-sectional area of ES-LWA over Culvert foundation (A_{ES-LWA}) = \\ Cross-sectional area of ES-LWA over Culvert foundation (A_{ES-LWA}) = \\ \hline \\ Cross-sectional area of ES-LWA over Culvert foundation (A_{UL-FGA}) = \\ \hline \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ \hline \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ \hline \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ \hline \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ \hline \\ Total Cross-sectional area: All Proposed fills (A_{PR}) = \\ \hline \\ Cross-sectional area: Streambed Material (A_{SB}) = \\ \hline \\ \\ \end{array} \\ \begin{array}{l} \hline \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	$\begin{array}{c} 149.3 \\ & \stackrel{\gamma}{}_{\text{EX}} \times A_{\text{NW}} / (\text{S} + \text{L}_{\text{FP}}) \\ & 814 \\ \end{array}$	psf sq ft sq ft sq ft sq ft sq ft sq ft	(Διμ.εςα + Δες.ιωα + Δυω)
$ \begin{array}{l} Cross-sectional area of NW fill over Culvert El_{BCS}(A_{NW}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ \end{array} \\ \begin{array}{l} \hline \\ Cross-sectional area of ES-LWA over Culvert foundation (A_{ES-LWA}) = \\ Cross-sectional area of ES-LWA over Culvert foundation (A_{U-FGA}) = \\ \hline \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{U-FGA}) = \\ \hline \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{U-FGA}) = \\ \hline \\ Cross-sectional area of VL-FGA over Culvert foundation (A_{U-FGA}) = \\ \hline \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ \hline \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ \hline \\ Total Cross-sectional area: All Proposed fills (A_{PR}) = \\ \hline \\ Cross-sectional area: Streambed Material (A_{SB}) = \\ \hline \\ \\ \end{array} \\ \begin{array}{l} Weighted Soil Unit Weight \\ Weighted Soil Density (ES-LWA, UL-FGA and NW Fills, P_{PR}) = (7) \end{array}$	$\begin{array}{c} 149.3 \\ \hline \\ & \gamma_{EX} \times A_{NW} / (S + L_{FP}) \\ \hline \\ & 814 \\ \hline \\ \hline \\ & (S + L_{FP}) \times (t_{ES-LWA}) - A \\ \hline \\ & 86.2 \\ \hline \\ & t_{UL-FGA} \times (S + L_{FP}) \\ \hline \\ & 37.9 \\ \hline \\ & t_{NW} \times (S + L_{FP}) \\ \hline \\ & 22 \\ \hline \\ & A_{ES-LWA} + A_{UL-FGA} + A_{NW} \\ \hline \\ & 146.1 \\ \hline \\ & t_{SB} \times S \\ \hline \\ & 36.0 \\ \hline \\ ' \\ & '_{UL-FGA} \times A_{UL-FGA} + '_{ES-LWA} \times A_{ES-LWA} + \end{array}$	psf sq ft sq ft sq ft sq ft sq ft sq ft sq ft	(Aul-fga + Aes-lwa + Anw)
$ \begin{array}{l} Cross-sectional area of NW fill over Culvert El_{BCS}(A_{NW}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ \hline \\ Calculation Proceeding Pre-Construction Consolidation Pressure (P_{EX}) = \\ \hline \\ Cross-sectional area of ES-LWA over Culvert foundation (A_{ES-LWA}) = \\ \hline \\ Cross-sectional area of ES-LWA over Culvert foundation (A_{ES-LWA}) = \\ \hline \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ \hline \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ \hline \\ Cross-sectional area of VL-FGA over Culvert foundation (A_{NW}) = \\ \hline \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ \hline \\ Total Cross-sectional area: All Proposed fills (A_{PR}) = \\ \hline \\ \\ Cross-sectional area: Streambed Material (A_{SB}) = \\ \hline \\ \\ Weighted Soil Density (ES-LWA, UL-FGA and NW Fills, r_{PR}) = \\ \hline \\ \\ Weighted Soil Density (ES-LWA, UL-FGA and NW Fills, r_{PR}) = \\ \end{array}$	$\begin{array}{c} 149.3 \\ & \stackrel{\gamma}{}_{\text{EX}} \times A_{\text{NW}} / (\text{S} + \text{L}_{\text{FP}}) \\ & 814 \\ \end{array}$	psf sq ft sq ft sq ft sq ft sq ft sq ft	(Aul-fga + Aes-lwa + Anw)
$ \begin{array}{l} Cross-sectional area of NW fill over Culvert El_{BCS}(A_{NW}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ Existing Pre-Consolidation Pressure (P_{EX}) = \\ \end{array} \\ \begin{array}{l} \hline \\ Cross-sectional area of ES-LWA over Culvert foundation (A_{ES-LWA}) = \\ Cross-sectional area of ES-LWA over Culvert foundation (A_{U-FGA}) = \\ \hline \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{U-FGA}) = \\ \hline \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{U-FGA}) = \\ \hline \\ Cross-sectional area of VL-FGA over Culvert foundation (A_{U-FGA}) = \\ \hline \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ \hline \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ \hline \\ Total Cross-sectional area: All Proposed fills (A_{PR}) = \\ \hline \\ Cross-sectional area: Streambed Material (A_{SB}) = \\ \hline \\ \\ \end{array} \\ \begin{array}{l} Weighted Soil Unit Weight \\ Weighted Soil Density (ES-LWA, UL-FGA and NW Fills, P_{PR}) = (7) \end{array}$	$\begin{array}{c} 149.3 \\ \hline \\ & \gamma_{EX} \times A_{NW} / (S + L_{FP}) \\ \hline \\ & 814 \\ \hline \\ \hline \\ & (S + L_{FP}) \times (t_{ES-LWA}) - A \\ \hline \\ & 86.2 \\ \hline \\ & t_{UL-FGA} \times (S + L_{FP}) \\ \hline \\ & 37.9 \\ \hline \\ & t_{NW} \times (S + L_{FP}) \\ \hline \\ & 22 \\ \hline \\ & A_{ES-LWA} + A_{UL-FGA} + A_{NW} \\ \hline \\ & 146.1 \\ \hline \\ & t_{SB} \times S \\ \hline \\ & 36.0 \\ \hline \\ ' \\ & '_{UL-FGA} \times A_{UL-FGA} + '_{ES-LWA} \times A_{ES-LWA} + \end{array}$	psf sq ft sq ft sq ft sq ft sq ft sq ft sq ft sq ft pcf	

781-278-3700 http://www.gza.com

CALCULATION: AREA C2A

PROJECT: Culvert Replacement - North Street over White Brook

 LOCATION:
 Agawam, MA

 CALCULATED BY
 MJO
 DATE
 4/4/2023

 CHECKED BY
 0
 DATE
 1/0/1900

OBJECTIVE: REFERENCE:

Evaluate the existing preconsolidation and proposed consolidation pressures **for proposed foundation section area C2A** of the North Street over White Brook proposed culvert replacement. See cover.

SSUMPTIONS AND INPUT			
SENERAL ASSUMPTIONS			
See assumptions on calculation package cover page.			
xisting/Pre-Construction Conditions at Proposed Culvert Area			
Approx. existing ground surface elevation/El. (El _{ex}) =	135.2	ft	Reference #5 of cover page
Existing Soil estimated unit weight ($_{EX}^{\gamma}$) =	120	ft	Reference #3 of cover page
-		_	
roposed Culvert Dimensions			
Culvert Shape = Culvert Span (S) =	ALSP 18'0" Span x 7'-8" Rise 18	ft	Reference #5 of cover page Reference #5 of cover page
Total Lateral footing projection beyond culvert span (L _{FP}) =	4	ft	See cover page
Rise (R) =	7.7	ft	Reference #5 of cover page
Area (A) =	104.5	sq ft	Reference #5 of cover page
hanned Materials			
roposed Materials Approx. proposed ground surface elevation/El. (El _{PR}) =	135.2	ft	Reference #5 of cover page
Proposed El. for bottom of crushed stone for foundation (El _{BCS}) =	114.2	ft	Reference #5 of cover page
Unit Weight: NW fill $(\gamma_{NW}) =$	125	pcf	See cover page, granular fill and asphalt
Unit Weight: ES-LWA fill $\left(\sum_{r_{s-1}WA} \right) =$	70	pcf	-
Unit Weight: UL-FGA fill ($\gamma_{\text{UL-FGA}}$) =	25	pcf	
Unit Weight: Streambed Material $\left(\frac{\gamma_{sh}}{s_{sh}}\right)$ =	100	pcf	
Unit Weight: Reinforced Lightweight Concrete $\begin{pmatrix} \gamma \\ \mu \end{pmatrix} =$	100	pcf	
Unit Weight: 3/4-inch Crushed Stone (γ_{CS}) =	115	pcf	
	115		
Thickness: NW fill (t _{NW}) =	1.5	ft	See cover page
	8.7	ft	See cover page
	8.8	ft	See cover page
Thickness: Streambed Material (t _{sb}) =	2	ft	See cover page
Thickness: Reinforced Lightweight Concrete (t _{LWC}) =	1	ft	See cover page
Thickness: $3/4$ -inch Crushed Stone (t_{cs}) =	1	ft	See cover page
ALCULATION: EXISTING/PRE-CONSTRUCTION PRE-CONSOLIDATION PRESS			
Existing Soil thickness (t_{rx}) =	El _{EX} - El _{BCS}	ft	
Existing Soil thickness (t _{Fx}) =	21	-ft	
Cross-sectional area of NW fill over Culvert El _{BCS} (A _{NW}) =	t _{EX} x (S + L _{FP})		
Cross-sectional area of NW fill over Culvert El _{BCS} (A _{NW}) =	462	sq ft	
Existing Pre-Consolidation Pressure (P _{Fx}) =	$\gamma_{\rm EX} \times A_{\rm NW} / (S + L_{\rm FP})$	_ ·	
Existing Pre-Consolidation Pressure (P _{EX}) =	2520	 psf	
ALCULATION: PROPOSED/POST-CONSTRUCTION CONSOLIDATION PRESSU			
Cross-sectional area of ES-LWA over Culvert foundation (A _{ES-LWA}) =	(S + L _{FP}) x (t _{ES-LWA}) - A	_	
Cross-sectional area of ES-LWA over Culvert foundation (A _{ES-LWA}) =	86.2	sq ft	
Cross-sectional area of UL-FGA over Culvert foundation $(A_{UL-FGA}) =$	$t_{UL-FGA} \times (S + L_{FP})$		
Cross-sectional area of UL-FGA over Culvert foundation $(A_{UL-FGA}) = $	194.3	sq ft	
Cross-sectional area of NW fill over Culvert foundation $(A_{NW}) =$	t _{NW} x (S + L _{FP})		
Cross-sectional area of NW fill over Culvert foundation $(A_{NW}) =$	33	sq ft	
Total Cross-sectional area: All Proposed fills $(A_{PR}) =$	A _{ES-LWA} + A _{UL-FGA} + A _{NW}		
Total Cross-sectional area: All Proposed fills $(A_{PR}) =$	313.5	sq ft	
Cross-sectional area: Streambed Material $(A_{SB}) = -$ Cross-sectional area: Streambed Material $(A_{SB}) = -$	t _{SB} x S	sa ft	
Cross-sectional area: Streambed Material (A _{SB}) =	36.0	sq ft	
Weighted Soil Density (ES-LWA, UL-FGA and NW Fills, γ_{PR}) = (¹ UL-FGA X AUL-FGA + ¹ ES-LWA X AES-LWA +	^r NW X ANW),	/(Aul-fga + Aes-lwa + Anw)
Weighted Soil Density (ES-LWA, UL-FGA and NW Fills, r_{PR}) =	47.9	pcf	
ost-Construction Consolidation Pressure			
Proposed / Post-Consolidation Pressure (P _{PR}) =	$(\gamma_{PR} \times A_{PR} + \gamma_{SB} \times A_{SB}) / (S + L_{FF})$	$+ \gamma_{LWC} \times t_L$	$wc + \gamma_{cs} x t_{cs}$
Proposed / Post-Consolidation Pressure (P _{PR}) =	1061	psf	

781-278-3700 http://www.gza.com

CALCULATION: AREA C3A

PROJECT: Culvert Replacement - North Street over White Brook

LOCATION: Agawam, MA CALCULATED BY MJO DATE 4/4/2023 CHECKED BY 0 DATE 1/0/1900

OBJECTIVE: REFERENCE:

Evaluate the existing preconsolidation and proposed consolidation pressures **for proposed foundation section area C3A** of the North Street over White Brook proposed culvert replacement. See cover.

ASSUMPTIONS AND INPUT GENERAL ASSUMPTIONS - See assumptions on calculation package cover page. Existing/Pre-Construction Conditions at Proposed Culvert Area Approx. existing ground surface elevation/El. (EI_{EX}) = 123 ft Reference #5 of cover page Existing Soil estimated unit weight (γ_{EX}) = 120 Reference #3 of cover page ft **Proposed Culvert Dimensions** ALSP 18'0" Span x 7'-8" Rise Culvert Shape = Reference #5 of cover page Culvert Span (S) = 18 ft Reference #5 of cover page Total Lateral footing projection beyond culvert span (L_{FP}) = 4 ft See cover page Rise (R) = 7.7 ft Reference #5 of cover page Area (A) = 104.5 sq ft Reference #5 of cover page **Proposed Materials** Approx. proposed ground surface elevation/El. (El_{PR}) = 131.3 ft Reference #5 of cover page Proposed El. for bottom of crushed stone for foundation (El_{BCS}) = 112.2 ft Reference #5 of cover page Unit Weight: NW fill (γ_{NW}) = 118 See cover page, topsoil pcf Unit Weight: ES-LWA fill ($^{\gamma}_{\text{ES-LWA}}$) = 70 pcf Unit Weight: UL-FGA fill ($^{\gamma}_{\text{UL-FGA}}$) = 25 pcf Unit Weight: Streambed Material ($_{SB}^{\gamma}$) = 100 pcf Unit Weight: Reinforced Lightweight Concrete (γ_{LWC}) = 100 pcf Unit Weight: 3/4-inch Crushed Stone (γ_{CS}) = 115 pcf Thickness: NW fill (t_{NW}) = ft See cover page 1 Thickness: ES-LWA fill (t_{ES-LWA}) = 8.7 ft See cover page Thickness: UL-FGA fill (t_{UL-FGA}) = ft 7.4 See cover page Thickness: Streambed Material (t_{sp}) = ft 2 See cover page Thickness: Reinforced Lightweight Concrete (t_{LWC}) = ft See cover page 1 Thickness: 3/4-inch Crushed Stone (t_{cs}) = ft See cover page 1 CALCULATION: EXISTING/PRE-CONSTRUCTION PRE-CONSOLIDATION PRESSURE El_EX - El_BCS Existing Soil thickness $(t_{EX}) =$ ft Existing Soil thickness (t_{EX}) = 10.8 ft Cross-sectional area of NW fill over Culvert EI_{BCS} (A_{NW}) = $t_{EX} \times (S + L_{FP})$ Cross-sectional area of NW fill over Culvert EI_{BCS} (A_{NW}) = 237.6 sq ft Existing Pre-Consolidation Pressure (P_{EX}) = $V_{EX} \times A_{NW} / (S + L_{FP})$ Existing Pre-Consolidation Pressure (P_{EX}) = 1296 psf CALCULATION: PROPOSED/POST-CONSTRUCTION CONSOLIDATION PRESSURE Cross-sectional area of ES-LWA over Culvert foundation (A_{ES-LWA}) = (S + L_{FP}) x (t_{ES-LWA}) - A Cross-sectional area of ES-LWA over Culvert foundation (A_{ES-LWA}) = 86.2 sq ft Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = t_{UL-FGA} x (S + L_{FP}) Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = 163.5 sq ft Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = $t_{NW} x (S + L_{FP})$ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = 22 sq ft Total Cross-sectional area: All Proposed fills (A_{PR}) = A_{ES-LWA} + A_{UL-FGA} + A_{NW} Total Cross-sectional area: All Proposed fills (A_{PR}) = 271.7 sq ft Cross-sectional area: Streambed Material (A_{SB}) = t_{sb} x S Cross-sectional area: Streambed Material (A_{SB}) = 36.0 sq ft Weighted Soil Unit Weight Weighted Soil Density (ES-LWA, UL-FGA and NW Fills, γ_{PR}) = ('uL-FGA X AUL-FGA +'ES-LWA X AES-LWA + 'NW X ANW)/(AUL-FGA + AES-LWA + ANW) Weighted Soil Density (ES-LWA, UL-FGA and NW Fills, ^r_{PR}) = 46.8 pcf **Post-Construction Consolidation Pressure** Proposed / Post-Consolidation Pressure (P_{PR}) = $\frac{\left(\frac{\gamma_{PR}}{P_{PR}} \times A_{PR} + \frac{\gamma_{SB}}{P_{SB}} \times A_{SB}\right) / (S + L_{FP}) + \frac{\gamma_{LWC}}{L_{LWC}} \times t_{LWC} + \frac{\gamma_{CS}}{C_{SS}} \times t_{CS}}{p_{ST}}$

781-278-3700 http://www.gza.com

CALCULATION: AREA C3B

PROJECT: Culvert Replacement - North Street over White Brook

 LOCATION:
 Agawam, MA

 CALCULATED BY
 MJO
 DATE
 4/4/2023

 CHECKED BY
 0
 DATE
 1/0/1900

OBJECTIVE:

Evaluate the existing preconsolidation and proposed consolidation pressures **for proposed foundation section area C3B** of the North Street over White Brook proposed culvert replacement. See cover.

	C3B of the North Street over Wh See cover.	ite Brook p	roposed culvert replacement.
ASSUMPTIONS AND INPUT			
GENERAL ASSUMPTIONS			
- See assumptions on calculation package cover page.			
Existing/Pre-Construction Conditions at Proposed Culvert Area			
Approx. existing ground surface elevation/El. $(El_{EX}) =$	115	ft	Reference #5 of cover page
Existing Soil estimated unit weight ($\gamma_{\rm EX}$) =	120	ft	Reference #3 of cover page
Proposed Culvert Dimensions			
Culvert Shape =	ALSP 18'0" Span x 7'-8" Rise		Reference #5 of cover page
Culvert Span (S) =	18	ft	Reference #5 of cover page
Total Lateral footing projection beyond culvert span (L_{FP}) =	4	ft	See cover page
Rise (R) = _ Area (A) =	7.7 104.5	ft sq ft	Reference #5 of cover page Reference #5 of cover page
Proposed Materials	124		
Approx. proposed ground surface elevation/El. $(El_{PR}) =$	124	ft	Reference #5 of cover page
Proposed El. for bottom of crushed stone for foundation (EI_{BCS}) =	111.5	ft	Reference #5 of cover page
Unit Weight: NW fill $\binom{\gamma}{NW}$ =	118	pcf	See cover page, topsoil
Unit Weight: ES-LWA fill $\left(\sum_{es-LWA} \right) =$	70	pcf	-
Unit Weight: UL-FGA fill (^V _{UL-FGA}) =	25	pcf	-
Unit Weight: Streambed Material $(_{SB}^{r})$ =	100	pcf	-
Unit Weight: Reinforced Lightweight Concrete (γ_{LWC}) =	100	pcf	-
Unit Weight: 3/4-inch Crushed Stone (γ_{cs}) =	115	pcf	
Thickness: NW fill (t _{NW}) =	1.3	ft	See cover page
	9.2	ft	See cover page
	0.0	ft	See cover page
Thickness: Streambed Material (t _{sb}) =	2	ft	See cover page
Thickness: Reinforced Lightweight Concrete (t _{LWC}) =	1	ft	See cover page
Thickness: $3/4$ -inch Crushed Stone (t_{CS}) =	1	ft	See cover page
CALCULATION: EXISTING/PRE-CONSTRUCTION PRE-CONSOLIDATION PRES	SURF		
Existing Soil thickness (t_{rx}) =	El _{EX} - El _{BCS}	ft	
Existing Soil thickness (t _{ex}) =	3.5	ft	
Cross-sectional area of NW fill over Culvert El _{BCS} (A _{NW}) =	t _{EX} x (S + L _{FP})		
Cross-sectional area of NW fill over Culvert El _{BCS} (A _{NW}) =	77	 sq ft	
 Existing Pre-Consolidation Pressure (P_{EX}) = 	$\gamma_{EX} \times A_{NW} / (S + L_{FP})$		
Existing Pre-Consolidation Pressure (P _{EX})	420	psf	
CALCULATION: PROPOSED/POST-CONSTRUCTION CONSOLIDATION PRESS	URE		
Cross-sectional area of ES-LWA over Culvert foundation (A_{ES-LWA}) =	(S + L _{FP}) x (t _{ES-LWA}) - A		
Cross-sectional area of ES-LWA over Culvert foundation (A _{ES-LWA}) =	97.2	sq ft	
Cross-sectional area of UL-FGA over Culvert foundation $(A_{UL-FGA}) =$	t _{UL-FGA} x (S + L _{FP})		
Cross-sectional area of UL-FGA over Culvert foundation (A _{UL-FGA}) =	0.7	sq ft	
Cross-sectional area of NW fill over Culvert foundation (A_{NW}) =	$t_{NW} \times (S + L_{FP})$		
Cross-sectional area of NW fill over Culvert foundation $(A_{NW}) =$	28.6	sq ft	
Total Cross-sectional area: All Proposed fills $(A_{PR}) =$	$A_{ES-LWA} + A_{UL-FGA} + A_{NW}$		
Total Cross-sectional area: All Proposed fills $(A_{PR}) =$	126.5	sq ft	
Cross-sectional area: Streambed Material $(A_{SB}) = $	t _{SB} x S		
Cross-sectional area: Streambed Material $(A_{SB}) = $	36.0	sq ft	
Weighted Soil Unit Weight Weighted Soil Density (ES-LWA, UL-FGA and NW Fills, γ_{PR}) = (¹⁷ UL-FGA X AUL-FGA + ⁷ ES-LWA X AES-LWA +	′ NW X ANW)/	/(Aul-fga + Aes-lwa + Anw)
Weighted Soil Density (ES-LWA, UL-FGA and NW Fills, r_{PR}) =	80.6	pcf	
– Post-Construction Consolidation Pressure			
Proposed / Post-Consolidation Pressure (P _{PR}) =	$({}^{\gamma}_{PR} x A_{PR} + {}^{\gamma}_{SB} x A_{SB}) / (S + L_{FI})$ 842	$+ \gamma_{LWC} \times t_L$	$wc + \gamma_{cs} \times t_{cs}$
Proposed / Post-Consolidation Pressure (P _{PR}) =	842	psf	

781-278-3700 http://www.gza.com

CALCULATION: AREA C3C

PROJECT: Culvert Replacement - North Street over White Brook
LOCATION: Agawam, MA

 LOCATION:
 Agawath, MA

 CALCULATED BY
 MJO
 DATE
 4/4/2023

 CHECKED BY
 0
 DATE
 1/0/1900

OBJECTIVE: REFERENCE: Evaluate the existing preconsolidation and proposed consolidation pressures for proposed foundation section area C3C of the North Street over White Brook proposed culvert replacement.

See cover.

GENERAL ASSUMPTIONS			
- See assumptions on calculation package cover page.			
Existing/Pre-Construction Conditions at Proposed Culvert Area			
Approx. existing ground surface elevation/El. $(El_{Fx}) =$	119.8	ft	Reference #5 of cover page
Existing Soil estimated unit weight $(\gamma_{FX}) =$	120	ft	Reference #3 of cover page
		_	
Proposed Culvert Dimensions			
Culvert Shape =	ALSP 18'0" Span x 7'-8" Rise 18		Reference #5 of cover page
Culvert Span (S) = Total Lateral footing projection beyond culvert span (L _{FP}) =	4	ft ft	Reference #5 of cover page See cover page
Rise (R) =	7.7	ft	Reference #5 of cover page
Area (A) =	104.5	sq ft	Reference #5 of cover page
Proposed Materials Approx. proposed ground surface elevation/El. (El _{PR}) =	128.6	ft	Reference #5 of cover page
Proposed El. for bottom of crushed stone for foundation (El _{RCS}) =	111.9	't	Reference #5 of cover page
Unit Weight: NW fill $\left(\frac{\gamma_{\text{NW}}}{\gamma_{\text{NW}}}\right)$	111.5	pcf	See cover page, topsoil
Unit Weight: ES-LWA fill $({}^{\gamma}_{\text{ES-LWA}}) =$	70		
		pcf	-
Unit Weight: UL-FGA fill (⁷ _{UL-FGA}) = Unit Weight: Streambed Material (⁷ _{SB}) =	25	pcf	-
	100	pcf	-
Unit Weight: Reinforced Lightweight Concrete $\begin{pmatrix} \gamma \\ LWC \end{pmatrix}$ =	100	pcf	-
Unit Weight: 3/4-inch Crushed Stone ($_{CS}^{\gamma}$) =	115	pcf	-
Thickness: NW fill (t _{NW}) =	1.3	ft	See cover page
Thickness: ES-LWA fill (t _{ES-LWA}) =	9.2	ft	See cover page
Thickness: UL-FGA fill (t _{UL-FGA}) =	4.2	ft	See cover page
Thickness: Streambed Material (t _{sB}) =	2	ft	See cover page
Thickness: Reinforced Lightweight Concrete (t _{LWC}) =	1	ft	See cover page
Thickness: 3/4-inch Crushed Stone (t _{cs}) =	1	ft	See cover page
CALCULATION: EXISTING/PRE-CONSTRUCTION PRE-CONSOLIDATION PRESS Existing Soil thickness (t _{rx}) =	El _{ex} - El _{BCS}	ft	
Existing Soli thickness $(t_{EX}) =$	7.9	ft	
Cross-sectional area of NW fill over Culvert El _{BCS} (A _{NW}) =	t _{EX} x (S + L _{FP})	_"	
Cross-sectional area of NW fill over Culvert El _{BCS} (A _{NW}) =	173.6	sq ft	
Existing Pre-Consolidation Pressure $(P_{Fx}) =$	$\gamma_{EX} \times A_{NW} / (S + L_{FP})$		
Existing Pre-Consolidation Pressure (P _{EX}) =	946.7	psf	
CALCULATION: PROPOSED/POST-CONSTRUCTION CONSOLIDATION PRESSU			
Cross-sectional area of ES-LWA over Culvert foundation (A _{ES-LWA}) =	(S + L _{FP}) x (t _{ES-LWA}) - A	_	
	97.2	sq ft	
Cross-sectional area of ES-LWA over Culvert foundation $(A_{ES-LWA}) =$			
Cross-sectional area of UL-FGA over Culvert foundation (A _{UL-FGA}) =	$t_{UL-FGA} \times (S + L_{FP})$	_	
Cross-sectional area of UL-FGA over Culvert foundation (A _{UL-FGA}) = 	t _{UL-FGA} x (S + L _{FP}) 92.6	sq ft	
$ \begin{array}{l} Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ \end{array} $	t _{UL-FGA} x (S + L _{FP}) 92.6 t _{NW} x (S + L _{FP})	_	
Cross-sectional area of UL-FGA over Culvert foundation (A _{UL-FGA}) = Cross-sectional area of UL-FGA over Culvert foundation (A _{UL-FGA}) = Cross-sectional area of NW fill over Culvert foundation (A _{NW}) = Cross-sectional area of NW fill over Culvert foundation (A _{NW}) =	t _{UL-FGA} x (S + L _{FP}) 92.6 t _{NW} x (S + L _{FP}) 28.6	sq ft sq ft	
$ \begin{array}{l} Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ Total Cross-sectional area: All Proposed fills (A_{PR}) = \\ \end{array} $	$\begin{array}{c} t_{UL+FGA} x (S + L_{FP}) \\ & 92.6 \\ & t_{NW} x (S + L_{FP}) \\ & 28.6 \\ & A_{ES-LWA} + A_{UL+FGA} + A_{NW} \end{array}$	sq ft	
$ \begin{array}{l} Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ Total Cross-sectional area: All Proposed fills (A_{PR}) = \\ Total Cross-sectional area: All Proposed fills (A_{PR}) = \\ \end{array} $	$\begin{array}{c} t_{UL+FGA} x (S + L_{FP}) \\ 92.6 \\ t_{NW} x (S + L_{FP}) \\ 28.6 \\ A_{ES-LWA} + A_{UL+FGA} + A_{NW} \\ 218.4 \end{array}$	_	
$ \begin{array}{l} Cross-sectional area of UL-FGA over Culvert foundation (A_{UL+FGA}) = \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{UL+FGA}) = \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ Total Cross-sectional area: All Proposed fills (A_{PR}) = \\ Total Cross-sectional area: Streambed Material (A_{SB}) = \\ \end{array} $	$\begin{array}{c} t_{UL+FGA} x (S+L_{FP}) \\ 92.6 \\ t_{NW} x (S+L_{FP}) \\ 28.6 \\ A_{ES-LWA} + A_{UL+FGA} + A_{NW} \\ 218.4 \\ t_{SB} x S \end{array}$	sq ft sq ft	
$ \begin{array}{l} Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ Total Cross-sectional area: All Proposed fills (A_{PR}) = \\ Total Cross-sectional area: Streambed Material (A_{SB}) = \\ Cross-sectional area: Streambed Material (A_{SB}) = \\ \end{array} $	$\begin{array}{c} t_{UL+FGA} x (S + L_{FP}) \\ 92.6 \\ t_{NW} x (S + L_{FP}) \\ 28.6 \\ A_{ES-LWA} + A_{UL+FGA} + A_{NW} \\ 218.4 \end{array}$	sq ft	
$ \begin{array}{l} Cross-sectional area of UL-FGA over Culvert foundation (A_{UL+FGA}) = \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{UL+FGA}) = \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ Total Cross-sectional area: All Proposed fills (A_{PR}) = \\ Total Cross-sectional area: Streambed Material (A_{SB}) = \\ Cross-sectional area: Streambed Material (A_{SB}) = \\ \end{array} $	$\begin{array}{c} t_{UL+FGA} x(S+L_{FP}) \\ \hline 92.6 \\ t_{NW} x(S+L_{FP}) \\ \hline 28.6 \\ A_{E5-LWA} + A_{UL-FGA} + A_{NW} \\ \hline 218.4 \\ t_{SB} xS \\ \hline 36.0 \\ \end{array}$		/(Aulfga + Aeslwa + Anw)
Cross-sectional area of UL-FGA over Culvert foundation (A _{UL-FGA}) = Cross-sectional area of UL-FGA over Culvert foundation (A _{UL-FGA}) = Cross-sectional area of NW fill over Culvert foundation (A _{NW}) = Cross-sectional area of NW fill over Culvert foundation (A _{NW}) = Total Cross-sectional area: All Proposed fills (A _{PR}) = Total Cross-sectional area: All Proposed fills (A _{PR}) = Cross-sectional area: Streambed Material (A _{SB}) = Cross-sectional Area: Streambed Material (A_	$\begin{array}{c} t_{UL+FGA} x(S+L_{FP}) \\ \hline 92.6 \\ t_{NW} x(S+L_{FP}) \\ \hline 28.6 \\ A_{E5-LWA} + A_{UL-FGA} + A_{NW} \\ \hline 218.4 \\ t_{SB} xS \\ \hline 36.0 \\ \end{array}$		/(Aul-fga + Aes-lwa + Anw)
$ \begin{array}{l} Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of UL-FGA over Culvert foundation (A_{UL-FGA}) = \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ Cross-sectional area of NW fill over Culvert foundation (A_{NW}) = \\ Total Cross-sectional area: All Proposed fills (A_{PR}) = \\ Total Cross-sectional area: All Proposed fills (A_{PR}) = \\ Cross-sectional area: Streambed Material (A_{SB}) = \\ Cross-sectional area: Streambed Material (A_{SB}) = \\ Cross-sectional area: Streambed Material (A_{SB}) = \\ Weighted Soil Unit Weight \\ Weighted Soil Density (ES-LWA, UL-FGA and NW Fills, {}^{P}_{PR}) = ('0)$	$\begin{array}{c} t_{UL+FGA} \times (S + L_{FP}) \\ 92.6 \\ t_{NW} \times (S + L_{FP}) \\ 28.6 \\ A_{ES-LWA} + A_{UL-FGA} + A_{NW} \\ 218.4 \\ t_{SB} \times S \\ 36.0 \\ \\ \text{UL-FGA} \times A\text{UL-FGA} +^{\ell} \text{ES-LWA} \times \text{AES-LWA} + \end{array}$	sq ft sq ft sq ft sq ft	/(Aulfga + Aesilwa + Anw)

Settlement Estimate - North Street over White Brook Proposed Culvert Foundation

Project:	Culvert Rep	acement - North Street over White	e Brook		
Location:	Agawam, M	A			
Calculated	By:	MJO	Date:	4/5/2023	
Checked By	y:	MAR	Date:	4/12/2023	

Objective: Estimate settlement of the assumed proposed mat foundation using estimated dead loads associated with the North Street over White Brook replacement culvert construction using the methodology in general accordance with MassDOT LRFD Bridge Design Manual, which references the AASHTO LRFD Bridge Design Specification, 9th Edition (2020).

Approach: Estimated primary consolidation settlement for a shallow foundation bearing on a compressible fine-grained Connecticut Valley Varved Clay (CVVC) soil stratum in general accordance with AASHTO Section 10.6.2.4.3.

References: 1) MassDOT Bridge Design Manual, 2013 with 2020 updates.

2) AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020.

3) Subsurface conditions based on recent borings BB-01 through BB-03 completed from December 28 to 30, 2022, by Seaboard Drilling, Inc. of Springfield, Massachusetts, observed and logged by GZA. Subsurface conditions from the recent borings supplemented by subsurface conditions based on previous borings WB-1 and WB-2 completed on November 12, 2020, by Seaboard Drilling, Inc. of Springfield, Massachusetts, observed and logged by O'Rielly, Talbot & Okun.

4) Footing Reaction & Consolidation Pressure Calculations prepared by GZA dated April, 2023.
5) Degroot, D.J., & Lutenegger, A.J. (2003). "Engineering Properties of Connecticut Valley Varved Clay."
6) GZA calculations of CVVC clay consolidation parameters based on laboratory oedometer results published in Reference #5.

7) GZA Figures comparing Atterberg Limit laboratory results from samples obtained from the borings in Reference #3 to published data from Reference #5 (attached to GZA's Bearing Capacity Calculation packet, included in this report).

Subsurface Conditions:As depicted in the attached plans in Reference #4, the proposed bottom of culvert foundation elevations for the
proposed culvert range from between approximately 10 and 21 feet below proposed grades (corresponding to
approximate El. range 112.5 to 118). Based on Reference #3, subsurface conditions below the proposed bottom of
culvert foundation grades include approximately 17 to 34.5 feet of CVVC overlying glacial till and bedrock.

Analysis Assumptions: 1) Culvert dimensions and location as depicted in Appendix G Attachments 1 and 2. 2) Culvert foundation assumed to be a 22-foot-wide continuous mat foundation as depicted in Appendix G Attachment

2.

3) Fill materials (i.e. normal-weight fill, expanded shale lightweight aggregate fill, and ultra-light foamed glass aggregate) over the culvert and culvert foundation are as described in Reference #4.

4) Raise-in-Grade areas and thicknesses are per the attached Figure G.4-1 by GZA, which are based on an evaluation of existing vs. proposed grades from the preliminary design plans. Also refer to GZA's Bearing Capacity calculation dated 3/30/2023.

5) Consolidation parameters for the CVVC stratum at this site as calculated in Reference #7.

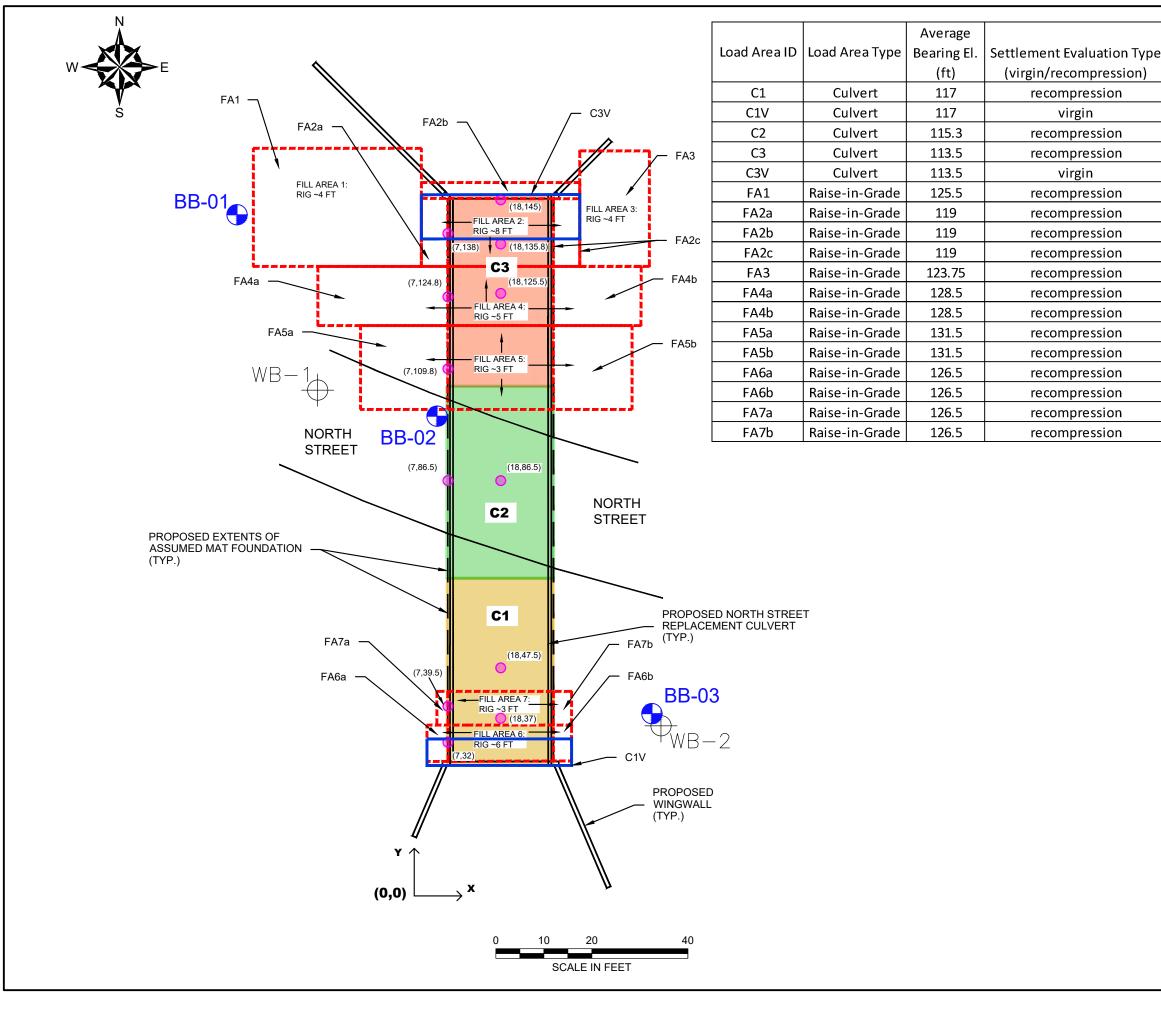
6) Virgin compression settlement is calculated only for the portion of the culvert and fill surcharge pressures that result in a net increase in effective stress over existing conditions (areas C1V and C3V only). Recompression settlement is calculated for the portion of culvert and fill surcharge pressures that do not cause a net increase in effective stress over existing conditions.

Attachments: Calculations Summary Tables by GZA, Settlement Evaluation Plan by GZA, Calculations determining clay consolidation parameters from published documents,

LRFD Settlement Evaluation - North Street over White Brook Proposed Culvert Foundation

Project:	Culvert Replacement	 North Street over White Brook
Location:	Agawam, MA	
Assumptions:	See Cover	
References:	See Cover	

	SETTLEMENT EVALUATION RESULTS: CULVERT FOUNDATION LOADS																					
		Weighted Unit		Assumed Fdn: 1	L' x 22' wide mat		Load Area Coordinates				Settlements Computed at the indicated grid coordinate points using SAF-I for Culvert Mat Slab Loads											
	Case	Wt, γ	Soil Height,	Area Avg. B.P.	Area Avg. B.P.			Jorumates		Avg. Bearing EL.						(inch	nes)					
Load Area No.		(pcf)	H (ft)	from DL (ksf)	from DL (psf)	SW (x)	SW (y)	NE (x)	NE (y)	(ft)	(18, 125.5)	(18,135.8)	(18, 145)	(7, 109.8)	(7, 124.8)	(7, 138)	(18, 37)	(18, 47.5)	(7, 32)	(7, 39.5)	(18,86.5)	(7,86.5)
C1 (Inlet)	HP, recomp.	45	19	0.51	510	7	28	29	67	117							0.76	0.81	0.41	0.48		
CI (iniet)	LP, recomp.	79	19	0.51	510	/	20	29	07	117							0.70	0.81	0.41	0.40		
C1V (Inlet)	Virgin	65.6	11.4	0.09	90	7	32	33	37	117	7 0.34 0.05 0.19 0.11											
C2 (Arch)	HP, recomp.	45	19.5	0.49	490	7	67	29	106	115.3	0.02			0.11	0.02		0.01	0.02			0.62	0.37
CZ (AICII)	LP, recomp.	47	18.5	0.49	490	/	67	29	100	115.5	0.02			0.11	0.02		0.01	0.02			0.62	0.57
C3 (Outlet)	HP, recomp.	44.8	18.5	0.54	540	7	106	29	145	113.5	0.38	0.37	0.2	0.18	0.21	0.2						
CS (Outlet)	LP, recomp.	76	10	0.54	540	/	100	29	145	115.5	0.58	0.57	0.2	0.18	0.21	0.2						
C3V (Outlet)	Virgin	57.2	14.7	0.21	211	7	135.8	34.5	145	113.5	1.06	1.03	0.54	0.49	0.57	0.53						
Avg. Uni	t Weight: C1 (pcf) =	62																				


Avg. Unit Weight: C3 (pcf) = 60

	SETTLEMENT EVALUATION RESULTS: RAISE-IN-GRADE (RIG) LOADS																					
	Weighted Unit Wt,	Н	Avg. B.P.		Load Area Coordi	inates		Prop. EL.	Prop. EL.		Settlements Computed at the indicated grid coordinate points using SAF-I for RIG Fill Are					RIG Fill Area	(FA) Loads					
	γ (pcf)	(ft)	(psf)		20007.000010	inates		High (ft)	Low (ft)	Avg.						(incl	nes)					
Area	LW Fills	(11)	(psi)	SW (x)	SW (y)	NE (x)	NE (y)	l light (it)		Bearing EL. (ft)	(18, 125.5)	(18,135.8)	(18, 145)	(7, 109.8)	(7, 124.8)	(7, 138)	(18, 37)	(18, 47.5)	(7, 32)	(7, 39.5)	(18,86.5)	(7,86.5)
FA1	60	4	242	-33.5	131	1.5	156	136	123	125.5	0.01	0.01	0.01	0	0.02	0.05	0	0	0	0	0	0
FA2a	60	8	483	1.5	131	7	145	131	123	119	0	0.01	0.01	0	0.02	0.18	0	0	0	0	0	0
FA2b	60	8	483	1.5	145	34.5	149	131	123	119	0	0.02	0.17	0	0	0.03	0	0	0	0	0	0
FA2c	60	8	483	29	131	34.5	145	131	123	119	0	0.01	0.01	0	0	0	0	0	0	0	0	0
FA3	60	4	242	34.5	131	49	156	132.5	123	123.75	0	0.01	0.01	0	0	0	0	0	0	0	0	0
FA4a	60	5	302	-20	118.5	7	131	136	131	128.5	0.01	0.01	0.02	0	0	0	0	0	0	0	0	0
FA4b	60	5	302	29	118.5	47	131	136	131	128.5	0.02	0.01	0.01	0	0	0	0	0	0	0	0	0
FA5a	60	3	181	-11	101	7	118.5	136	133	131.5	0.01	0	0	0.05	0.02	0.01	0	0	0	0	0.01	0.01
FA5b	60	3	181	29	101	45	118.5	136	133	131.5	0.01	0	0	0	0	0	0	0	0	0	0.01	0
FA6a	62	6	371	2.8	28	7	36	131	129	126.5												
FA6b	62	6	371	29	28	33	36	131	129	126.5	1		(`			0.04	0.02	0.09	0.07	0	
FA7a	62	3	186	3	36	7	43	133	131	126.5	1			,			0.04	0.02	0.09	0.07	0	
FA7b	62	3	186	29	36	33	43	133	131	126.5												
	Settlement Totals: Culvert Foundation Load and RIG Load Areas (inches):										1.46		0.74	0.78	0.8	0.73		0.88	0.6	0.59	0.62	0.37

1) Acronyms/Shorthand: HP = High Point, LP = Low Point, recomp. = recompression, Fdn = foundation, DL = dead load, Avg. = Average, B.P. = bearing pressure, pcf = pounds per cubic foot, psf = pounds per square foot, ft = foot, EL. = Elevation (referenced to the North American Vertical Datum of 1988), Wt = Notes: weight, SW = southwest, NE = northeast, FA = Fill Area (for raise-in-grade loads), LW = lightweight, Prop. = Proposed.

Calculated By:	MJO	Date:	4/5/2023
Checked By:	MAR	Date:	4/12/2023

LEGEND:

BB-01

-⊕-₩B-2 OBSERVED AND LOGGED BY GZA PERSONNEL. BORING PERFORMED BY SEABOARD DRILLING, INC. OF SPRINGFIELD, MASSACHUSETTS ON NOVEMBER 12, 2020. OBSERVED AND LOGGED BY O'REILLY, TALBOT & OKUN ASSOCIATES, INC. (OTO).

DRILLING, INC. OF SPRINGFIELD, MASSACHUSETTS

TEST BORING PERFORMED BY SEABOARD

SETTLEMENT EVALUATION POINT

ON DECEMBER 28 TO 30, 2022.

SETTLEMENT EVALUATION AREA AT PROPOSED CULVERT

NOTES:

- 1. BASE MAP DEVELOPED FROM AN AUTOCAD DRAWING FILE PREPARED BY WOODARD & CURRAN (W&C) ENTITLED "190299K_NORTH STREET", TRANSMITTED TO GZA ON JANUARY 10, 2023.
- 2. PROPOSED CULVERT, HEADWALL, WINGWALL, AND NORTH STREET LOCATIONS WERE APPROXIMATED FROM ELECTRONIC IMAGE FILE "NORTH STREET 60% DESIGN DRAWINGS" OF DRAWING C-102, SHEET 5 OF 8, TITLED SITE LAYOUT PLAN, PREPARED BY W&C, ORIGINAL SCALE 1"=20', DATED OCTOBER, 2022, AND TRANSMITTED TO GZA ON OCTOBER 28, 2022.
- 3. THE BB-SERIES EXPLORATION LOCATIONS ARE BASED ON TAPED MEASUREMENTS AND/OR LINE OF SIGHT FROM EXISTING SITE FEATURES. THE DATA SHOULD BE CONSIDERED ACCURATE ONLY TO THE DEGREE IMPLIED BY THE METHOD USED. BORING LOCATIONS SHOWN HEREIN SHOULD BE CONSIDERED APPROXIMATE.
- 4. THE WB-SERIES EXPLORATION LOCATIONS WERE OBTAINED FROM THE BASE MAP FILE REFERENCED IN NOTE #1.
- 5. THE PROPOSED CULVERT FOUNDATION AREA WAS APPROXIMATED BASED ON AN ASSUMED 22-FOOT-WIDE MAT FOUNDATION.
- 6. THE FILL AREAS AND RAISE-IN-GRADE (RIG) AMOUNTS WERE APPROXIMATED BASED ON EXISTING AND PROPOSED TOPOGRAPHY SHOWN ON A PRELIMINARY DESIGN DRAWING PREPARED BY W&C ENTITLED "SITE LAYOUT PLAN," DATED FEBRUARY 16, 2023.
- 7. REFER TO THE GZA SETTLEMENT EVALUATION CALCULATION DATED 4/11/2023 FOR MORE INFORMATION ABOUT THE EMBEDDED TABLE.

UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S CUENT OR THE CLEART'S DESIGNATED. REPRESENTATIVE FOR THE SPECIFIC PROJECT AND LOCATION IDENTIFIED ON THE DRAWING SHALL NOT BE TRANSFERRED. REUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPORSEWITHOUT THE PRIOR WRITTEN VERTICE OF MODIFICATION TO THE DRAWING BY THE CLEART OR OTHERS, WITHOUT THE PRIOR WRITTEN PROPOSED CULVERT REPLACEMENT NORTH STREET OVER WHITE BROOK AGAWAM, MASSACHUSETTS SETTLEMENT EVALUATION LAYOUT PLAN PREPARED BY: COLOR GEOENVIRONMENTAL, INC. Engineers and Scientists

	www.gza.com						
PROJ MGR: MJO	REVIEWED BY: MAR	CHECKED BY: TMK	FIGURE				
DESIGNED BY: MJO	DRAWN BY: MJO	SCALE: AS SHOWN	C A A				
DATE: APRIL 2023	PROJECT NO. 01.0177018.00	REVISION NO. 0	G.4-1				

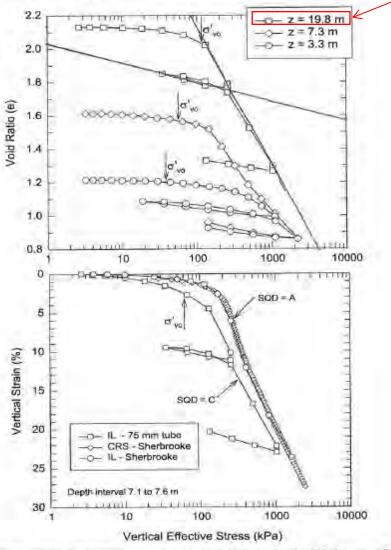
Geology and Engineering Properties of Connecticut Valley Varved Clay

D.J. DeGroot & A.J. Lutenegger

University of Massuchusetts Amherst, Amherst, MA, USA

[Reference: DeGroot, D.J. and Lutevegger, A.J. (2003). "Engineering Properties of Connecticut Valley Varved Clay," Characterisation and Engineering Properties of Natural Soils, Balkema, 1:695-724.]

ABSTRACT: This paper describes the geology and geotechnical engineering properties of Connecticut Valley Varved Clay (CVVC). Results from soil sampling, in situ testing, and laboratory testing conducted during the past 10 years for a deposit of CVVC at the National Geotechnical Experimentation Site in Amherst, Massachusetts, USA are presented. CVVC is a lacustrine soil deposited approximately 15,000 years ago during retreat of the Laurentide Ice Sheet. The soil's most distinguishing feature is its varved nature with alternating layers of silt and clay. This gives CVVC several unique engineering properties making it a challenging soil for engineering design. CVVC has hydranlic conductivity and undrained shear strength anisotropy that far exceeds that of most other soils. The strength of the soil for shearing along the horizontal varves is much less than that for shearing across the varves. The paper presents data on these and other soil classification, index, and engineering properties based on in situ measurements and laboratory test results.


1 INTRODUCTION

This paper describes the geology and engineering properties of Connecticut Valley Varved Clay (CVVC) and the geotechnical engineering design challenges in dealing with this unique soil. CVVC is a lacustrine soil deposit that was formed approximately 15,000 calendar years ago in glacial lake Hitchcock during the retreat of the late Pleistocene ice sheet in New England, USA. The main distinguishing feature of the deposit, as in most glacial lake deposits, is the alternating layers of clay and silt-fine sand. The material for these deposits entered Glacial Lake Hitchcock by melt water streams formed from the retreating glacier. During the warm summer seasons, the fine sand and silt size particles from the outwash deposited on the lake bottom whereas during the calmer winter seasons, when the lake surface was frozen, the clay particles settled out of suspension. The resulting pair of layers, which is known as a varve, represents one year of deposition. The thickness of the varves varies considerably depending on location within the lake and time of deposition ranging from a few millimeters to as large as 1 m thick. Typical deposits of CVVC contain from several hundred to several thousand varves.

Varved clay deposits are commonly found in glaciated regions of North America and Europe north of the 40th parallel and are a prolific source of serious construction difficulties (Terzaghi et al. 1996). There are extensive deposits of varved clays associated with glacial lakes throughout the northeast and north central United States (e.g. Lobdell 1970, Seymour-Jones 1984, Baker & Marr 1976, Vaghar et al. 1992, Rominger & Rutledge 1952, Parsons 1976, Leathers & Ladd 1978) and eastern Canada (e.g. Milligan et al. 1962, Kenney 1976, Chan & Kenney 1973). The layered nature of these soils requires special design considerations for geotechnical problems. The strength of the soil for shearing along the horizontal varves is much less than that for shearing across the varves. Because of the silt layers, the horizontal hydraulic conductivity can be far greater than that in the vertical direction. Laboratory testing of varved clays is problematic because results depend greatly on specimen size and the relative portions of the silt and clay layers

6.2 Stress History and Compressibility

The stress history of CVVC can vary significantly depending on site-specific geologic history. In most cases, however, the soil is generally overconsolidated at shallow depths (i.e. "crust") due to one or more mechanisms such as erosion, fluctuating water table, desiccation, cementation, oxidation/reduction, and freeze-thaw. At greater depths the soil is typically lightly overconsolidated. At these depths, some of the possible mechanisms are the effects of surface erosion, cementation and aging. Figure 13 plots typical compression curves from incremental load (IL) oedometer tests on samples from different depths. Figure 14 plots stress history data as determined from the results of IL and constant rate of strain (CRS) consolidation tests on tube and block samples. The volumetric strain (ε_{vol}) values plotted in Figure 14a correspond to the laboratory recompression strain to σ'_{va} as measured in the consolidation tests.

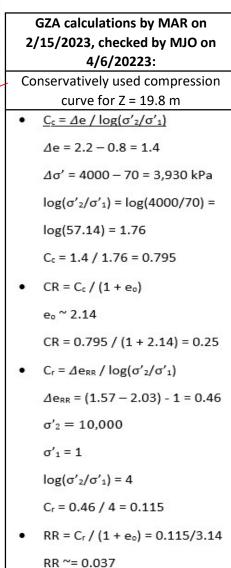


Figure 13. One-Dimensional Compression Curves: a) From Different Depths, b) Tube versus Block Samples.

Source Document: Degroot, D.J., & Lutenegger, A.J. (2003). "Engineering Properties of Connecticut Valley Varved Clay."

Project Client Date	: Wo	rth St Culv odard-Curra 6/2023	-	n Project Number : 177018.00 Project Manager: MJO Computed by : MJO					
	Incre	ment of str	esses obtain	ed using : I	Boussinesq				
	Settle	ement for X	(= 7.00 (f	t) Y =	109.80 (ft)			
Fo	oting # 1	X1(ft)	Point P1 Y1(ft) 106.00		2(ft)	Load (psf) 540.00			
	ion Elev. able Elev	=		Ground Sur	face Elev.=	136.50 (ft) 62.40 (pcf)			
	yer pe Thicl (ft	k. Ra	ecomp. Swell. htio		Settlement	Secondary Settlement (in.)			
	ICOMP. 16.			125.00	0.00	0.00			
	COMP. 19.0		0.037 0.037		0.18	0.00			
3 IN	ICOMP. 31.0	0		130.00	0.00	0.00			
			Total Set	tlement =	0.18	0.00			
	Sublay	er	Soi	l Stresses					
N§.	Thick.		tial Increm	ent Max.Pas	st Press.	Settlement			
	(ft)	(ft) (p	osf) (psf) (ps-	F)	(in.)			
1	INCOMP.								
2		laver over	foundation E	lev.					
		•	foundation E						
4		-	foundation E						
5			'9.28 269.		. 28	0.02			
6			2.68 263.			0.03			
7			58.32 243.			0.03			
8			222.			0.03			
9			79.60 205.			0.02			
10			35.24 191.			0.02			
11 12	1.90 10 INCOMP.	01.95 319	90.88 179.	58 3190	.00	0.02			
12	INCOMP.								
					_				

Project Client Date		lard-Curran	F	Project Number : 177018.00 Project Manager: MJO Computed by : MJO				
	Increme	ent of stresses	obtained	d using : Bous	sinesq			
	Settlem	nent for X =	7.00 (ft)) Y = 124	.80 (ft)		
Fo	oting # 1		ft)	Corner Point P X2(ft) Y2(ft 29.00 145.00)	Load (psf) 540.00		
	ion Elev. able Elev.	= 113.5	60 (ft) (Ground Surface	Elev.=	136.50 (ft) 62.40 (pcf)		
	yer pe Thick. (ft)		Swell.	Unit Pri Weight Sett (pcf) (i	lement	Secondary Settlement (in.)		
	COMP. 16.5			125.00	0.00	0.00		
	OMP. 19.0	0.037 0.037	0.037		0.21	0.00		
3 IN	COMP. 31.0			130.00	0.00	0.00		
		Тс	tal Sett]	lement =	0.21	0.00		
	Sublayer	`	Soil	Stresses				
N§.		lev. Initial						
	(ft) ((ft) (psf)	(psf)	(psf)		(in.)		
1	INCOMP.							
2		ayer over found	lation Ele	2V.				
3	Subla	ayer over found	lation Ele	⊇v.				
4		ayer over found						
5		2.95 2579.28	270.00			0.02		
6		L.45 2662.68	269.80			0.04		
7		9.55 2768.32	268.63			0.03		
8		7.65 2873.96	265.78			0.03		
9 10		5.75 2979.60	260.88			0.03		
10 11		3.853085.241.953190.88	253.87 244.97			0.03 0.03		
11	INCOMP.		244.97	71,00		0.05		
**								
						/ •		

Project Client Date		th St Culvert, dard-Curran /2023	Project Num Project Man Computed by	ager: MJO	18.00	
	Increm	ent of stresse	es obtain	ed using : B	oussinesq	
	Settle	ment for X =	7.00 (f	t) Y =	138.00 (ft)
Fo	oting # 1		L(ft)	Corner Poin X2(ft) Y2 29.00 145	(ft)	Load (psf) 540.00
	ion Elev. able Elev.					136.50 (ft) 62.40 (pcf)
	yer pe Thick (ft)		o. Swell.		ettlement	Secondary Settlement (in.)
2 C	COMP. 16.5 OMP. 19.0 COMP. 31.0	0.037 0.03	37 0.037	125.00 118.00 130.00	0.00 0.20 0.00	0.00 0.00 0.00
		I	otal Set	tlement =	0.20	0.00
NS	Sublaye			1 Stresses		Cattlamant
N§.		lev. Initial (ft) (psf)		ent Max.Pas) (psf		Settlement (in.)
1 2 3	Subl	ayer over four ayer over four	ndation E	lev.		
4 5		ayer over four 2.95 2579.28			28	0.02
6		1.45 2662.68				0.04
7		9.55 2768.32	262.	14 2768.	32	0.03
8		7.65 2873.96				0.03
9		5.75 2979.60				0.03
10		3.85 3085.24				0.03
11		1.95 3190.88	3 210.	45 3190.	88	0.02
12	INCOMP.					
					_	

Project Client Date		n St Culvert, ard-Curran 2023	Project Numb Project Mana Computed by	ger: MJO	18.00	
	Incremen	nt of stresses	obtaine	ed using : Bo	oussinesq	
	Settleme	ent for X = 1	.8.00 (fi	t) Y = 1	.25.50 (ft)
Foo	oting # 1	Corner Point X1(ft) Y1(7.00 106.	ft)	Corner Point X2(ft) Y2(29.00 145.	ft)	Load (psf) 540.00
	ion Elev. able Elev.		0 (ft) 0 (ft)			136.50 (ft) 62.40 (pcf)
-	yer De Thick. (ft)	Comp. Recomp. Ratio	Swell.	Weight Se	rimary ttlement (in.)	-
2 CC	COMP. 16.5 DMP. 19.0 COMP. 31.0	0.037 0.037	0.037	125.00 118.00 130.00	0.00 0.38 0.00	0.00 0.00 0.00
		То	tal Sett	tlement =	0.38	0.00
	Sublayer			l Stresses		
N§.		ev. Initial ft) (psf)		ent Max.Past) (psf)		Settlement (in.)
1 2 3	Sublay	/er over found /er over found	lation El	lev.		
4 5	1.10 112	/er over found .95 2579.28	539.9		.8	0.04
6	1.90 111		538.4			0.07
7	1.90 109		529.8			0.06
8	1.90 107		511.5			0.06
9 10	1.90 105		484.6 452.1			0.06
10 11	1.901031.90101		452.1			0.05 0.05
12	INCOMP.		+1/.(0.05

Project Client Date		ard-Curran	Agawam	n Project Number : 177018.00 Project Manager: MJO Computed by : MJO					
	Increme	nt of stresses	obtaine	ed using : B	oussinesq				
	Settlem	ent for X = 1	.8.00 (ft	c) Y =	135.80 (ft)			
Fo	oting # 1	Corner Point X1(ft) Y1(7.00 106.	ft)	Corner Poin X2(ft) Y2 29.00 145	(ft)	Load (psf) 540.00			
	ion Elev. able Elev.					136.50 (ft) 62.40 (pcf)			
	yer pe Thick. (ft)	Comp. Recomp. Ratio	Swell.		ettlement	-			
2 C	COMP. 16.5 OMP. 19.0 COMP. 31.0	0.037 0.037	0.037	125.00 118.00 130.00	0.00 0.37 0.00	0.00 0.00 0.00			
		То	otal Sett	lement =	0.37	0.00			
NG	Sublayer			l Stresses		- · · · ·			
N§.		ev. Initial ft) (psf)		ent Max.Pas) (psf		Settlement (in.)			
1 2 3		yer over found yer over found	lation El	lev.					
4	Subla	yer over found							
5		.95 2579.28	539.9			0.04			
6 7		.45 2662.68	537.5			0.07 0.06			
7 8	1.90 109 1.90 107	.55 2768.32 .65 2873.96	524.8 499.0			0.06			
8 9	1.90 107		499.0			0.05			
10		.85 3085.24	403.0			0.05			
10	1.90 101		383.8			0.04			
12	INCOMP.		20210	52501					

Project Client Date	: Woo	rth St Culvert dard-Curran 5/2023	, Agawam	Project Numbe Project Manag Computed by	ger: MJO	18.00
	Increm	ent of stress	es obtain	ed using : Bou	ıssinesq	
	Settle	ement for X =	18.00 (f	t) Y = 14	5.00 (ft)
Fo	oting # 1		1(ft)	Corner Point X2(ft) Y2(† 29.00 145.0	t)	Load (psf) 540.00
	ion Elev. able Elev.					136.50 (ft) 62.40 (pcf)
	yer pe Thick (ft)	. Ratio	•	Unit Pr Weight Set (pcf) (tlement	•
2 C	COMP. 16.5 OMP. 19.0 COMP. 31.0	0.037 0.0	37 0.037	125.00 118.00 130.00	0.00 0.20 0.00	0.00 0.00 0.00
			Total Set	tlement =	0.20	0.00
N§.	Sublaye Thick. E	er Elev. Initia		l Stresses ent Max.Past	Drocc	Settlement
113.		(ft) (psf)) (psf)		(in.)
1 2 3 4	Subl	ayer over fou ayer over fou ayer over fou	ndation E	lev.		
5		.2.95 2579.2			5	0.02
6		1.45 2662.6				0.04
7		9.55 2768.3				0.03
8		7.65 2873.9				0.03
9		5.75 2979.6				0.03
10		3.85 3085.2				0.03
11		1.95 3190.8	8 215.	86 3190.88	i	0.02
12	INCOMP.					

Project Nam Client Date	e: North St Culvert, Aga : Woodard-Curran : 4/6/2023	wam Project Numl Project Mana Computed by	nger: MJO	.00
	Increment of stresses ob	tained using : Bo	oussinesq	
	Settlement for X = 7.0	0 (ft) Y = 1	.09.80 (ft)	
Footin	5	Corner Point X2(ft) Y2(Load (psf)
1	7.00 106.00		• •	211.00
Foundation Water table	-	ft) Ground Surfa ft) Unit weight		
Layer N°. Type	Comp. Recomp. Sw Thick. Ratio (ft)	ell. Unit F Weight Se (pcf)	ettlement	Secondary Settlement (in.)
1 INCOMP		125.00	0.00	0.00
2 COMP. 3 INCOMP		.037 118.00 130.00	0.49 0.00	0.00 0.00
		Settlement =	0.49	0.00
S	ublayer	Soil Stresses		
N§. Thi	ck. Elev. Initial In	crement Max.Past		ettlement
(ft) (ft) (psf)	(psf) (psf)	1	(in.)
1 INC	OMP.			
2	Sublayer over foundati			
	Sublayer over foundati			
4 5 1.1	Sublayer over foundati 0 112.95 2579.28	105.43 2579.2	8	0.06
6 1.9		102.89 2662.6		0.09
7 1.9	0 109.55 2768.32	95.09 2768.3	32	0.08
8 1.9		86.92 2873.9		0.07
9 1.9		80.20 2979.6		0.07
10 1.9 11 1.9		74.76 3085.2 70.17 3190.8		0.06 0.05
	0 101.95 3190.88 OMP.	10.11 2130.0		20.0

Project Client Date		St Culvert, rd-Curran 023	Agawam	Project Nu Project Ma Computed b	nager: MJO	18.00
	Incremen	t of stresses	obtaine	ed using :	Boussinesq	
	Settleme	ent for X =	7.00 (ft	:) Y =	124.80 (ft))
Foo	oting # 1	Corner Point X1(ft) Y1(7.00 106.	ft)		2(ft)	Load (psf) 211.00
	1	7.00 100.	00	23.00 14	5.00	211.00
	on Elev. ble Elev.					136.50 (ft) 62.40 (pcf)
Lay N°. Typ		Comp. Recomp. Ratio	Swell.		Settlement	-
1 INC	OMP. 16.5			125.00	0.00	0.00
2 CO	MP. 19.0	0.250 0.037	0.037	118.00	0.57	0.00
3 INC	OMP. 31.0			130.00	0.00	0.00
		То	tal Sett	:lement =	0.57	0.00
	Cub laura		C . 11	Character		
N§.	Sublayer Thick. Ele	v. Initial		. Stresses	st Press.	Settlement
113.	(ft) (f			(ps		(in.)
	(10) (1	() ()))	(121)	(1)	.,	(1)
1	INCOMP.					
2	-	er over found				
		er over found				
4		er over found				0.07
	1.10 112.		105.5			0.06
	1.90 111. 1.90 109.		105.4			0.10
	1.90 109. 1.90 107.		104.9 103.8			0.09 0.09
	1.90 107. 1.90 105.		105.0			0.09
	1.90 103.		99.2			0.08
	1.90 101.		95.7			0.07
	INCOMP.		• •		-	

Project Na Client Date	me: North St Culvert, Agawa : Woodard-Curran : 4/6/2023	am Project Number : 1770 Project Manager: MJO Computed by : MJO	18.00
	Increment of stresses obta	ained using : Boussinesq	
	Settlement for $X = 7.00$	(ft) Y = 138.00 (ft)
Footi	•	Corner Point P2	Load
1		X2(ft) Y2(ft) 29.00 145.00	(psf) 211.00
Foundation Water tabl		t) Ground Surface Elev.= t) Unit weight of Wat. =	
Layer N°. Type		ll. Unit Primary Weight Settlement (pcf) (in.)	Secondary Settlement (in.)
	P. 16.5	125.00 0.00	0.00
	. 19.0 0.250 0.037 0.0 P. 31.0	037118.000.53130.000.00	0.00 0.00
5 INCOM	F. 51.0	150.00 0.00	0.00
	Total S	Settlement = 0.53	0.00
	5	Soil Stresses	_
-		rement Max.Past Press.	
(1	t) (ft) (psf) (µ	osf) (psf)	(in.)
1 IN	COMP.		
2	Sublayer over foundation	ı Elev.	
3	Sublayer over foundation	n Elev.	
4	Sublayer over foundation		
		25.49 2579.28	0.06
		04.96 2662.68 02.42 2768.22	0.10
		32.43 2768.32 38.65 2873.06	0.09
		98.05 2873.96 92.82 2979.60	0.08 0.08
		32.82 2979.80 37.44 3085.24	0.08
		32.23 3190.88	0.06
	COMP.		0.00
10			

Project Client Date	Name: North S : Woodard : 4/6/202	l-Curran	gawam	Project Ma	umber : 1770: anager: MJO by : MJO	18.00
	Increment	of stresses	obtaine	ed using :	Boussinesq	
	Settlement	for X = 18	.00 (ft	:) Y =	= 125.50 (ft))
Foo	ting # (Corner Point X1(ft) Y1(f 7.00 106.0	t)	Corner Poi X2(ft) Y 29.00 14	′2(ft)	Load (psf) 211.00
	on Elev. ble Elev.		(ft) (ft)			136.50 (ft) 62.40 (pcf)
Lay N°. Typ		omp. Recomp. Ratio	Swell.		Settlement	-
1 INC	OMP. 16.5			125.00	0.00	0.00
		0.250 0.037	0.037	118.00	1.06	0.00
3 INC	OMP. 31.0			130.00	0.00	0.00
		Tot	al Sett	:lement =	1.06	0.00
	Sublayer		Soil	l Stresses		
N§.	Thick. Elev	Initial			ast Press.	Settlement
	(ft) (ft)) (psf)	(psf)) (ps	sf)	(in.)
1	INCOMP.					
2		r over founda	tion Fl	ev.		
	Sublayer					
4	-	r over founda				
	1.10 112.9		210.9			0.11
	1.90 111.4		210.3			0.19
	1.90 109.5		207.6			0.18
	1.90 107.65		199.8			0.17
	1.90 105.75 1.90 103.85		189.3 176.6			0.15 0.14
	1.90 101.9		162.9			0.14
	INCOMP.	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	102.2	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.12
				-	_	

Project Client Date	: Woo	rth St Culver odard-Curran 5/2023	t, Agawam	Project Numb Project Mana Computed by	ager: MJO	18.00
	Increm	ent of stres	ses obtain	ed using : Bo	oussinesq	
	Settle	ement for X =	18.00 (f [.]	t) Y = 1	L35.80 (ft)
Fo	oting # 1	X1(ft)	Y1(ft)	Corner Point X2(ft) Y2 29.00 145	(ft)	Load (psf) 211.00
	ion Elev. able Elev.					136.50 (ft) 62.40 (pcf)
	yer pe Thick (ft)	. Rati	•	Unit F Weight Se (pcf)	ettlement	•
2 C	COMP. 16.5 OMP. 19.0 COMP. 31.0	0.250 0.	037 0.037	125.00 118.00 130.00	0.00 1.03 0.00	0.00 0.00 0.00
			Total Set	tlement =	1.03	0.00
N§.	Sublaye Thick. E	er Elev. Initi		l Stresses ent Max.Past	Press.	Settlement
	(ft)	(ft) (psf) (psf) (psf))	(in.)
	Subl	ayer over fo ayer over fo	undation E	lev.		
4 5		ayer over fo. .2.95 2579.			28	0.11
6		1.45 2662.			58	0.19
7		9.55 2768.	32 205.	2768.	32	0.18
8	1.90 10	7.65 2873.	96 194.	99 2873.9	96	0.16
9		95.75 2979.				0.15
10		3.85 3085.				0.13
11		1.95 3190.	88 149.	99 3190.8	38	0.11
12	INCOMP.					

Project Client Date		n St Culvert, ard-Curran 2023	Project Nu Project Ma Computed b	nager: MJO	18.00	
	Incremer	nt of stresses	obtaine	ed using :	Boussinesq	
	Settleme	ent for X = 1	.8.00 (ft	z) Y =	145.00 (ft))
Fo	oting #	Corner Point X1(ft) Y1(Load (psf)
	1	7.00 106.		29.00 14	• •	211.00
	ion Elev. able Elev.		50 (ft) 90 (ft)			136.50 (ft) 62.40 (pcf)
	yer pe Thick. (ft)	Comp. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-
	COMP. 16.5			125.00	0.00	0.00
		0.250 0.037	0.037	118.00	0.54	0.00
3 IN	COMP. 31.0			130.00	0.00	0.00
		Тс	otal Sett	lement =	0.54	0.00
	6 1 1		c • •			
N§.	Sublayer Thick. Ele	ev. Initial		l Stresses	st Press.	Settlement
113.		ft) (psf)) (ps		(in.)
		, ,, ,	,			
1	INCOMP.					
2	•	/er over found				
3 4	-	/er over found /er over found				
5	1.10 112		105.4		.28	0.06
6	1.90 111		105.2			0.10
7	1.90 109		103.6			0.09
8	1.90 107		100.4			0.09
9	1.90 105		95.8			0.08
10	1.90 103		90.2			0.07
11	1.90 101	.95 3190.88	84.3	35 3190	.88	0.06
12	INCOMP.					
					_	

Project Client Date	:	North St Woodard-C 4/6/2023		Agawam	Project Ma	umber : 1770: nnager: MJO oy : MJO	18.00		
	Inc	rement of	stresses	obtaine	ed using :	Boussinesq			
	Settlement for $X = 7.00$ (ft) $Y = 32.00$ (ft)								
Fo	oting #		ner Point		Corner Poi		Load		
	1		.(ft) Y1([.] 8.50 131.0	•	X2(ft) Y 1.50 15	• •	(psf) 242.00		
	1			00	1.50 15		242:00		
	ion Ele able El					face Elev.= t of Wat. =	136.50 (ft) 62.40 (pcf)		
		Comp nick. (ft)	o. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-		
1 IN	ICOMP. 1	16.5			125.00	0.00	0.00		
2 C	COMP. 1	19.0 0.0	0.037 0.037	0.037	118.00	0.00	0.00		
3 IN	ICOMP. 3	31.0			130.00	0.00	0.00		
			To	tal Sett	:lement =	0.00	0.00		
NC		layer	T		Stresses	at Duran	Cattlanaut		
N§.	Thick.			Increme		st Press.			
	(+)	(+t)	(psf)	(рут)) (ps	.т)	(in.)		
1	INCOMF	.							
2	1.90	119.05	2174.60	0.0	00 2174	.60	0.00		
3		117.15	2345.76		2345		0.00		
4	1.90	115.25	2451.40	0.0			0.00		
5	1.90	113.35	2557.04	0.0			0.00		
6	1.90	111.45	2662.68	0.0			0.00		
7	1.90	109.55	2768.32	0.0			0.00		
8	1.90	107.65	2873.96	0.0			0.00		
9	1.90	105.75	2979.60	0.0			0.00		
10	1.90	103.85	3085.24	0.0			0.00		
11	1.90	101.95	3190.88	0.0			0.00		
12	INCOMF								

Project Client Date	:	North St Woodard-C 4/6/2023	-	Agawam	Project Ma	umber : 1770: anager: MJO oy : MJO	18.00		
	Inc	rement of	stresses	obtaine	ed using :	Boussinesq			
	Settlement for $X = 7.00$ (ft) $Y = 39.50$ (ft)								
Fo	oting #		ner Point		Corner Poi		Load		
	1		.(ft) Y1([.] 8.50 131.0	•	X2(ft) Y 1.50 15	• •	(psf) 242.00		
	_								
	ion Ele able El					rface Elev.= nt of Wat. =	136.50 (ft) 62.40 (pcf)		
		Comp ick. ft)	o. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-		
1 IN	ICOMP. 1	.6.5			125.00	0.00	0.00		
2 C	OMP. 1	.9.0 0.0	0.037 0.037	0.037	118.00	0.00	0.00		
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00		
			To	tal Sett	:lement =	0.00	0.00		
	Cubl	21/012		Coil	l Stresses				
N§.	Thick.	ayer Elev.	Initial	Increme		ast Press.	Sottlomont		
113.			(psf)) (ps		(in.)		
	()	()	(101)	(10)	· (P-	,,,	(111)		
1	INCOMP	•							
2	1.90	119.05	2174.60	0.0	90 2174	1.60	0.00		
3	1.90	117.15	2345.76	0.0	00 2345	5.76	0.00		
4	1.90	115.25	2451.40	0.0	91 2451	L.40	0.00		
5	1.90	113.35	2557.04	0.0)1 2557	7.04	0.00		
6	1.90	111.45	2662.68	0.0			0.00		
7	1.90	109.55	2768.32	0.0			0.00		
8	1.90	107.65	2873.96	0.0			0.00		
9	1.90	105.75	2979.60	0.0			0.00		
10	1.90	103.85	3085.24	0.6		5.24	0.00		
11	1.90	101.95	3190.88	0.0	99 3196	0.88	0.00		
12	INCOMP	•							

Project Name: North St Culvert, Agawam Client : Woodard-Curran Date : 4/6/2023				Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO			
	Inc	rement of	stresses	obtaine	ed using	: Boussinesq		
	Set	tlement f	or X =	7.00 (f1	t) Y	= 86.50 (ft)	
Fo	oting #		ner Point		Corner P		Load	
	1		(ft) Y1(.50 131.			156.00	(psf) 242.00	
	ion Ele able El					urface Elev.= ght of Wat. =	136.50 (ft) 62.40 (pcf)	
	•	Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-	
1 IN	ICOMP. 1	6.5			125.00	0.00	0.00	
	COMP. 1		37 0.037	0.037	118.00		0.00	
	ICOMP. 3				130.00		0.00	
			То	tal Sett	tlement =	0.00	0.00	
	Subl	aver		Soi	l Stresse	ς		
N§.	Thick.	-	Initial	Increme		Past Press.	Settlement	
2			(psf)) ((in.)	
4	THEOMO							
1 2	INCOMP 1.90	119.05	2174.60	0.6	۶ <i>1</i> کړ	74.60	0.00	
2		117.15	2345.76			45.76	0.00	
4	1.90	115.25	2451.40	0.1		51.40	0.00	
5	1.90	113.35	2557.04	0.2		57.04	0.00	
6	1.90	111.45	2662.68	0.3		62.68	0.00	
7	1.90	109.55	2768.32	0.4		68.32	0.00	
8	1.90	107.65	2873.96	0.6		73.96	0.00	
9	1.90	105.75	2979.60	0.7		79.60	0.00	
10	1.90	103.85	3085.24	0.9		85.24	0.00	
11	1.90	101.95	3190.88	1.2		90.88	0.00	
12	INCOMP							

	Number : 177018.00 Manager: MJO I by : MJO								
Increment of stresses obtained using	: Boussinesq								
Settlement for $X = 7.00$ (ft) Y	Settlement for X = 7.00 (ft) Y = 109.80 (ft)								
Footing # Corner Point P1 Corner P									
X1(ft) Y1(ft) X2(ft) 1 -33.50 131.00 1.50	Y2(ft) (psf) 156.00 242.00								
	2.2.00								
Foundation Elev.= 125.50 (ft) Ground SWater table Elev.= 118.00 (ft) Unit wei	Surface Elev.= 136.50 (ft) ght of Wat. = 62.40 (pcf)								
Layer Comp. Recomp. Swell. Unit N°. Type Thick. Ratio Weight (ft) (pcf)									
1 INCOMP. 16.5 125.00	0.00 0.00								
2 COMP. 19.0 0.037 0.037 0.037 118.00	0.00 0.00								
3 INCOMP. 31.0 130.00	0.00 0.00								
Total Settlement =	= 0.00 0.00								
Sublayer Soil Stresse									
	Past Press. Settlement								
(ft) (ft) (psf) (psf) (ft)									
	Por ()								
1 INCOMP.									
2 1.90 119.05 2174.60 0.38 21	.74.60 0.00								
3 1.90 117.15 2345.76 0.78 23	345.76 0.00								
	0.00								
	657.04 0.00								
	62.68 0.00								
	768.32 0.00								
	373.96 0.00								
	079.60 0.00								
	085.24 0.00								
	.90.88 0.00								
12 INCOMP.									

Project Client Date	:	North St Woodard-C 4/6/2023	-	Agawam	Project I	Number : 1770 Manager: MJO by : MJO	18.00		
	Inc	rement of	stresses	obtaine	ed using	: Boussinesq			
	Settlement for $X = 7.00$ (ft) $Y = 124.80$ (ft)								
Fo	oting #		ner Point (ft) Y1(Corner Po		Load (psf)		
	1		.50 131.0		1.50		242.00		
	ion Ele able El						136.50 (ft) 62.40 (pcf)		
	•	Comp ick. ft)	. Recomp. Ratio	Swell.	Unit Weight (pcf)		Secondary Settlement (in.)		
1 INCOMP. 16.5 125.00 0.00 0.00									
2 C	COMP. 1	9.0 0.0	37 0.037	0.037	118.00	0.02	0.00		
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00		
			To	tal Set	tlement =	0.02	0.00		
	Subl	ayer		Soi	l Stresse	S			
N§.	Thick.	Elev.	Initial	Increme	ent Max.	Past Press.	Settlement		
	(ft)	(ft)	(psf)	(psf)) (psf)	(in.)		
1	TNCOMD								
1 2	INCOMP 1.90	119.05	2174.60	4.6	50 21 [.]	74.60	0.00		
3	1.90		2345.76	7.6		45.76	0.00		
4	1.90	115.25	2451.40	10.8		51.40	0.00		
5	1.90	113.35	2557.04	13.7		57.04	0.00		
6	1.90	111.45	2662.68	16.2		62.68	0.00		
7	1.90	109.55	2768.32	18.4		68.32	0.00		
8	1.90	107.65	2873.96	20.2	13 28	73.96	0.00		
9	1.90	105.75	2979.60	21.4	47 29	79.60	0.00		
10	1.90	103.85	3085.24	22.4	46 30	85.24	0.00		
11	1.90	101.95	3190.88	23.2	15 31	90.88	0.00		
12	INCOMP	•							

Project Name: North St Culvert, Agawam Client : Woodard-Curran Date : 4/6/2023					Project Number : 177018.00 Project Manager: MJO Computed by : MJO					
Increment of stresses obtained using : Boussinesq										
Settlement for $X = 7.00$ (ft) $Y = 138.00$ (ft)										
Fo	oting #		ner Point		Corner Poi		Load			
	1		(+t) Y1(* .50 131.0		X2(ft) \ 1.50 15	• •	(psf) 242.00			
Foundation Elev.= 125.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)										
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)										
1 INCOMP. 16.5 125.00 0.00 0.00										
	OMP. 1	9.0 0.0	37 0.037	0.037	118.00	0.05	0.00			
3 INCOMP. 31.0 130.00 0.00 0.00										
Total Settlement = 0.05 0.00										
	Subl	ayer		Soil	l Stresses					
N§. Thick. Elev. Initia				Increme	ent Max.Pa	ast Press.	Settlement			
	(ft)	(ft)	(psf)	(psf)) (ps	sf)	(in.)			
1	INCOMP									
1 2	1.90	119.05	2174.60	23.6	57 2174	1 60	0.00			
3	1.90		2345.76	32.0		5.76	0.00			
4	1.90	115.25	2451.40	37.9			0.01			
5	1.90	113.35	2557.04	41.6			0.01			
6	1.90	111.45	2662.68	43.7		2.68	0.01			
7	1.90	109.55	2768.32	44.7	70 2768	3.32	0.01			
8	1.90	107.65	2873.96	44.8		3.96	0.01			
9	1.90	105.75	2979.60	44.3		9.60	0.01			
10	1.90	103.85	3085.24	43.4		5.24	0.01			
	11 1.90 101.95 3190.88 42.35					0.88	0.00			
12	INCOMP	•								

Project Name: North St Culvert, Agawam Client : Woodard-Curran Date : 4/6/2023					Project Number : 177018.00 Project Manager: MJO Computed by : MJO					
Increment of stresses obtained using : Boussinesq										
Settlement for X = 18.00 (ft) Y = 37.00 (ft)										
Fo	ooting #		ner Point		Corner Po		Load			
	1		(ft) Y1(* .50 131.*			Y2(+t) 156.00	(psf) 242.00			
E de t			10F F	0 ((1))						
	ion Ele able El					urface Elev.= ght of Wat. =	136.50 (ft) 62.40 (pcf)			
				. ,	·					
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)										
1 INCOMP. 16.5 125.00 0.00 0.00										
	COMP. 1		37 0.037	0.037						
3 INCOMP. 31.0 130.00 0.00 0.00										
Total Settlement = 0.00 0.00										
	Cub1	21/02		Soil	l Strocco	_				
Sublayer Soil Stresses N§. Thick. Elev. Initial Increment Max.Past Press. Settlement										
(ft) (ft)) (psf)		(in.)			
		~ /			, (I	,				
1	INCOMP									
2	1.90	119.05	2174.60	0.6		74.60	0.00			
3		117.15	2345.76		00 2345.76		0.00			
4	1.90	115.25	2451.40		01 2451.40		0.00			
5	1.90	113.35	2557.04	0.0		57.04	0.00			
6 7	1.90 1.90	111.45 109.55	2662.68 2768.32	0.0 0.0		52.68 58.32	0.00 0.00			
8	1.90	109.55	2768.32	0.6		73.96	0.00			
8 9	1.90	107.05	2875.96	0.6		79.60	0.00			
10	1.90	103.85	3085.24	0.0		35.24	0.00			
10	1.90	103.85	3190.88	0.0		90.88	0.00			
12	INCOMP		5150.00	0.0	,)1.		0.00			
**	THEOR	•								

Project Name: North St Culvert, Agawam Client : Woodard-Curran Date : 4/6/2023					Project Number : 177018.00 Project Manager: MJO Computed by : MJO					
Increment of stresses obtained using : Boussinesq										
Settlement for $X = 18.00$ (ft) $Y = 47.50$ (ft)										
Fo	oting #		ner Point		Corner Po		Load			
1			X1(ft) Y1(ft) -33.50 131.00			Y2(+t) 156.00	(psf) 242.00			
E de t			40F F	0 ((+)						
	ion Ele: able El:					urface Elev.= ght of Wat. =	136.50 (ft) 62.40 (pcf)			
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)										
1 INCOMP. 16.5 125.00 0.00 0.00										
	COMP. 1		37 0.037	0.037			0.00			
3 INCOMP. 31.0 130.00 0.00 0.00										
Total Settlement = 0.00 0.00										
	Sub1	aven		Soi	l Stracca	-				
Sublayer Soil Stresses N§. Thick. Elev. Initial Increment Max.Past Press. Settlement										
(ft) (ft)) (psf)		(in.)				
					, , , , , , , , , , , , , , , , , , ,	,				
1	INCOMP									
2	1.90	119.05	2174.60	0.0		74.60	0.00			
3		117.15	2345.76		01 2345.76		0.00			
4	1.90	115.25	2451.40		01 2451.40 02 2557.04		0.00			
5	1.90	113.35	2557.04	0.0			0.00			
6 7	1.90 1.90	111.45	2662.68	0.0		52.68	0.00			
8	1.90	109.55 107.65	2768.32	0.0 0.0		58.32 73.96	0.00 0.00			
8 9	1.90	107.65	2873.96 2979.60	0.6		73.96 79.60	0.00			
9 10	1.90	103.85	3085.24	0.6		35.24	0.00			
10	1.90	103.85	3085.24	0.0		90.88	0.00			
11	INCOMP		00.00 UC	0.1			0.00			
Τζ	THEORF	•								

Project Name: North St Culvert, Agawam Client : Woodard-Curran Date : 4/6/2023					Project Number : 177018.00 Project Manager: MJO Computed by : MJO					
Increment of stresses obtained using : Boussinesq										
Settlement for $X = 18.00$ (ft) $Y = 86.50$ (ft)										
Fo	oting #		Corner Point P1 X1(ft) Y1(ft)		Corner Po		Load (psf)			
	1		.50 131.0		1.50 1		242.00			
Foundation Elev.= 125.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)										
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)										
1 INCOMP. 16.5 125.00 0.00 0.00										
	COMP. 1		37 0.037	0.037	118.00		0.00			
	ICOMP. 3			130.00 0.00			0.00			
Total Settlement = 0.00 0.00										
	Subl	aver		Soil	l Stresses					
N§. Thick. Elev. Initial Increment Max.Past Press.							Settlement			
(ft) (ft) ((psf)	(psf)) (psf)		(in.)				
1	THEOMO									
1 2	INCOMP 1.90	119.05	2174.60	0.0	۶C 26	4.60	0.00			
3		117.15	2345.76	0.6			0.00			
4	1.90	115.25	2451.40	0.6			0.00			
5	1.90	113.35	2557.04	0.1			0.00			
6	1.90	111.45	2662.68	0.2		2.68	0.00			
7	1.90	109.55	2768.32	0.3		8.32	0.00			
8	1.90	107.65	2873.96	0.4		3.96	0.00			
9	1.90	105.75	2979.60	0.5		9.60	0.00			
10	1.90	103.85	3085.24	0.7		5.24	0.00			
11	1.90	101.95	3190.88	0.8		0.88	0.00			
12	INCOMP									

Project Client Date	: ۱	North St Noodard-C 4/6/2023	Culvert, / urran	Agawam	Project Project Computec	Manager	: MJO	8.00				
	Increment of stresses obtained using : Boussinesq											
	Set	tlement f	or X = 1	8.00 (f1	z) \	(= 125.	50 (ft)					
Fo	oting #		ner Point		Corner F			Load				
	1		(ft) Y1(⁻ .50 131.0	•	• •	Y2(ft) 156.00		(psf) 242.00				
	ion Elev able Ele							136.50 (ft) 62.40 (pcf)				
	•	Comp ick. ft)	. Recomp. Ratio	Swell.	Unit Weight (pcf)	Sett]	nary Lement 1.)	Secondary Settlement (in.)				
1 INCOMP. 16.5 125.00 0.00 0.00												
			37 0.037	0.037	118.00		0.01	0.00				
3 IN	ICOMP. 32	1.0			130.00)	0.00	0.00				
			To	tal Sett	lement =	=	0.01	0.00				
	Subla	ayer		Soil	l Stresse	25						
N§.	Thick.		Initial	Increme		Past Pr	ess.	Settlement				
	(+t)	(ft)	(psf)	(psf)) ((psf)		(in.)				
1	INCOMP											
2	1.90	119.05	2174.60	0.7	73 21	L74.60		0.00				
3	1.90	117.15	2345.76	1.4	43 23	345.76		0.00				
4	1.90	115.25	2451.40	2.3		151.40		0.00				
5	1.90	113.35	2557.04	3.4		57.04		0.00				
6	1.90	111.45	2662.68	4.6		562.68		0.00				
7	1.90	109.55	2768.32	5.8		768.32		0.00				
8 9	1.90 1.90	107.65 105.75	2873.96 2979.60	7.6		373.96		0.00 0.00				
9 10	1.90	103.85	3085.24	8.2 9.2		979.60 985.24		0.00				
10	1.90	103.85	3190.88	9.2 10.2		190.88		0.00				
12	INCOMP		5150.00	10.2				0.00				
		-										

Project Client Date	:	North St Woodard-C 4/6/2023		Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO						
	Increment of stresses obtained using : Boussinesq										
	Set	tlement f	or X = 1	8.00 (f	t) Y = 1	L35.80 (ft))				
Fo	oting #				Corner Point		Load				
	1		(+t) Y1(.50 131.		X2(ft) Y2(1.50 156.		(psf) 242.00				
	ion Ele able El			• •			136.50 (ft) 62.40 (pcf)				
		Comp ick. ft)	. Recomp. Ratio	Swell.	Unit F Weight Se (pcf)	ettlement					
1 IN	ICOMP. 1	6.5			125.00	0.00	0.00				
			37 0.037	0.037		0.01					
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00				
			То	tal Set	tlement =	0.01	0.00				
N§.	Subl Thick.	ayer	Initial		l Stresses	Drocc	Settlement				
113.			(psf)) (psf)		(in.)				
	(10)	(10)	(1991)	(121)) (psr)		(111.)				
1	INCOMP	•									
2	1.90	119.05	2174.60	1.4			0.00				
3	1.90		2345.76		59 2345.7		0.00				
4	1.90	115.25	2451.40	4.2			0.00				
5	1.90	113.35	2557.04	6.0			0.00				
6	1.90	111.45	2662.68	7.9			0.00				
7	1.90	109.55	2768.32	9.0			0.00				
8	1.90	107.65	2873.96	11.2			0.00				
9	1.90	105.75	2979.60	12.7			0.00				
10 11	1.90	103.85	3085.24	13.9			0.00				
11 12	1.90 INCOMP	101.95	3190.88	14.9	94 3190.8	00	0.00				
12	TICOMP	•									

Project Client Date	: ١	North St Woodard-C 4/6/2023		Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO						
	Increment of stresses obtained using : Boussinesq										
	Set	tlement f	or X = 1	8.00 (f	t) Y :	= 145.00 (ft))				
Fo	oting #		ner Point		Corner Po:		Load				
	1		(+t) Y1(⁻ .50 131.0		X2(ft) \ 1.50 1		(psf) 242.00				
	ion Ele			• •			136.50 (ft) 62.40 (pcf)				
					0						
		Comp ick. ft)	. Recomp. Ratio	Swell.	Unit Weight (pcf)						
	COMP. 1				125.00	0.00	0.00				
	OMP. 19 COMP. 3		37 0.037	0.037		0.01 0.00					
5 IN		1.0			130.00	0.00	0.00				
			To	tal Set	tlement =	0.01	0.00				
	Subl	ayer		Soi	l Stresses						
N§.	Thick.		Initial		ent Max.Pa	ast Press.					
	(ft)	(ft)	(psf)	(psf)) (p	sf)	(in.)				
1	INCOMP										
2	1.90	119.05	2174.60	1.0	51 2174	4.60	0.00				
3	1.90	117.15	2345.76	3.0	o7 234	5.76	0.00				
4	1.90	115.25	2451.40	4.8	87 245:	1.40	0.00				
5	1.90	113.35	2557.04	6.8	86 255	7.04	0.00				
6	1.90	111.45	2662.68	8.8	87 2662	2.68	0.00				
7	1.90	109.55	2768.32	10.		8.32	0.00				
8	1.90	107.65	2873.96	12.		3.96	0.00				
9	1.90	105.75	2979.60	14.0		9.60	0.00				
10	1.90	103.85	3085.24	15.2		5.24	0.00				
11	1.90	101.95	3190.88	16.2	28 3196	9.88	0.00				
12	INCOMP	•									

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO											
	Increment of stresses obtained using : Boussinesq										
	Set	tlement f	or X =	7.00 (fi	z) Y	/ = 32.00 (ft	.)				
Fc	ooting #		ner Point				Load				
	1		(ft) Y1(.50 131.	•		Y2(+t) 145.00	(psf) 483.00				
Foundat	ion Ele		- 110 0	Q (++)	Chound S	urface Elev.=	= 136.50 (ft)				
	able El			• •			= 130.30 (TC) = 62.40 (pcf)				
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)					
1 IN	ICOMP. 1	6.5			125.00	0.00	0.00				
2 0	COMP. 1	9.0 0.0	37 0.037	0.037	118.00	0.00	0.00				
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00				
			To	tal Set	lement =	0.00	0.00				
	c			C	Charles	_					
MS	Subi Thick.	ayer Elev.	Initial	SO1. Increme	l Stresse	s Past Press.	Cottlomont				
N§.											
	(11)	(10)	(psf)	(psi)) (psi)	(in.)				
1	INCOMP	•									
2	0.90	118.55	2233.60	0.0	0 22	33.60	0.00				
3	1.90	117.15	2345.76	0.0	90 23	45.76	0.00				
4	1.90	115.25	2451.40	0.0	90 24	51.40	0.00				
5	1.90	113.35	2557.04	0.0	90 25	57.04	0.00				
6	1.90	111.45	2662.68	0.0	30 26	62.68	0.00				
7	1.90	109.55	2768.32	0.0	90 27	68.32	0.00				
8	1.90	107.65	2873.96	0.0	90 28	73.96	0.00				
9	1.90	105.75	2979.60	0.0	90 29	79.60	0.00				
10	1.90	103.85	3085.24	0.0	90 30	85.24	0.00				
11	1.90	101.95	3190.88	0.0	91 31	90.88	0.00				
12	INCOMP	•									

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO											
	Increment of stresses obtained using : Boussinesq										
	Set	tlement f	or X =	7.00 (fi	t) '	Y = 39.	50 (ft)				
Fc	ooting #		ner Point					Load			
	1		(ft) Y1(50 131.			Y2(+t) 145.00		(psf) 483.00			
	ion Ele able El		= 119.0 = 118.0					136.50 (ft) 62.40 (pcf)			
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight		.ement	-			
1 IN	ICOMP. 1	6.5			125.0	0	0.00	0.00			
	COMP. 1		0.037	0.037			0.00	0.00			
	ICOMP. 3				130.0		0.00	0.00			
			То	tal Sett	tlement :	=	0.00	0.00			
	Subl	avon		Soi	L Stress	95					
N§.	Thick.	•	Initial	Increme				Settlement			
113.			(psf))		C33.	(in.)			
	(10)	(10)	(231)	(121)	/	(221)		(111.)			
1	INCOMP										
2	0.90	118.55	2233.60	0.0	30 2 2	233.60		0.00			
3	1.90	117.15	2345.76	0.0	30 2 .	345.76		0.00			
4	1.90	115.25	2451.40	0.0		451.40		0.00			
5	1.90	113.35	2557.04	0.0	30 2	557.04		0.00			
6	1.90	111.45	2662.68	0.0	30 20	662.68		0.00			
7	1.90	109.55	2768.32	0.0	30 2 ⁻	768.32		0.00			
8	1.90	107.65	2873.96	0.0	30 23	873.96		0.00			
9	1.90	105.75	2979.60	0.0	30 29	979.60		0.00			
10	1.90	103.85	3085.24	0.0		085.24		0.00			
11	1.90	101.95	3190.88	0.0	31 3 3	190.88		0.00			
12	INCOMP	•									

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO											
	Increment of stresses obtained using : Boussinesq										
	Set	tlement f	or X =	7.00 (f1	:) Y =	86.50 (ft))				
Fo	oting #				Corner Poi		Load				
	1		.(+t) Y1(* 50 131.	•	X2(ft) Y 7.00 14		(psf) 483.00				
	ion Ele able El					face Elev.= t of Wat. =	136.50 (ft) 62.40 (pcf)				
		Comp ick. ft)	o. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-				
1 IN	ICOMP. 1	.6.5			125.00	0.00	0.00				
	COMP. 1		0.037	0.037	118.00	0.00	0.00				
	ICOMP. 3				130.00	0.00	0.00				
			To	tal Sett	:lement =	0.00	0.00				
	Cubl	21/02		Soi]	l Stresses						
N§.	Thick.	ayer. Elev.	Initial	Increme		st Press.	Sattlement				
112.			(psf)) (ps		(in.)				
	(10)	(10)	(psr)	(bar)	, (ps	.,	(111.)				
1	INCOMF										
2	0.90	118.55	2233.60	0.0	00 2233	.60	0.00				
3		117.15	2345.76		0 2345		0.00				
4	1.90	115.25	2451.40	0.6			0.00				
5	1.90	113.35	2557.04	0.6			0.00				
6	1.90	111.45	2662.68	0.0			0.00				
7	1.90	109.55	2768.32	0.0	94 2768	.32	0.00				
8	1.90	107.65	2873.96	0.0	97 2873	.96	0.00				
9	1.90	105.75	2979.60	0.1	LØ 2979	.60	0.00				
10	1.90	103.85	3085.24	0.1	L5 3085	.24	0.00				
11	1.90	101.95	3190.88	0.2	20 3190	.88	0.00				
12	INCOMF	· .									

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO											
	Increment of stresses obtained using : Boussinesq										
	Set	tlement f	or X =	7.00 (fi	t)	Y = 109	.80 (ft))			
Fc	oting #		ner Point					Load			
	1		(ft) Y1(⁻ .50 131.	•) Y2(+t 145.00		(psf) 483.00			
	cion Elev cable Ele		= 119.00 = 118.00	• •				136.50 (ft) 62.40 (pcf)			
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight		lement	-			
1 IN	ICOMP. 1	5.5			125.0	90	0.00	0.00			
	COMP. 19		37 0.037	0.037			0.00				
	ICOMP. 3				130.0		0.00	0.00			
			To	tal Sett	tlement	=	0.00	0.00			
	Subla			501	l Stress	- 05					
N§.	Thick.	-	Initial	Increme			racc	Settlement			
113.			(psf))		1035.	(in.)			
	(10)	(10)	(P31)	(10)	/	(P3.)		(2)			
1	INCOMP	•									
2	0.90	118.55	2233.60	0.0	30 ž	2233.60		0.00			
3	1.90	117.15	2345.76	0.0	ð1 2	2345.76		0.00			
4	1.90	115.25	2451.40	0.0	97 ž	2451.40		0.00			
5	1.90	113.35	2557.04	0.2	21 2	2557.04		0.00			
6	1.90	111.45	2662.68	0.4	45 2	2662.68		0.00			
7	1.90	109.55	2768.32	0.8	30 2	2768.32		0.00			
8	1.90	107.65	2873.96	1.2		2873.96		0.00			
9	1.90	105.75	2979.60	1.6		2979.60		0.00			
10	1.90	103.85	3085.24	2.2		3085.24		0.00			
11	1.90	101.95	3190.88	2.5	57 3	3190.88		0.00			
12	INCOMP	•									

Project Client Date	: 1	North St Woodard-C 4/6/2023	Culvert, urran	Agawam	Projec	t Number t Manage ed by	r: MJO	.8.00			
	Increment of stresses obtained using : Boussinesq										
	Set	tlement f	or X =	7.00 (f	t)	Y = 124	.80 (ft)	1			
Fo	oting # 1	X1	ner Point (ft) Y1(.50 131.	ft)	X2(ft	Point P) Y2(ft 145.00)	Load (psf) 483.00			
	Ŧ	T		00	7.00	143.00		403.00			
	ion Elev able Ele			• •				136.50 (ft) 62.40 (pcf)			
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weigh [.]		lement	Secondary Settlement (in.)			
1 IN	ICOMP. 16	5.5			125.0	90	0.00	0.00			
			37 0.037	0.037			0.02	0.00			
	ICOMP. 31				130.0		0.00	0.00			
			То	tal Set	tlement	=	0.02	0.00			
	Cubl.			Coi.	1 Stres						
N§.	Subla Thick.	•	Initial	Increme			nacc	Settlement			
113.			(psf))		1633.	(in.)			
	(10)	(10)	(251)	(1951)	/	(231)		(1)			
1	INCOMP	•									
2	0.90	118.55	2233.60	0.0	21	2233.60		0.00			
3	1.90	117.15	2345.76	0.8	86 2	2345.76		0.00			
4	1.90	115.25	2451.40	5.3	11 2	2451.40		0.00			
5	1.90	113.35	2557.04	11.1	10 2	2557.04		0.00			
6	1.90	111.45	2662.68	16.3		2662.68		0.00			
7	1.90	109.55	2768.32	19.4		2768.32		0.00			
8	1.90	107.65	2873.96	20.9		2873.96		0.00			
9	1.90	105.75	2979.60	21.3		2979.60		0.00			
10	1.90	103.85	3085.24	20.9		3085.24		0.00			
11	1.90	101.95	3190.88	20.3	14 :	3190.88		0.00			
12	INCOMP	•									

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO												
	Increment of stresses obtained using : Boussinesq											
	Set	tlement f:	or X =	7.00 (fi	t) Y =	138.00 (ft)						
Fc	oting #		ner Point		Corner Poin		Load					
	1		.(+t) ¥1(50 131.	•	X2(ft) Y2 7.00 14	• •	(psf) 483.00					
	ion Ele able El					face Elev.= t of Wat. =	136.50 (ft) 62.40 (pcf)					
		Comp ick. ft)	. Recomp. Ratio	Swell.	0	Primary Settlement (in.)	Secondary Settlement (in.)					
1 INCOMP. 16.5 125.00 0.00 0.00												
	COMP. 1 NCOMP. 3		0.037	0.037	118.00 130.00	0.18 0.00	0.00 0.00					
			То	tal Set	tlement =	0.18	0.00					
	Sub1	ayer		Soi	l Stresses							
N§.	Thick.	-	Initial	Increme		st Press.	Settlement					
	(ft)	(ft)	(psf)	(psf)) (ps-	f)	(in.)					
1	INCOMF)										
2	0.90	118.55	2233.60	241.4	43 2233	. 60	0.02					
3		117.15	2345.76	236.9			0.04					
4	1.90	115.25	2451.40	213.7			0.03					
5	1.90	113.35	2557.04	178.4	12 2557	.04	0.02					
6	1.90	111.45	2662.68	143.3	32 2662	.68	0.02					
7	1.90	109.55	2768.32	113.9	94 2768	.32	0.01					
8	1.90	107.65	2873.96	90.9			0.01					
9	1.90	105.75	2979.60	73.4			0.01					
10	1.90	103.85	3085.24	60.6			0.01					
11	1.90	101.95	3190.88	49.7	76 3190	.88	0.01					
12	INCOMF	· •										

Increment of stresses obtained using : Boussinesq										
Increment of stresses obtained using : Boussinesq										
Settlement for X = 18.00 (ft) Y = 37.00 (ft)										
Footing # Corner Point P1 Corner Point P2 Load										
X1(ft) Y1(ft) X2(ft) Y2(ft) (psf) 1 1.50 131.00 7.00 145.00 483.00										
Foundation Elev.= 119.00 (ft)Ground Surface Elev.= 136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. = 62.40 (pcf)										
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)										
1 INCOMP. 16.5 125.00 0.00 0.00										
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00										
3 INCOMP. 31.0 130.00 0.00 0.00										
Total Settlement = 0.00 0.00										
Sublayer Soil Stresses										
N§. Thick. Elev. Initial Increment Max.Past Press. Settlement										
(ft) (ft) (psf) (psf) (psf) (in .)										
1 INCOMP.										
2 0.90 118.55 2233.60 0.00 2233.60 0.00										
3 1.90 117.15 2345.76 0.00 2345.76 0.00										
4 1.90 115.25 2451.40 0.00 2451.40 0.00										
5 1.90 113.35 2557.04 0.00 2557.04 0.00										
6 1.90 111.45 2662.68 0.00 2662.68 0.00										
7 1.90 109.55 2768.32 0.00 2768.32 0.00										
8 1.90 107.65 2873.96 0.00 2873.96 0.00										
9 1.90 105.75 2979.60 0.00 2979.60 0.00										
10 1.90 103.85 3085.24 0.01 3085.24 0.00										
11 1.90 101.95 3190.88 0.01 3190.88 0.00										
12 INCOMP.										

Project Client Date	:	North St Woodard-C 4/6/2023		Project Number : 177018.00 Project Manager: MJO Computed by : MJO							
	Increment of stresses obtained using : Boussinesq										
	Set	tlement f	or X = 1	8.00 (f1	t)	Y = 47	.50 (ft)	•			
Fc	oting #		ner Point					Load			
	1		(ft) Y1(.50 131.	•		Y2(+t) 145.00		(psf) 483.00			
	ion Ele able El			• •				136.50 (ft) 62.40 (pcf)			
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight		lement	-			
1 IN	ICOMP. 1	6.5			125.0	0	0.00	0.00			
2 0	COMP. 1	9.0 0.0	37 0.037	0.037	118.0	0	0.00	0.00			
	ICOMP. 3				130.0		0.00	0.00			
			То	tal Sett	tlement	=	0.00	0.00			
	Sub1	ayer		Soi	l Stress	<u>م</u> د					
N§.	Thick.	-	Initial	Increme			ress.	Settlement			
			(psf))		c55.	(in.)			
1	INCOMP										
2	0.90	118.55	2233.60	0.6		233.60		0.00			
3		117.15	2345.76			345.76		0.00			
4	1.90	115.25	2451.40	0.6		451.40		0.00			
5	1.90	113.35	2557.04	0.6		557.04		0.00			
6 7	1.90 1.90	111.45 109.55	2662.68 2768.32	0.0 0.0		662.68 768.32		0.00 0.00			
8	1.90	109.55	2768.32	0.6		873.96		0.00			
8 9	1.90	107.05	2875.98	0.6		979.60		0.00			
10	1.90	103.85	3085.24	0.0		979.00 085.24		0.00			
10	1.90	101.95	3190.88	0.0		190.88		0.00			
12	INCOMP		5150.00	0.0	/			0.00			
	1.100/11	-									

Project Client Date	:	North St Woodard-C 4/6/2023		Project	Number : 177 Manager: MJO by : MJO						
	Increment of stresses obtained using : Boussinesq										
	Set	tlement f	or X = 1	8.00 (fi	t) Y	′= 86.50 (f	t)				
Fo	oting #		ner Point				Load				
	1		(ft) Y1(.50 131.			Y2(+t) 145.00	(psf) 483.00				
	ion Ele able El			• •			= 136.50 (ft) = 62.40 (pcf)				
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-				
1 IN	ICOMP. 1	6.5			125.00	0.00	0.00				
2 C	COMP. 1	9.0 0.0	37 0.037	0.037	118.00	0.00	0.00				
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00				
			То	tal Set	tlement =	0.00	0.00				
	Subl	ayer		Soi	l Stresse	S					
N§.	Thick.	-	Initial			Past Press.	Settlement				
	(ft)	(ft)	(psf)	(psf)) (psf)	(in.)				
	THEOMO										
1 2	INCOMP 0.90	118.55	2233.60	0.0	າດ ກ	33.60	0.00				
2		117.15	2345.76			45.76	0.00				
4	1.90	115.25	2451.40	0.0		51.40	0.00				
5	1.90	113.35	2557.04	0.0		57.04	0.00				
6	1.90	111.45	2662.68	0.0		62.68	0.00				
7	1.90	109.55	2768.32	0.0		68.32	0.00				
8	1.90	107.65	2873.96	0.0		73.96	0.00				
9	1.90	105.75	2979.60	0.0		79.60	0.00				
10	1.90	103.85	3085.24	0.3		85.24	0.00				
11	1.90	101.95	3190.88	0.3		90.88	0.00				
12	INCOMP	•									

Project Client Date	:	North St Woodard-C 4/6/2023	-	Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO				
	Inc	rement of	stresses	obtaine	ed using :	Boussinesq			
	Set	tlement f	or X = 1	8.00 (f1	t) Y =	= 125.50 (ft))		
Fo	oting #				Corner Poi		Load		
	1		.(+t) Y1(* 50 131.(•	X2(ft) Y 7.00 14		(psf) 483.00		
	ion Ele able El			• •			136.50 (ft) 62.40 (pcf)		
		Comp nick. [ft]	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-		
1 INCOMP. 16.5 125.00 0.00 0.00									
	COMP. 1		0.037	0.037					
	ICOMP. 3				130.00	0.00	0.00		
			To	tal Sett	tlement =	0.00	0.00		
	Cub1	ayer		Soil	l Stresses				
N§.	Thick.	-	Initial	Increme		ast Press.	Sottlomont		
112.			(psf)) (ps		(in.)		
	(10)	(10)	(psr)	(bar)) (þ.	51 <i>)</i>	(111.)		
1	INCOMF	, ,							
2	0.90	118.55	2233.60	0.0	2233	3.60	0.00		
3		117.15	2345.76		07 2345		0.00		
4	1.90	115.25	2451.40	0.5			0.00		
5	1.90	113.35	2557.04	1.4			0.00		
6	1.90	111.45	2662.68	2.8			0.00		
7	1.90	109.55	2768.32	4.4	17 2768	3.32	0.00		
8	1.90	107.65	2873.96	6.6	2873	3.96	0.00		
9	1.90	105.75	2979.60	7.3	34 2979	9.60	0.00		
10	1.90	103.85	3085.24	8.3	37 3085	5.24	0.00		
11	1.90	101.95	3190.88	9.6	98 3190	9.88	0.00		
12	INCOMF).							

Project Client Date	:	North St Woodard-C 4/6/2023		Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO				
	Inc	rement of	stresses	obtaine	ed using : B	oussinesq			
	Set	tlement f	or X = 1	8.00 (f	t) Y = 1	135.80 (ft))		
Fo	oting #				Corner Poin X2(ft) Y2		Load (psf)		
	1		.50 131.		7.00 145		483.00		
	ion Ele able El			• •			136.50 (ft) 62.40 (pcf)		
	(ft) (pcf) (in.) (in.)								
1 IN	0.00	0.00							
	OMP. 1	9.0 0.0	37 0.037	0.037	118.00	0.01	0.00		
3 IN	COMP. 3	1.0			130.00	0.00	0.00		
			To	tal Set	tlement =	0.01	0.00		
	Subl	aver		Soi	l Stresses				
N§.	Thick.	-	Initial	Increme	ent Max.Pas	t Press.	Settlement		
	(ft)	(ft)	(psf)	(psf)) (psf)	(in.)		
1	TNCOMD								
1 2	INCOMP 0.90	118.55	2233.60	0.0	2233.	60	0.00		
3		117.15	2235.00	0.2			0.00		
4	1.90	115.25	2451.40	1.			0.00		
5	1.90	113.35	2557.04	4.3			0.00		
6	1.90	111.45	2662.68	7.4			0.00		
7	1.90	109.55	2768.32	10.0			0.00		
8	1.90	107.65	2873.96	13.2	20 2873.	96	0.00		
9	1.90	105.75	2979.60	14.9	92 2979.	60	0.00		
10	1.90	103.85	3085.24	15.8	3085.	24	0.00		
11	1.90	101.95	3190.88	16.3	14 3190.	88	0.00		
12	INCOMP	•							

Project Client Date	:	North St Woodard-C 4/6/2023		Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO			
	Inc	rement of	stresses	obtaine	ed using : Bo	ussinesq		
	Set	tlement f	or X = 1	8.00 (fi	t) Y = 1	45.00 (ft))	
Fo	oting #				Corner Point		Load	
	1		(+t) Y1(- .50 131.		X2(ft) Y2(7.00 145.		(psf) 483.00	
	ion Ele able El			• •			136.50 (ft) 62.40 (pcf)	
		Comp ick. ft)	. Recomp. Ratio	Swell.	Unit P Weight Se (pcf)	ttlement	-	
	1 INCOMP. 16.5 125.00 0.00 0.00							
	COMP. 1 ICOMP. 3		37 0.037	0.037	118.00 130.00	0.01 0.00	0.00 0.00	
5 IN		1.0			130.00	0.00	0.00	
			To	tal Set	lement =	0.01	0.00	
		ayer			l Stresses			
N§.	Thick.		Initial				Settlement	
	(+t)	(+t)	(psf)	(pst)) (psf)		(in.)	
1	INCOMP							
2	0.90	118.55	2233.60	0.0	2233.6	0	0.00	
3	1.90	117.15	2345.76	0.1	L5 2345.7	6	0.00	
4	1.90	115.25	2451.40	1.6	2451.4	0	0.00	
5	1.90	113.35	2557.04	3.6	91 2557.0	4	0.00	
6	1.90	111.45	2662.68	5.5			0.00	
7	1.90	109.55	2768.32	8.2			0.00	
8	1.90	107.65	2873.96	10.3			0.00	
9	1.90	105.75	2979.60	12.0			0.00	
10	1.90	103.85	3085.24	13.0			0.00	
11	1.90	101.95	3190.88	13.5	33 3190.8	8	0.00	
12	INCOMP	· •						

Project Client Date	:	North St Woodard-C 4/6/2023		Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO				
	Inc	rement of	stresses	obtaine	ed using	: Boussinesq			
	Set	tlement f	or X =	7.00 (f1	z) Y	′= 32.00 (ft	:)		
Fc	oting #		ner Point				Load		
	1		(ft) Y1(.50 145.	•		Y2(ft) 149.00	(psf) 483.00		
	_	-							
	ion Ele able El			• •		urface Elev.= ght of Wat. =	= 136.50 (ft) = 62.40 (pcf)		
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)			
1 IN	ICOMP. 1	0.00							
2 0	COMP. 1	9.0 0.0	37 0.037	0.037	118.00	0.00	0.00		
	ICOMP. 3	1.0			130.00		0.00		
			То	tal Sett	lement =	0.00	0.00		
	c 1			c					
MS	Subi Thick.	ayer Elev.	Initial	Increme	l Stresse	s Past Press.	Cottlomont		
N§.									
	(11)	(1)	(psf)	(psi)) (psi)	(in.)		
1	INCOMP	•							
2	0.90	118.55	2233.60	0.0	<u>)</u> 0 22	33.60	0.00		
3	1.90	117.15	2345.76	0.6	90 23	45.76	0.00		
4	1.90	115.25	2451.40	0.0	90 24	51.40	0.00		
5	1.90	113.35	2557.04	0.0	90 25	57.04	0.00		
6	1.90	111.45	2662.68	0.0	30 26	62.68	0.00		
7	1.90	109.55	2768.32	0.0	90 27	68.32	0.00		
8	1.90	107.65	2873.96	0.0	90 28	73.96	0.00		
9	1.90	105.75	2979.60	0.0	30 29	79.60	0.00		
10	1.90	103.85	3085.24	0.0		85.24	0.00		
11	1.90	101.95	3190.88	0.0	91 31	90.88	0.00		
12	INCOMP	•							

Project Client Date	:	North St Woodard-C 4/6/2023		Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO				
	Inc	rement of	stresses	obtaine	ed using	: Boussinesq			
	Set	tlement f	or X =	7.00 (f1	z) Y	= 39.50 (ft)		
Fc	oting #		Corner Point P1				Load		
	1		(ft) Y1(.50 145.	•		Y2(+t) 149.00	(psf) 483.00		
	ion Ele able El			• •		urface Elev.= ght of Wat. =	136.50 (ft) 62.40 (pcf)		
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-		
1 IN	ICOMP. 1	0.00	0.00						
	COMP. 1		37 0.037	0.037	118.00		0.00		
	ICOMP. 3				130.00		0.00		
			То	tal Sett	:lement =	0.00	0.00		
	Subl	21/212		Soil	l Stresse	c .			
N§.	Thick.	-	Initial	Increme		s Past Press.	Sattlamant		
113.			(psf)) ((in.)		
	(10)	(10)	(231)	(121)	/ (551)	(1)		
1	INCOMP								
2	0.90	118.55	2233.60	0.0	90 22	33.60	0.00		
3	1.90	117.15	2345.76	0.0	<u>)</u> 0 23	45.76	0.00		
4	1.90	115.25	2451.40	0.0		51.40	0.00		
5	1.90	113.35	2557.04	0.0	90 25	57.04	0.00		
6	1.90	111.45	2662.68	0.0	90 26	62.68	0.00		
7	1.90	109.55	2768.32	0.0	90 27	68.32	0.00		
8	1.90	107.65	2873.96	0.0	90 28	73.96	0.00		
9	1.90	105.75	2979.60	0.0	90 29	79.60	0.00		
10	1.90	103.85	3085.24	0.0		85.24	0.00		
11	1.90	101.95	3190.88	0.0	91 31	90.88	0.00		
12	INCOMP	•							

Project Client Date	: 1	North St Noodard-C 1/6/2023		Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO				
	Inci	rement of	stresses	obtaine	ed using	: Boussin	esq		
	Set	tlement f	or X =	7.00 (f1	z) Y	′ = 86.50	(ft)		
Fo	oting #		ner Point				Lo		
	1		(ft) Y1(.50 145.	•		Y2(+t) 149.00	(ps 483	+) .00	
	ion Elev able Ele			• •		ourface El ght of Wa		.50 (ft) .40 (pcf)	
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight		ent Se	condary ttlement (in.)	
1 IN	ICOMP. 16	00	0.00						
	OMP. 19		37 0.037	0.037	125.00 118.00		00	0.00	
	ICOMP. 32				130.00		00	0.00	
			To	tal Sett	:lement =	. 0.	00	0.00	
	Subla			Soil	l Stresse				
N§.	Thick.	-	Initial	Increme		Past Pres	د ۲۵++	lement	
113.			(psf)) (in.)	
	(10)	()	(P31)	(10)	/	PJIJ	```	,	
1	INCOMP	•							
2	0.90	118.55	2233.60	0.0	30 22	33.60		0.00	
3	1.90	117.15	2345.76	0.0	30 23	45.76		0.00	
4	1.90	115.25	2451.40	0.0	30 24	51.40		0.00	
5	1.90	113.35	2557.04	0.0	91 25	57.04		0.00	
6	1.90	111.45	2662.68	0.0		62.68		0.00	
7	1.90	109.55	2768.32	0.0		68.32		0.00	
8	1.90	107.65	2873.96	0.0		73.96		0.00	
9	1.90	105.75	2979.60	0.0		79.60		0.00	
10	1.90	103.85	3085.24	0.1		85.24		0.00	
11	1.90	101.95	3190.88	0.1	L4 31	.90.88		0.00	
12	INCOMP	•							

Project Client Date	: ١	North St Woodard-C 4/6/2023		Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO				
	Inc	rement of	stresses	obtaine	ed using	g : Bous	sinesq		
	Set	tlement f	or X =	7.00 (fi	t)	Y = 109	.80 (ft)	•	
Fo	oting #		Corner Point P1 X1(ft) Y1(ft)				Load (psf)		
	1		.50 145.	•		149.00		483.00	
	ion Ele able Ele		= 119.0 = 118.0	• •				136.50 (ft) 62.40 (pcf)	
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight		lement	-	
1 IN	ICOMP. 1	0.00	0.00						
2 C	OMP. 1	9.0 0.0	37 0.037	0.037	118.0	00	0.00	0.00	
3 IN	ICOMP. 3	1.0			130.0	00	0.00	0.00	
			То	tal Set	tlement	=	0.00	0.00	
	Subl	aver		Soi	l Stress	ses			
N§.	Thick.	-	Initial	Increme	ent Max	.Past P	ress.	Settlement	
	(ft)	(ft)	(psf)	(psf))	(psf)		(in.)	
1	INCOMP								
2	0.90	118.55	2233.60	0.0	30 2	233.60		0.00	
3		117.15	2345.76			2345.76		0.00	
4	1.90	115.25	2451.40	0.0		451.40		0.00	
5	1.90	113.35	2557.04	0.0		2557.04		0.00	
6	1.90	111.45	2662.68	0.1		2662.68		0.00	
7	1.90	109.55	2768.32	0.2		2768.32		0.00	
8	1.90	107.65	2873.96	0.3	39 2	2873.96		0.00	
9	1.90	105.75	2979.60	0.5	58 2	979.60		0.00	
10	1.90	103.85	3085.24	0.8	BØ 3	8085.24		0.00	
11	1.90	101.95	3190.88	1.6	3 4 3	3190.88		0.00	
12	INCOMP	•							

Project Client Date	:	North St Woodard-C 4/6/2023		Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO				
	Set	tlement f	or X =	7.00 (fi	t) Y	= 124.80 (ft	:)		
Fo	ooting #		Corner Point P1 X1(ft) Y1(ft)				Load		
	1		.50 145.	•	• •	149.00	(psf) 483.00		
	ion Ele able El			• •			= 136.50 (ft) = 62.40 (pcf)		
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)			
1 IN	ICOMP. 1	0.00	0.00						
	COMP. 1	9.0 0.0	37 0.037	0.037					
	ICOMP. 3				130.00		0.00		
			То	tal Set	tlement =	0.00	0.00		
	Sub1	ayer		Soi	l Stresse	s			
N§.	Thick.	-	Initial			Past Press.	Settlement		
-	(ft)	(ft)	(psf)	(psf)) (psf)	(in.)		
1	INCOMP								
2	0.90	118.55	2233.60	0.0	30 22	33.60	0.00		
3		117.15	2345.76			45.76	0.00		
4	1.90	115.25	2451.40	0.1		51.40	0.00		
5	1.90	113.35	2557.04	0.5		57.04	0.00		
6	1.90	111.45	2662.68	1.1		62.68	0.00		
7	1.90	109.55	2768.32	1.9		68.32	0.00		
8	1.90	107.65	2873.96	2.9		73.96	0.00		
9	1.90	105.75	2979.60	3.9		79.60	0.00		
10	1.90	103.85	3085.24	4.9	93 30	85.24	0.00		
11	1.90	101.95	3190.88	5.8	35 31	90.88	0.00		
12	INCOMP	•							

Project Client Date	:	North St Woodard-C 4/6/2023		Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO				
	Inc	rement of	stresses	obtaine	ed using :	Boussinesq			
	Set	tlement f	or X =	7.00 (fi	t) Y =	= 138.00 (ft)	1		
Fo	oting #				Corner Poi		Load		
	1		(+t) Y1(50 145.	•	X2(ft) Y 34.50 14		(psf) 483.00		
	ion Ele able El			• •		rface Elev.= nt of Wat. =	136.50 (ft) 62.40 (pcf)		
		Comp ick. ft)	o. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-		
1 IN	0.00								
	COMP. 1		0.037	0.037	125.00 118.00	0.00 0.03			
	ІСОМР. З				130.00	0.00	0.00		
			То	tal Sett	tlement =	0.03	0.00		
	Cubl			Co.i T					
N§.	Thick.	ayer Elev.	Initial	Increme	l Stresses	ast Press.	Sottlomont		
112.			(psf)) (ps		(in.)		
	(10)	(10)	(psr)	(bsi)) (þ.	51)	(111.)		
1	INCOMP								
2	0.90	118.55	2233.60	0.0	2233	3.60	0.00		
3		117.15	2345.76			5.76	0.00		
4	1.90	115.25	2451.40	6.8			0.00		
5	1.90	113.35	2557.04	15.5			0.00		
6	1.90	111.45	2662.68	23.3		2.68	0.00		
7	1.90	109.55	2768.32	28.4	47 2768	3.32	0.00		
8	1.90	107.65	2873.96	31.0	2873	3.96	0.00		
9	1.90	105.75	2979.60	31.7	71 2979	9.60	0.00		
10	1.90	103.85	3085.24	31.1	19 3085	5.24	0.00		
11	1.90	101.95	3190.88	29.9	98 3190	9.88	0.00		
12	INCOMP	•							

Project Client Date	: ١	North St Woodard-C 4/6/2023		Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO				
	Inc	rement of	stresses	obtaine	ed using	g : Bous	sinesq		
	Set	tlement f	or X = 1	8.00 (fi	t)	Y = 37	.00 (ft)	•	
Fo	oting #		Corner Point P1 X1(ft) Y1(ft)				Load		
	1		(+t) $Y1(-$	•		149.00		(psf) 483.00	
	ion Ele able Ele		= 119.0 = 118.0	• •				136.50 (ft) 62.40 (pcf)	
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight		lement	-	
1 IN	ICOMP. 1	0.00	0.00						
2 C	OMP. 19	9.0 0.0	37 0.037	0.037	118.0	0	0.00	0.00	
	ICOMP. 3				130.0		0.00	0.00	
			То	tal Set	tlement	=	0.00	0.00	
	Subl	aver		Soi	l Stress	es			
N§.	Thick.	-	Initial	Increme			ress.	Settlement	
			(psf))			(in.)	
1	TNCOMD								
1 2	INCOMP 0.90	118.55	2233.60	0.6	aa a	233.60		0.00	
3		117.15	2345.76			345.76		0.00	
4	1.90	115.25	2451.40	0.0		451.40		0.00	
5	1.90	113.35	2557.04	0.0		557.04		0.00	
6	1.90	111.45	2662.68	0.0		662.68		0.00	
7	1.90	109.55	2768.32	0.0		768.32		0.00	
8	1.90	107.65	2873.96	0.0		873.96		0.00	
9	1.90	105.75	2979.60	0.0		979.60		0.00	
10	1.90	103.85	3085.24	0.0		085.24		0.00	
11	1.90	101.95	3190.88	0.0		190.88		0.00	
12	INCOMP	•							

Project Client Date	:	North St Woodard-C 4/6/2023		Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO				
	Inc	rement of	stresses	obtaine	ed using	g : Bous	sinesq		
	Set	tlement f	or X = 1	8.00 (fi	t)	Y = 47	.50 (ft))	
Fo	oting #		Corner Point P1 X1(ft) Y1(ft)				Load		
	1		(+t) $Y1(-)$	•) Y2(+t 149.00		(psf) 483.00	
	ion Ele able El		= 119.0 = 118.0	• •				136.50 (ft) 62.40 (pcf)	
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight		lement	-	
1 IN	ICOMP. 1	0.00	0.00						
2 C	COMP. 1	9.0 0.0	37 0.037	0.037	118.0	90	0.00	0.00	
3 IN	ICOMP. 3	1.0			130.0	90	0.00	0.00	
			То	tal Set	tlement	=	0.00	0.00	
	Sub1	ayer		Soi	l Stress	ses			
N§.	Thick.	-	Initial	Increme			ress.	Settlement	
-	(ft)	(ft)	(psf)	(psf))	(psf)		(in.)	
1	TNCOMD								
1 2	INCOMP 0.90	118.55	2233.60	0.0	aa 3	2233.60		0.00	
3		117.15	2345.76			2345.76		0.00	
4	1.90	115.25	2451.40	0.0		2451.40		0.00	
5	1.90	113.35	2557.04	0.0		2557.04		0.00	
6	1.90	111.45	2662.68	0.0		2662.68		0.00	
7	1.90	109.55	2768.32	0.0		2768.32		0.00	
8	1.90	107.65	2873.96	0.0		2873.96		0.00	
9	1.90	105.75	2979.60	0.0		2979.60		0.00	
10	1.90	103.85	3085.24	0.0		8085.24		0.00	
11	1.90	101.95	3190.88	0.0		3190.88		0.00	
12	INCOMP	•							

Project Client Date	:	North St Woodard-C 4/6/2023		Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO				
	Inc	rement of	stresses	obtaine	ed using	: Boussi	nesq		
	Set	tlement f	or X = 1	8.00 (fi	t) \	/ = 86.5	0 (ft)		
Fc	ooting #		ner Point					Load	
	1		(ft) Y1(.50 145.	•		Y2(ft) 149.00		(psf) 483.00	
	-	_			2				
	ion Ele able El		= 119.0 = 118.0	• •				136.50 (ft) 62.40 (pcf)	
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight		ment	-	
1 INCOMP. 16.5 125.00 0.00								0.00	
2 0	COMP. 1	9.0 0.0	37 0.037	0.037	118.00) e	.00	0.00	
	ICOMP. 3	1.0			130.00		.00	0.00	
			То	tal Sett	tlement =	= 0	.00	0.00	
	c . 1			<u> </u>					
MS	Subi Thick.	ayer Elev.	Initial	SO1. Increme	l Stresse			Settlement	
N§.							55.		
	(1)	(11)	(psf)	(psi)) ((psi)		(in.)	
1	INCOMP	•							
2	0.90	118.55	2233.60	0.0	00 22	233.60		0.00	
3	1.90	117.15	2345.76	0.0	30 2 3	345.76		0.00	
4	1.90	115.25	2451.40	0.0	00 24	451.40		0.00	
5	1.90	113.35	2557.04	0.0	01 2 <u>5</u>	557.04		0.00	
6	1.90	111.45	2662.68	0.0	91 26	562.68		0.00	
7	1.90	109.55	2768.32	0.0	3 3 27	768.32		0.00	
8	1.90	107.65	2873.96	0.0	95 28	373.96		0.00	
9	1.90	105.75	2979.60	0.0	or 29	979.60		0.00	
10	1.90	103.85	3085.24	0.1	11 30	085.24		0.00	
11	1.90	101.95	3190.88	0.1		190.88		0.00	
12	INCOMP	•							

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO													
	Increment of stresses obtained using : Boussinesq												
	Settlement for X = 18.00 (ft) Y = 125.50 (ft)												
Fo	oting #				Corner Point P2 X2(ft) Y2(ft)			Load					
	1		.50 145.		• • •	149.00		(psf) 483.00					
Foundation Elev.= 119.00 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf													
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Prim Settl (in	ement						
1 IN	ICOMP. 1	6.5			125.00	9	0.00	0.00					
	COMP. 1	9.0 0.0	37 0.037	0.037			0.00	0.00					
	ICOMP. 3				130.00		0.00	0.00					
			То	tal Set	tlement =	=	0.00	0.00					
	Subl	aver		Soi	l Stresse	25							
N§.	Thick.	-	Initial				ess.	Settlement					
	(ft)	(ft)	(psf)	(psf)) ((psf)		(in.)					
1	INCOMP												
2	0.90	118.55	2233.60	0.0	30 22	233.60		0.00					
3		117.15	2345.76			345.76		0.00					
4	1.90	115.25	2451.40	0.2		451.40		0.00					
5	1.90	113.35	2557.04	0.7		557.04		0.00					
6	1.90	111.45	2662.68	1.5		562.68		0.00					
7	1.90	109.55	2768.32	2.6	58 27	768.32		0.00					
8	1.90	107.65	2873.96	3.9	96 28	373.96		0.00					
9	1.90	105.75	2979.60	5.2	29 29	979.60		0.00					
10	1.90	103.85	3085.24	6.5	55 36	085.24		0.00					
11	1.90	101.95	3190.88	7.6	57 33	190.88		0.00					
12	INCOMP	•											

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO													
Increment of stresses obtained using : Boussinesq													
	Settlement for X = 18.00 (ft) Y = 135.80 (ft)												
Fc	oting #				Corner Pc X2(ft)		Load (psf)						
	1	1	.50 145.0	00	34.50 1	49.00	483.00						
	ion Ele able El			• •			136.50 (ft) 62.40 (pcf)						
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-						
1 INCOMP. 16.5 125.00 0.00 0.00													
2 0	COMP. 1	9.0 0.0	37 0.037	0.037	118.00	0.02	0.00						
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00						
			To	tal Set	tlement =	0.02	0.00						
	Sub]	ayer		Soi	l Stresses								
N§.	Thick.	-	Initial	Increme		ast Press.	Settlement						
			(psf)			sf)	(in.)						
1	INCOMP		2222 60			2 60	0.00						
2	0.90	118.55	2233.60	0.0		3.60	0.00						
3		117.15	2345.76 2451.40	Ø.: 3.4		5.76 1.40	0.00 0.00						
4 5	1.90 1.90	115.25 113.35	2451.40	5.2 9.6		7.04	0.00						
6	1.90	111.45	2662.68	15.5		2.68	0.00						
7	1.90	109.55	2768.32	21.2		8.32	0.00						
8	1.90	107.65	2873.96	25.4		3.96	0.00						
9	1.90	105.75	2979.60	27.8		9.60	0.00						
10	1.90	103.85	3085.24	28.9		5.24	0.00						
11	1.90	101.95	3190.88	29.0		0.88	0.00						
12	INCOMP												

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO												
	Inc	rement of	stresses	obtaine	ed using :	Boussinesq						
	Settlement for X = 18.00 (ft) Y = 145.00 (ft)											
Fc	oting #				Corner Poi		Load					
	1		.(+t) YI(50 145.		X2(ft) Y 34.50 14	· ·	(psf) 483.00					
Foundation Elev.= 119.00 (ft)Ground Surface Elev.= 136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. = 62.40 (pcf)												
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-					
1 INCOMP. 16.5 125.00 0.00 0.00												
	COMP. 1 NCOMP. 3		0.037	0.037	118.00 130.00	0.17 0.00	0.00 0.00					
			То	tal Set	tlement =	0.17	0.00					
	Subl	ayer		Soi	l Stresses							
N§.	Thick.	-	Initial	Increme		ast Press.	Settlement					
	(ft)	(ft)	(psf)	(psf)) (ps	sf)	(in.)					
1	INCOMP)										
2	0.90	118.55	2233.60	241.3	36 2233	3.60	0.02					
3		117.15	2345.76	233.4		5.76	0.03					
4	1.90	115.25	2451.40	202.2			0.03					
5	1.90	113.35	2557.04	166.3	31 2557	7.04	0.02					
6	1.90	111.45	2662.68	136.0	51 2662	2.68	0.02					
7	1.90	109.55	2768.32	113.9		3.32	0.01					
8	1.90	107.65	2873.96	95.6			0.01					
9	1.90	105.75	2979.60	81.4			0.01					
10	1.90	103.85	3085.24	70.0			0.01					
11	1.90	101.95	3190.88	60.7	74 3196	1.88	0.01					
12	INCOMP	•										

Increment of stresses obtained using : Boussinesq Settlement for X = 7.00 (ft) Y = 32.00 (ft) Footing # Corner Point P1 Corner Point P2 Load X1(ft) Y1(ft) X2(ft) Y2(ft) (psf)									
Footing # Corner Point P1 Corner Point P2 Load X1(ft) Y1(ft) X2(ft) Y2(ft) (psf)									
X1(ft) Y1(ft) X2(ft) Y2(ft) (psf)									
1 29.00 131.00 34.50 145.00 483.00									
Foundation Elev.= 119.00 (ft)Ground Surface Elev.= 136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. = 62.40 (pcf)									
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)									
1 INCOMP. 16.5 125.00 0.00 0.00									
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00									
3 INCOMP. 31.0 130.00 0.00 0.00									
Total Settlement = 0.00 0.00									
Sublayer Soil Stresses									
N§. Thick. Elev. Initial Increment Max.Past Press. Settlement									
(ft) (ft) (psf) (psf) (psf) (in .)									
1 INCOMP.									
2 0.90 118.55 2233.60 0.00 2233.60 0.00									
3 1.90 117.15 2345.76 0.00 2345.76 0.00									
4 1.90 115.25 2451.40 0.00 2451.40 0.00									
5 1.90 113.35 2557.04 0.00 2557.04 0.00									
6 1.90 111.45 2662.68 0.00 2662.68 0.00									
7 1.90 109.55 2768.32 0.00 2768.32 0.00									
8 1.90 107.65 2873.96 0.00 2873.96 0.00									
9 1.90 105.75 2979.60 0.00 2979.60 0.00									
10 1.90 103.85 3085.24 0.00 3085.24 0.00									
11 1.90 101.95 3190.88 0.01 3190.88 0.00									
12 INCOMP.									

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO												
	Increment of stresses obtained using : Boussinesq											
Settlement for $X = 7.00$ (ft) $Y = 39.50$ (ft)												
Fc	ooting #		ner Point				Load					
	1		(ft) Y1(.00 131.			Y2(+t 145.00		(psf) 483.00				
Foundation Elev.= 119.00 (ft)Ground Surface Elev.= 136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. = 62.40 (pcf)												
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight		lement	-				
1 IN	ICOMP. 16	5.5			125.0	0	0.00	0.00				
	COMP. 19		37 0.037	0.037			0.00	0.00				
	ICOMP. 31				130.0		0.00	0.00				
			То	tal Sett	tlement	=	0.00	0.00				
	Subla	aven		Soi	l Stress	05						
N§.	Thick.	-	Initial	Increme			racc	Settlement				
			(psf))			(in.)				
	()	()	(PO.)	(P=)	/	(P)		()				
1	INCOMP	•										
2	0.90	118.55	2233.60	0.0	<u>30</u> 2	233.60		0.00				
3	1.90	117.15	2345.76	0.0	<u>30</u> 2	345.76		0.00				
4	1.90	115.25	2451.40	0.0	30 2	451.40		0.00				
5	1.90	113.35	2557.04	0.0		557.04		0.00				
6	1.90	111.45	2662.68	0.0		662.68		0.00				
7	1.90	109.55	2768.32	0.0		768.32		0.00				
8	1.90	107.65	2873.96	0.0		873.96		0.00				
9	1.90	105.75	2979.60	0.0		979.60		0.00				
10	1.90	103.85	3085.24	0.0		085.24		0.00				
11	1.90	101.95	3190.88	0.0	ð1 3	190.88		0.00				
12	INCOMP	•										

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO													
	Increment of stresses obtained using : Boussinesq												
	Settlement for $X = 7.00$ (ft) $Y = 86.50$ (ft)												
Fc	oting #		ner Point				Load						
	1		(ft) Y1(.00 131.			Y2(+t) 145.00	(psf) 483.00						
Foundation Elev. = 119.00 (ft) Ground Surface Elev.= 136.50 (f Water table Elev. = 118.00 (ft) Unit weight of Wat. = 62.40 (p													
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlemer (in.)	nt Settlement						
1 IN	ICOMP. 1	6.5			125.00	0.00	0.00						
2 0	COMP. 1	9.0 0.0	37 0.037	0.037	118.00	0.00	0.00						
	ICOMP. 3	1.0			130.00		0.00						
			То	tal Sett	tlement =	= 0.00	0.00						
	Subl	aver		Soi	l Stresse) c							
N§.	Thick.	-	Initial	Increme			Settlement						
			(psf)) ((in.)						
1	INCOMP						0.00						
2	0.90	118.55	2233.60	0.6		233.60	0.00						
3		117.15	2345.76			845.76	0.00						
4	1.90	115.25	2451.40	0.6		151.40	0.00						
5 6	1.90 1.90	113.35 111.45	2557.04 2662.68	0.0 0.0		57.04 62.68	0.00 0.00						
6 7	1.90	109.55	2768.32	0.6		768.32	0.00						
8	1.90	109.55	2708.32	0.6		873.96	0.00						
8 9	1.90	107.05	2875.96	0.6		979.60	0.00						
10	1.90	103.85	3085.24	0.0)85.24	0.00						
10	1.90	101.95	3190.88	0.1		90.88	0.00						
12	INCOMP		5150.00	0.1)]		0.00						
	1.10011	•											

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO													
	Inc	rement of	stresses	obtaine	ed using	: Boussinesq							
	Settlement for X = 7.00 (ft) Y = 109.80 (ft)												
Fo	oting #		ner Point				Load						
	1		(ft) Y1(.00 131.			145.00	(psf) 483.00						
Foundation Elev.= 119.00 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pc)													
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-						
1 IN	ICOMP. 1	6.5			125.00	0.00	0.00						
2 C	COMP. 1	9.0 0.0	37 0.037	0.037	118.00	0.00	0.00						
	ICOMP. 3				130.00		0.00						
			То	tal Set	tlement =	0.00	0.00						
	Sub1	ayer		Soi	l Stresse	ς							
N§.	Thick.	-	Initial			- Past Press.	Settlement						
			(psf)) ((in.)						
4	THEOMO												
1 2	INCOMP 0.90	118.55	2233.60	0.0		33.60	0.00						
2		117.15	2233.00			45.76	0.00						
4	1.90	115.25	2451.40	0.0		43.70 51.40	0.00						
5	1.90	113.35	2557.04	0.0		57.04	0.00						
6	1.90	111.45	2662.68	0.1		62.68	0.00						
7	1.90	109.55	2768.32	0.1		68.32	0.00						
8	1.90	107.65	2873.96	0.3		73.96	0.00						
9	1.90	105.75	2979.60	0.4		79.60	0.00						
10	1.90	103.85	3085.24	0.6		85.24	0.00						
11	1.90	101.95	3190.88	0.7		90.88	0.00						
12	INCOMP												

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO											
	Inc	rement of	stresses	obtaine	ed using :	Boussinesq					
Settlement for $X = 7.00$ (ft) $Y = 124.80$ (ft)											
Fo	oting #				Corner Poi		Load				
	1		.(+t) Y1(0.00 131.		X2(ft) Y 34.50 14		(psf) 483.00				
Foundation Elev.= 119.00 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf											
		Comp ick. ft)	o. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-				
1 INCOMP. 16.5 125.00 0.00 0.00											
	OMP. 1		0.037	0.037	118.00		0.00				
	ІСОМР. З				130.00	0.00	0.00				
			To	tal Sett	:lement =	0.00	0.00				
	Sub1	ayer		Soil	l Stresses						
N§.	Thick.	-	Initial	Increme		ast Press.	Sattlamont				
113.			(psf)) (ps		(in.)				
	(10)	(10)	(PSI)	(121)	· (P-	,,,,	(1)				
1	INCOMP	•									
2	0.90	118.55	2233.60	0.0	0 2233	3.60	0.00				
3	1.90	117.15	2345.76	0.6)1 2345	5.76	0.00				
4	1.90	115.25	2451.40	0.0			0.00				
5	1.90	113.35	2557.04	0.1	L8 2557	7.04	0.00				
6	1.90	111.45	2662.68	0.3	39 2662	2.68	0.00				
7	1.90	109.55	2768.32	0.6	59 2768	3.32	0.00				
8	1.90	107.65	2873.96	1.6	96 2873	3.96	0.00				
9	1.90	105.75	2979.60	1.4	19 2979	9.60	0.00				
10	1.90	103.85	3085.24	1.9			0.00				
11	1.90	101.95	3190.88	2.3	36 3190	0.88	0.00				
12	INCOMP	· ·									

Project Client Date	5 0											
	Increment of stresses obtained using : Boussinesq											
Settlement for $X = 7.00$ (ft) $Y = 138.00$ (ft)												
Fc	oting #		ner Point				Load					
	1		(ft) Y1(.00 131.		X2(+t) 34.50		(psf) 483.00					
Foundation Elev.= 119.00 (ft)Ground Surface Elev.= 136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. = 62.40 (pcf)												
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)						
1 IN	ICOMP. 1	6.5			125.00	0.00	0.00					
2 0	COMP. 1	9.0 0.0	37 0.037	0.037			0.00					
	ICOMP. 3	1.0			130.00	0.00	0.00					
			То	tal Sett	tlement =	0.00	0.00					
	Sub]	ayer		Soil	l Stresse	c						
N§.	Thick.	-	Initial			Past Press.	Settlement					
113.			(psf)) ((in.)					
	()	()	(P=)	(1)			()					
1	INCOMP	•										
2	0.90	118.55	2233.60	0.0	30 22	33.60	0.00					
3	1.90	117.15	2345.76	0.0	2 1 23	45.76	0.00					
4	1.90	115.25	2451.40	0.0	2 9 24	51.40	0.00					
5	1.90	113.35	2557.04	0.3	30 25	57.04	0.00					
6	1.90	111.45	2662.68	0.0		62.68	0.00					
7	1.90	109.55	2768.32	1.1		68.32	0.00					
8	1.90	107.65	2873.96	1.7		73.96	0.00					
9	1.90	105.75	2979.60	2.3		79.60	0.00					
10	1.90	103.85	3085.24	2.9		85.24	0.00					
11	1.90	101.95	3190.88	3.5	52 31	90.88	0.00					
12	INCOMP	•										

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO													
	Inc	rement of	stresses	obtaine	ed using	: Boussir	nesq						
	Settlement for X = 18.00 (ft) Y = 37.00 (ft)												
Fo	ooting #		ner Point					Load					
	1		(ft) Y1(.00 131.			Y2(+t) 145.00		(psf) 483.00					
Foundation Elev.= 119.00 (ft)Ground Surface Elev.= 136.50 (ftWater table Elev.= 118.00 (ft)Unit weight of Wat. = 62.40 (pc								136.50 (ft) 62.40 (pcf)					
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight		ient	Secondary Settlement (in.)					
1 IN	ICOMP. 1	6.5			125.00	9 0.	.00	0.00					
2 C	COMP. 1	9.0 0.0	37 0.037	0.037	118.00	9 0.	.00	0.00					
	ICOMP. 3				130.00		.00	0.00					
			То	tal Sett	tlement =	= 0.	.00	0.00					
	Sub]	ayer		Soi	l Stresse	26							
N§.	Thick.	-	Initial			Past Pres	ss. Se	ettlement					
			(psf))			(in.)					
1	TNCOMD												
1 2	INCOMP 0.90	118.55	2233.60	0.0	20 2 [.]	233.60		0.00					
3		117.15	2345.76			345.76		0.00					
4	1.90	115.25	2451.40	0.0		451.40		0.00					
5	1.90	113.35	2557.04	0.0		557.04		0.00					
6	1.90	111.45	2662.68	0.0		562.68		0.00					
7	1.90	109.55	2768.32	0.0		768.32		0.00					
8	1.90	107.65	2873.96	0.0		373.96		0.00					
9	1.90	105.75	2979.60	0.0		979.60		0.00					
10	1.90	103.85	3085.24	0.0		085.24		0.00					
11	1.90	101.95	3190.88	0.0		190.88		0.00					
12	INCOMP												

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO													
	Increment of stresses obtained using : Boussinesq												
	Settlement for $X = 18.00$ (ft) $Y = 47.50$ (ft)												
Fc	oting #		ner Point				Load						
	1		(ft) Y1(.00 131.		X2(+t) 34.50 1		(psf) 483.00						
Foundation Elev. = 119.00 (ft) Ground Surface Elev.= 136.50 (Water table Elev. = 118.00 (ft) Unit weight of Wat. = 62.40 (
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-						
1 IN	ICOMP. 1	6.5			125.00	0.00	0.00						
2 0	COMP. 1	9.0 0.0	37 0.037	0.037	118.00	0.00	0.00						
	ICOMP. 3	1.0			130.00		0.00						
			То	tal Sett	:lement =	0.00	0.00						
	Sub]	ayer		Soi	L Stresses								
N§.	Thick.	-	Initial	Increme		, Past Press.	Settlement						
			(psf)) (r		(in.)						
		X - X	VF - 7	NF - 7									
1	INCOMP	•											
2	0.90	118.55	2233.60	0.0		33.60	0.00						
3		117.15	2345.76			15.76	0.00						
4	1.90	115.25	2451.40	0.0		51.40	0.00						
5	1.90	113.35	2557.04	0.0		57.04	0.00						
6	1.90	111.45	2662.68	0.6		52.68	0.00						
7	1.90	109.55	2768.32	0.6		58.32	0.00						
8	1.90	107.65	2873.96	0.6		73.96	0.00						
9	1.90	105.75	2979.60	0.6		79.60	0.00						
10	1.90	103.85	3085.24	0.6		35.24	0.00						
11	1.90	101.95	3190.88	0.6	JT 319	90.88	0.00						
12	INCOMP	•											

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO													
	Increment of stresses obtained using : Boussinesq												
	Settlement for X = 18.00 (ft) Y = 86.50 (ft)												
Fo	oting #		ner Point				Load						
	1		(ft) Y1(.00 131.) Y2(+t 145.00		(psf) 483.00					
Foundation Elev. = 119.00 (ft) Ground Surface Elev.= 136.50 (ft Water table Elev. = 118.00 (ft) Unit weight of Wat. = 62.40 (pc								• •					
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight		lement	-					
1 INCOMP. 16.5 125.00 0.00 0.00													
2 C	OMP. 19	9.0 0.0	37 0.037	0.037	118.0	90	0.00	0.00					
	ICOMP. 3				130.0		0.00	0.00					
			То	tal Sett	tlement	=	0.00	0.00					
	Subl	aver		Soi	l Stress	205							
N§.	Thick.	-	Initial	Increme			ress	Settlement					
			(psf))		1055.	(in.)					
	()	()	(PO.)	(199)	/	(P-)		(=)					
1	INCOMP	•											
2	0.90	118.55	2233.60	0.0	00 Z	2233.60		0.00					
3	1.90	117.15	2345.76	0.0	00 Z	2345.76		0.00					
4	1.90	115.25	2451.40	0.0	oo 2	2451.40		0.00					
5	1.90	113.35	2557.04	0.0	91 2	2557.04		0.00					
6	1.90	111.45	2662.68	0.0		2662.68		0.00					
7	1.90	109.55	2768.32	0.0		2768.32		0.00					
8	1.90	107.65	2873.96	0.0		2873.96		0.00					
9	1.90	105.75	2979.60	0.0		2979.60		0.00					
10	1.90	103.85	3085.24	0.1		8085.24		0.00					
11	1.90	101.95	3190.88	0.1	17 3	3190.88		0.00					
12	INCOMP	•											

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO									
	Increment of stresses obtained using : Boussinesq								
Settlement for X = 18.00 (ft) Y = 125.50 (ft)									
Footing # Corner Point P1 Corner Point P2 Load X1(ft) Y1(ft) X2(ft) Y2(ft) (psf)									
	1		(+t) Y1(.00 131.		X2(+t) 34.50 1		(psf) 483.00		
Foundation Elev.= 119.00 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)									
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)			
1 INCOMP. 16.5 125.00 0.00 0.00									
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00									
	ICOMP. 3				130.00		0.00		
			То	tal Sett	tlement =	0.00	0.00		
	Sub]	ayer		Soil	l Stresses				
N§.	Thick.	-	Initial			ast Press.	Settlement		
			(psf)) (p		(in.)		
	(/		(F)	(F)	/ \F		()		
1	INCOMP	•							
2	0.90	118.55	2233.60	0.0	30 223	3.60	0.00		
3	1.90	117.15	2345.76	0.0	97 234	5.76	0.00		
4	1.90	115.25	2451.40	0.5	50 245	1.40	0.00		
5	1.90	113.35	2557.04	1.4		7.04	0.00		
6	1.90	111.45	2662.68	2.8		2.68	0.00		
7	1.90	109.55	2768.32	4.4		8.32	0.00		
8	1.90	107.65	2873.96	6.6		3.96	0.00		
9	1.90	105.75	2979.60	7.3		9.60	0.00		
10	1.90	103.85	3085.24	8.3		5.24	0.00		
11	1.90	101.95	3190.88	9.6	98 319	0.88	0.00		
12	INCOMP	•							

Increment of stresses obtained using : Boussinesq Settlement for X = 18.00 (ft) Y = 135.80 (ft) Footing # Corner Point P1 Corner Point P2 Load X1(ft) Y1(ft) X2(ft) Y2(ft) (psf) 1 29.00 131.00 34.50 145.00 483.00 Foundation Elev. = 119.00 (ft) Ground Surface Elev.= 136.50 (ft) Water table Elev. = 119.00 (ft) Ground Surface Elev.= 136.50 (ft) Nondettion Elev. = 119.00 (ft) Unit weight of Wat. = 62.40 (pcf) Nondettion Elev. = 118.00 (ft) Unit Weight Settlement (pcf) (in.) INCOMP. 16.5 Comp. Recomp. Swell. Unit Primary Secondary Settlement (pcf) (in.) 1 INCOMP. 16.5 125.00 0.00 0.00 0.00 Comp. 125.00 0.00 0.00 0.00 Total Settlement = 0.01 0.00 Sublayer Soil Stresses NS. Thick. Elev. Initial Increment Max.Past Press. Settlement (ft) (ft) (psf) (psf) (psf) (in.) I INCOMP. 2 0.90 118.55 2233.60 0.00 2233.60 0.00 0.00
Footing # Corner Point P1 X1(ft) Y1(ft) Corner Point P2 X2(ft) Y2(ft) Load (psf) 1 29.00 131.00 34.50 145.00 483.00 Foundation Elev. = 119.00 (ft) Ground Surface Elev.= 136.50 (ft) Water table Elev. = 119.00 (ft) Ground Surface Elev.= 136.50 (ft) Water table Elev. = 118.00 (ft) Unit weight of Wat. = 62.40 (pcf) N°. Type Thick. (ft) Ratio Weight Settlement (pcf) Secondary 1 INCOMP. 16.5 125.00 0.00 0.00 2 COMP. 19.0 0.037 0.037 118.00 0.01 0.00 3 INCOMP. 31.0 Total Settlement = 0.01 0.00 0.00 Sublayer Soil Stresses Settlement (ft) (in.) (in.) 1 INCOMP. 2 0.90 118.55 2233.60 0.00 233.60 0.00 3 1.90 117.15 2345.76 0.21 2345.76 0.00 4 1.90 15.25 2451.40 0.00
X1(ft) Y1(ft) X2(ft) Y2(ft) (psf) 1 29.00 131.00 34.50 145.00 483.00 Foundation Elev. = 119.00 (ft) Ground Surface Elev.= 136.50 (ft) Water table Elev. = 118.00 (ft) Unit weight of Wat. = 62.40 (pcf) N°. Type Thick. Ratio Weight Settlement (in.) Settlement (in.) 1 INCOMP. 16.5 COMP. Recomp. 0.037 0.037 125.00 0.00 0.00 2 COMP. 19.0 0.037 0.037 118.00 0.01 0.00 3 INCOMP. 31.0 Total Settlement = 0.01 0.00 Sublayer Sublayer Soil Stresses N§. Thick. Elev. Initial Increment Max.Past Press. Settlement (in.) 1 INCOMP. 2 0.90 118.55 2233.60 0.00 1 INCOMP. 2 0.90 118.55 2231.60 0.00 3 1.90 117.15 2345.76 0.21 2345.76 0.00 <
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Water table Elev. = 118.00 (ft) Unit weight of Wat. = 62.40 (pcf) N°. Type Thick. Ratio Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement 1 INCOMP. 16.5 125.00 0.00 0.00 0.00 2 COMP. 19.0 0.037 0.037 118.00 0.01 0.00 3 INCOMP. 31.0 Total Settlement = 0.01 0.00 0.00 Sublayer Soil Stresses Settlement (ft) (ft) (psf) (psf) 1 INCOMP. Initial Increment Max.Past Press. Settlement (in.) 0.00 1 INCOMP. 0.90 118.55 2233.60 0.00 1 INCOMP. 0.90 118.55 2233.60 0.00 3 1.90 117.15 2345.76 0.21 2345.76 0.00 4 1.90 115.25 2451.40 1.50 2451.40 0.00
N°. Type Thick. (ft) Ratio Weight (pcf) Settlement (in.) Settlement (in.) 1 INCOMP. 16.5 2 125.00 0.00 0.00 2 COMP. 19.0 0.037 0.037 118.00 0.01 0.00 3 INCOMP. 31.0 130.00 0.00 0.00 0.00 Sublayer Soil Stresses N§. Thick. Elev. Initial Increment Max.Past Press. Settlement (in.) 1 INCOMP. 233.60 0.00 0.00 3 1.90 117.15 2345.76 0.21 2345.76 0.00 4 1.90 115.25 2451.40 1.50 2451.40 0.00
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.01 0.00 3 INCOMP. 31.0 130.00 0.00 0.00 Total Settlement = 0.01 0.00 Sublayer Soil Stresses N§. Thick. Elev. Initial Increment Max.Past Press. Settlement (ft) (ft) (psf) (psf) (psf) (in.) 1 INCOMP. 2 0.90 118.55 2233.60 0.00 2233.60 0.00 3 1.90 117.15 2345.76 0.21 2345.76 0.00 4 1.90 115.25 2451.40 1.50 2451.40 0.00
3 INCOMP. 31.0 130.00 0.00 0.00 Total Settlement = 0.01 0.00 Sublayer Soil Stresses 0.01 0.00 N§. Thick. Elev. Initial Increment Max.Past Press. Settlement (in.) 1 INCOMP. 0.00 2233.60 0.00 3 1.90 117.15 2345.76 0.21 2345.76 0.00 4 1.90 115.25 2451.40 1.50 2451.40 0.00
Total Settlement = 0.01 0.00 Sublayer Soil Stresses Soil Stresses N§. Thick. Elev. Initial Increment Max.Past Press. Settlement (ft) (ft) (psf) (psf) (in.) 1 INCOMP. 2 0.90 118.55 2233.60 0.00 2233.60 0.00 3 1.90 117.15 2345.76 0.21 2345.76 0.00 4 1.90 115.25 2451.40 1.50 2451.40 0.00
Sublayer Soil Stresses N§. Thick. Elev. Initial Increment Max.Past Press. Settlement (ft) (ft) (ft) (ft) (psf) (psf) 1 INCOMP. 2 0.90 118.55 2233.60 0.00 2233.60 0.00 3 1.90 117.15 2345.76 0.21 2345.76 0.00 4 1.90 115.25 2451.40 1.50 2451.40 0.00
N§. Thick. Elev. Initial Increment Max.Past Press. Settlement (ft) (ft) (psf) (psf) (psf) (in.) 1 INCOMP. 2 0.90 118.55 2233.60 0.00 2233.60 0.00 3 1.90 117.15 2345.76 0.21 2345.76 0.00 4 1.90 115.25 2451.40 1.50 2451.40 0.00
N§. Thick. Elev. Initial Increment Max.Past Press. Settlement (ft) (ft) (psf) (psf) (psf) (in.) 1 INCOMP. 2 0.90 118.55 2233.60 0.00 2233.60 0.00 3 1.90 117.15 2345.76 0.21 2345.76 0.00 4 1.90 115.25 2451.40 1.50 2451.40 0.00
1 INCOMP. 2 0.90 118.55 2233.60 0.00 2233.60 0.00 3 1.90 117.15 2345.76 0.21 2345.76 0.00 4 1.90 115.25 2451.40 1.50 2451.40 0.00
20.90118.552233.600.002233.600.0031.90117.152345.760.212345.760.0041.90115.252451.401.502451.400.00
20.90118.552233.600.002233.600.0031.90117.152345.760.212345.760.0041.90115.252451.401.502451.400.00
31.90117.152345.760.212345.760.0041.90115.252451.401.502451.400.00
4 1.90 115.25 2451.40 1.50 2451.40 0.00
6 1.90 111.45 2662.68 7.42 2662.68 0.00
7 1.90 109.55 2768.32 10.63 2768.32 0.00
8 1.90 107.65 2873.96 13.20 2873.96 0.00
9 1.90 105.75 2979.60 14.92 2979.60 0.00
10 1.90 103.85 3085.24 15.85 3085.24 0.00
11 1.90 101.95 3190.88 16.14 3190.88 0.00
12 INCOMP.

Project Client Date	:	North St Woodard-C 4/6/2023		Project Number : 177018.00 Project Manager: MJO Computed by : MJO						
	Increment of stresses obtained using : Boussinesq									
Settlement for X = 18.00 (ft) Y = 145.00 (ft)										
Footing # Corner Point P1 Corner Point P2 Load										
	1		(+t) Y1(.00 131.		X2(ft) Y2 34.50 145		(psf) 483.00			
	• -1									
	ion Ele able El			• •			136.50 (ft) 62.40 (pcf)			
					0					
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)										
1 IN	1 INCOMP. 16.5 125.00 0.00 0.00									
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.01 0.00										
3 IN	COMP. 3	1.0			130.00	0.00	0.00			
			To	tal Set	tlement =	0.01	0.00			
	Subl	ayer		Soi	l Stresses					
N§.	Thick.	-	Initial	Increme	ent Max.Pas	t Press.	Settlement			
	(ft)	(ft)	(psf)	(psf) (psf)	(in.)			
1	INCOMP									
2	0.90	118.55	2233.60	0.0	2233.	60	0.00			
3	1.90	117.15	2345.76		15 2345.		0.00			
4	1.90	115.25	2451.40	1.0	2451.	40	0.00			
5	1.90	113.35	2557.04	3.0	2557.	04	0.00			
6	1.90	111.45	2662.68	5.	56 2662.	68	0.00			
7	1.90	109.55	2768.32	8.3	16 2768.	32	0.00			
8	1.90	107.65	2873.96	10.3		96	0.00			
9	1.90	105.75	2979.60	12.0	2979.	60	0.00			
10	1.90	103.85	3085.24	13.0			0.00			
11	1.90	101.95	3190.88	13.	53 3190.	88	0.00			
12	INCOMP	•								

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO									
	Increment of stresses obtained using : Boussinesq								
Settlement for $X = 7.00$ (ft) $Y = 32.00$ (ft)									
Fo	oting #		ner Point				Load		
	1		(ft) Y1(.50 131.		X2(ft) 49.00		(psf) 242.00		
	ion Ele able El			• •		urface Elev ght of Wat	v.= 136.50 (ft) . = 62.40 (pcf)		
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlemen (in.)	nt Settlement		
1 IN	1 INCOMP. 16.5 125.00 0.00 0.00								
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00							0.00		
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00		
			To	tal Sett	tlement =	0.00	0.00		
	Sub]	ayer		Soi	l Stresse	c			
N§.	Thick.	-	Initial	Increme			. Settlement		
			(psf)) ((in.)		
	(/		(F)	VE = 12		F - · 7	()		
1	INCOMP	•							
2	1.90	119.05	2174.60	0.0	00 21	74.60	0.00		
3	1.90	117.15	2345.76	0.0	00 23-	45.76	0.00		
4	1.90	115.25	2451.40	0.0		51.40	0.00		
5	1.90	113.35	2557.04	0.0		57.04	0.00		
6	1.90	111.45	2662.68	0.0		62.68	0.00		
7	1.90	109.55	2768.32	0.0		68.32	0.00		
8	1.90	107.65	2873.96	0.0		73.96	0.00		
9	1.90	105.75	2979.60	0.0		79.60	0.00		
10	1.90	103.85	3085.24	0.0		85.24	0.00		
11	1.90	101.95	3190.88	0.0	32 31	90.88	0.00		
12	INCOMP	•							

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO									
	Increment of stresses obtained using : Boussinesq								
Settlement for $X = 7.00$ (ft) $Y = 39.50$ (ft)									
Fo	oting #				Corner Po		Load		
	1		.(+t) Y1([.] .50 131.0		X2(ft) 49.00 1		(psf) 242.00		
Foundat	ion []a		100 7	r (£+)	Consumed Curr	efecc Flow	126 50 (ft)		
	ion Ele able El			• •		rface Elev.= ht of Wat. =	136.50 (ft) 62.40 (pcf)		
		Comp iick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-		
1 IN									
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00									
3 IN	ICOMP. 3	31.0			130.00	0.00	0.00		
			To	tal Sett	tlement =	0.00	0.00		
	C. h I			C	Charles				
N§.	Thick.	ayer. Elev.	Initial	Increme	L Stresses	ast Press.	Sottlomont		
113.			(psf)) (p:		(in.)		
	(10)	(10)	(121)	(121)		31)	(111.)		
1	INCOMF).							
2	1.90	119.05	2174.60	0.0	00 217	4.60	0.00		
3	1.90	117.15	2345.76	0.0	00 234	5.76	0.00		
4	1.90	115.25	2451.40	0.0	00 245	1.40	0.00		
5	1.90	113.35	2557.04	0.0	0 255	7.04	0.00		
6	1.90	111.45	2662.68	0.0		2.68	0.00		
7	1.90	109.55	2768.32	0.0		8.32	0.00		
8	1.90	107.65	2873.96	0.0		3.96	0.00		
9	1.90	105.75	2979.60	0.0		9.60	0.00		
10	1.90	103.85	3085.24	0.0		5.24	0.00		
11	1.90	101.95	3190.88	0.0	33 319	0.88	0.00		
12	INCOMF								

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO									
	Increment of stresses obtained using : Boussinesq								
Settlement for $X = 7.00$ (ft) $Y = 86.50$ (ft)									
Fo	oting #				Corner Po:		Load		
	1		(ft) Y1(.50 131.		X2(ft) \ 49.00 1		(psf) 242.00		
	1								
	ion Ele able El			• •		<pre>rface Elev.= nt of Wat. =</pre>	136.50 (ft) 62.40 (pcf)		
		Comp ick. ft)	o. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-		
1 IN	ICOMP. 1	.6.5			125.00	0.00	0.00		
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00							0.00		
3 IN	ICOMP. 3	31.0			130.00	0.00	0.00		
			To	tal Sett	tlement =	0.00	0.00		
	C. h I			C					
N§.	Thick.	ayer. Elev.	Initial	Increme	L Stresses	ast Press.	Settlement		
113.			(psf)) (p:		(in.)		
	(10)	(10)	(h21)	(bar)) (P:	51)	(111.)		
1	INCOMP								
2	1.90	119.05	2174.60	0.6	0 2174	4.60	0.00		
3	1.90	117.15	2345.76	0.6	01 234	5.76	0.00		
4	1.90	115.25	2451.40	0.0		1.40	0.00		
5	1.90	113.35	2557.04	0.0	94 2557	7.04	0.00		
6	1.90	111.45	2662.68	0.0	96 2662	2.68	0.00		
7	1.90	109.55	2768.32	0.0	99 2768	8.32	0.00		
8	1.90	107.65	2873.96	0.1	L3 2873	3.96	0.00		
9	1.90	105.75	2979.60	0.1	L7 2979	9.60	0.00		
10	1.90	103.85	3085.24	0.2		5.24	0.00		
11	1.90	101.95	3190.88	0.2	28 3196	9.88	0.00		
12	INCOMF	· ·							

Project Client Date	:	North St Woodard-C 4/6/2023	Number Manage d by	r: MJO	8.00					
	Increment of stresses obtained using : Boussinesq									
Settlement for X = 7.00 (ft) Y = 109.80 (ft)										
Fo	oting #		ner Point					Load		
	1		(ft) Y1(.50 131.		49.00			(psf) 242.00		
Foundation Elev.= 123.75 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)							• •			
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight		lement	-		
1 INCOMP. 16.5 125.00 0.00 0.00										
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00										
	ICOMP. 3				130.0		0.00	0.00		
			То	tal Sett	tlement	=	0.00	0.00		
	Sub1	ayer		Soi	l Stress	es				
N§.	Thick.	-	Initial	Increme			ress.	Settlement		
			(psf))			(in.)		
1	TNCOMD									
1 2	INCOMP 1.90	119.05	2174.60	0.6	າ ເ	174.60		0.00		
3		117.15	2345.76			345.76		0.00		
4	1.90	115.25	2451.40	0.1		451.40		0.00		
5	1.90	113.35	2557.04	0.1		557.04		0.00		
6	1.90	111.45	2662.68	0.2		662.68		0.00		
7	1.90	109.55	2768.32	0.4		768.32		0.00		
8	1.90	107.65	2873.96	0.5		873.96		0.00		
9	1.90	105.75	2979.60	0.7		979.60		0.00		
10	1.90	103.85	3085.24	0.9		085.24		0.00		
11	1.90	101.95	3190.88	1.1		190.88		0.00		
12	INCOMP	•								

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO									
	Increment of stresses obtained using : Boussinesq								
Settlement for X = 7.00 (ft) Y = 124.80 (ft)									
Footing # Corner Point P1 Corner Point P2 Load X1(ft) Y1(ft) X2(ft) Y2(ft) (psf)									
	1		(+t) Y1(.50 131.		X2(+t) 49.00	(psf) 242.00			
	• -1		400 7						
	ion Ele: able El		= 123.7 = 118.0	• •				136.50 (ft) 62.40 (pcf)	
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Prima Settle (in.	ement		
1 INCOMP. 16.5 125.00 0.00 0.00									
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00									
3 IN	ICOMP. 3	1.0			130.00) 6	.00	0.00	
			То	tal Set	tlement =	- 6	0.00	0.00	
	Cub 1			c					
N§.	Subl Thick.	-	Initial		l Stresse			Settlement	
112.			(psf)) (
	(11)	(11)	(psr)	(psi)) ((hai)		(in.)	
1	INCOMP	•							
2	1.90	119.05	2174.60	0.0	95 21	74.60		0.00	
3	1.90	117.15	2345.76	0.3	14 23	845.76		0.00	
4	1.90	115.25	2451.40	0.2	28 24	151.40		0.00	
5	1.90	113.35	2557.04	0.4	48 25	57.04		0.00	
6	1.90	111.45	2662.68	0.7		62.68		0.00	
7	1.90	109.55	2768.32	1.0		68.32		0.00	
8	1.90	107.65	2873.96	1.3		373.96		0.00	
9	1.90	105.75	2979.60	1.7		979.60		0.00	
10	1.90	103.85	3085.24	2.2		85.24		0.00	
11	1.90	101.95	3190.88	2.5	53 31	.90.88		0.00	
12	INCOMP	•							

Project Client Date	: ۱	North St Noodard-C 4/6/2023		Project	Project Number : 177018.00 Project Manager: MJO Computed by : MJO				
	Increment of stresses obtained using : Boussinesq								
Settlement for X = 7.00 (ft) Y = 138.00 (ft)									
Fo	oting #		ner Point					Load	
	1		(ft) Y1(.50 131.		49.00			(psf) 242.00	
Foundation Elev.= 123.75 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)							• •		
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight		lement	-	
1 IN	1 INCOMP. 16.5 125.00 0.00 0.00								
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00							0.00		
3 IN	ICOMP. 33	1.0			130.0	0	0.00	0.00	
			То	tal Sett	tlement	=	0.00	0.00	
	Subla	aver		Soi	l Stress	es			
N§.	Thick.	-	Initial	Increme			ress.	Settlement	
2			(psf))			(in.)	
4	THEOMO								
1 2	INCOMP 1.90	119.05	2174.60	0.0	20 2	174.60		0.00	
2		117.15	2345.76	0.2		345.76		0.00	
4	1.90	115.25	2451.40	0.4		451.40		0.00	
5	1.90	113.35	2557.04	0.7		557.04		0.00	
6	1.90	111.45	2662.68	1.1		662.68		0.00	
7	1.90	109.55	2768.32	1.6		768.32		0.00	
8	1.90	107.65	2873.96	2.2		873.96		0.00	
9	1.90	105.75	2979.60	2.6		979.60		0.00	
10	1.90	103.85	3085.24	3.3		085.24		0.00	
11	1.90	101.95	3190.88	3.6	59 3	190.88		0.00	
12	INCOMP	•							

Project Client Date	:	North St Woodard-C 4/6/2023		Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO				
	Increment of stresses obtained using : Boussinesq								
Settlement for $X = 18.00$ (ft) $Y = 37.00$ (ft)									
Fo	oting #		ner Point				Load		
	1		(ft) Y1(.50 131.		X2(+t) 49.00		(psf) 242.00		
Foundat	ion Ele	v.	= 123.7	5 (ft)	Ground S	urface Ele	v.= 136.50 (f ⁺	t)	
	able El			• •			. = 62.40 (po	•	
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settleme (in.)	nt Settlemen		
1 INCOMP. 16.5 125.00 0.00 0.00									
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00									
3 IN	ICOMP. 3	1.0			130.00	0.0	0 0.00	9	
			То	tal Set	tlement =	0.0	0 0.00	9	
	Subl	ayer		Soi	l Stresse	S			
N§.	Thick.	-	Initial	Increme	ent Max.	Past Press	. Settlement		
	(ft)	(ft)	(psf)	(psf)) (psf)	(in.)		
1	INCOMP								
2	1.90	119.05	2174.60	0.0	2 0 21	74.60	0.00		
3		117.15	2345.76			45.76	0.00		
4	1.90	115.25	2451.40	0.0		51.40	0.00		
5	1.90	113.35	2557.04	0.0		57.04	0.00		
6	1.90	111.45	2662.68	0.0		62.68	0.00		
7	1.90	109.55	2768.32	0.0	91 27	68.32	0.00		
8	1.90	107.65	2873.96	0.0	91 28	73.96	0.00		
9	1.90	105.75	2979.60	0.0	o 29	79.60	0.00		
10	1.90	103.85	3085.24	0.0	82 3e	85.24	0.00		
11	1.90	101.95	3190.88	0.0	ð3 31	90.88	0.00		
12	INCOMP	•							

-	ard-Curran	Project Number : 177018.00 Project Manager: MJO Computed by : MJO							
Increment of stresses obtained using : Boussinesq									
Settlement for $X = 18.00$ (ft) $Y = 47.50$ (ft)									
Footing #	Corner Point P1		Load						
1	X1(ft) Y1(ft) 34.50 131.00	X2(ft) Y2(ft) 49.00 156.00	(psf) 242.00						
_									
Foundation Elev. Water table Elev.		Ground Surface Elev.= Unit weight of Wat. =	• •						
Layer N°. Type Thick. (ft)		Unit Primary Weight Settlement (pcf) (in.)	-						
1 INCOMP. 16.5 125.00 0.00 0.00									
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00									
3 INCOMP. 31.0		130.00 0.00	0.00						
	Total Set	tlement = 0.00	0.00						
Sublayer	Soi	l Stresses							
-	ev. Initial Increm		Settlement						
-) (psf)	(in.)						
(-) (-) (F-) (F-								
1 INCOMP.									
2 1.90 119			0.00						
3 1.90 117		00 2345.76	0.00						
	.25 2451.40 0.		0.00						
	.35 2557.04 0.		0.00						
6 1.90 111			0.00						
	.55 2768.32 0.		0.00						
	.65 2873.96 0.		0.00						
	.75 2979.60 0.		0.00						
10 1.90 103			0.00						
	.95 3190.88 0.	04 3190.88	0.00						
12 INCOMP.									

Project Client Date	: ١	North St Woodard-C 4/6/2023		Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO				
	Increment of stresses obtained using : Boussinesq								
Settlement for X = 18.00 (ft) Y = 86.50 (ft)									
Footing # Corner Point P1 X1(ft) Y1(ft)					Corner Point P2 Load X2(ft) Y2(ft) (psf)				
	1		.50 131.0		49.00		242.00		
	ion Ele able Ele					urface Elev.= ght of Wat. =	136.50 (ft) 62.40 (pcf)		
	•	Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-		
1 IN	1 INCOMP. 16.5 125.00 0.00 0.00								
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00									
	ICOMP. 3				130.00		0.00		
			To	tal Sett	tlement =	0.00	0.00		
	Subl	aver		Soil	l Stresse	s			
N§.	Thick.	-	Initial	Increme	ent Max.	Past Press.	Settlement		
	(ft)	(ft)	(psf)	(psf)) (psf)	(in.)		
1	INCOMP								
2	1.90	119.05	2174.60	0.0	31 21	74.60	0.00		
3		117.15	2345.76	0.0		45.76	0.00		
4	1.90	115.25	2451.40	0.6		51.40	0.00		
5	1.90	113.35	2557.04	0.6		57.04	0.00		
6	1.90	111.45	2662.68	0.6		62.68	0.00		
7	1.90	109.55	2768.32	0.1		68.32	0.00		
8	1.90	107.65	2873.96	0.1		73.96	0.00		
9	1.90	105.75	2979.60	0.2		79.60	0.00		
10	1.90	103.85	3085.24	0.3	33 30	85.24	0.00		
11	1.90	101.95	3190.88	0.4	41 31	90.88	0.00		
12	INCOMP	•							

Project Client Date	5 6											
Increment of stresses obtained using : Boussinesq												
Settlement for $X = 18.00$ (ft) $Y = 125.50$ (ft)												
Fo	oting #				Corner Po		Load					
	1		(+t) Y1(.50 131.		X2(ft) Y2(ft) (psf) 49.00 156.00 242.00							
	ion Ele able El			• •			136.50 (ft) 62.40 (pcf)					
	•	Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)						
1 INCOMP. 16.5 125.00 0.00 0.00												
	COMP. 1		37 0.037	0.037								
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00					
			То	tal Set	tlement =	0.00	0.00					
	Subl	ayer		Soil	l Stresses	5						
N§.	Thick.	Elev.	Initial	Increme	ent Max.F	Past Press.	Settlement					
	(ft)	(ft)	(psf)	(psf)) (r	osf)	(in.)					
1	INCOMP											
2	1.90	119.05	2174.60	0.2	26 217	74.60	0.00					
3		117.15	2345.76			15.76	0.00					
4	1.90	115.25	2451.40	1.2		51.40	0.00					
5	1.90	113.35	2557.04	2.6		57.04	0.00					
6	1.90	111.45	2662.68	2.9	95 266	52.68	0.00					
7	1.90	109.55	2768.32	3.8	88 276	58.32	0.00					
8	1.90	107.65	2873.96	4.8	81 287	73.96	0.00					
9	1.90	105.75	2979.60	5.6	57 297	79.60	0.00					
10	1.90	103.85	3085.24	6.4	45 308	35.24	0.00					
11	1.90	101.95	3190.88	7.2	12 319	90.88	0.00					
12	INCOMP	•										

$\label{eq:second} \begin{array}{c} \mbox{Increment of stresses obtained using : Boussinesq} \\ \mbox{Settlement for X = 18.00 (ft)} & Y = 135.80 (ft) \\ \mbox{Footing \# Corner Point P1 X2(ft) Y2(ft) (psf) 1 34.50 131.00 49.00 156.00 242.00 \\ \mbox{Foundation Elev.} = 123.75 (ft) Ground Surface Elev.= 136.50 (ft) 0.00 (ft) Unit weight of Wat.= 62.40 (pcf) \\ \mbox{Water table Elev.} = 118.00 (ft) Unit Primary Secondary 0.00 (ft) 0.00 \\ \mbox{Layer N}^{\circ}. Type Thick. Ratio Weight Settlement (pcf) (in.) Settlement (in.) \\ \mbox{I INCOMP. 16.5 125.00 0.00 0.00 0.00 \\ \mbox{I CoMP. 19.0 0.037 0.037 0.037 118.00 0.01 0.00 \\ \mbox{I Sublayer Soil Stresses NS. Thick. Elev. Initial Increment Max.Past Press. Settlement (ft) (ft) (psf) (psf) (psf) (psf) (in.) \\ \mbox{I INCOMP. 19.0 119.05 2174.60 0.54 2174.60 0.00 \\ \mbox{I 190 117.15 2345.76 1.34 2345.76 0.00 \\ \mbox{I 190 115.25 2451.40 2.49 2451.40 0.00 \\ \end{tabular}$
Footing # Corner Point P1 X1(ft) Y1(ft) Corner Point P2 X2(ft) Y2(ft) Load (psf) 1 34.50 131.00 49.00 156.00 242.00 Foundation Elev. = 123.75 (ft) Ground Surface Elev.= 136.50 (ft) Water table Elev. = 123.75 (ft) Ground Surface Elev.= 136.50 (ft) Water table Elev. = 118.00 (ft) Unit Primary Secondary N°. Type Thick. (ft) Comp. Recomp. Swell. Ratio Unit Primary Secondary 1 INCOMP. 16.5 0.037 0.037 0.037 118.00 0.01 0.00 2 COMP. 19.0 0.037 0.037 130.00 0.00 0.00 3 INCOMP. 31.0 Total Settlement = 0.01 0.00 Sublayer Soil Stresses Settlement (ft) (ft) (psf) (psf) 1 INCOMP. 1.90 119.05 2174.60 0.54 2174.60 0.00 3 1.90 117.15 2345.76 1.34 2345.76 0.00
X1(ft) Y1(ft) X2(ft) Y2(ft) (psf) 1 34.50 131.00 49.00 156.00 242.00 Foundation Elev. = 123.75 (ft) Ground Surface Elev.= 136.50 (ft) Water table Elev. = 118.00 (ft) Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement 1 INCOMP. 16.5 Comp. Recomp. Swell. Unit Primary Secondary 1 INCOMP. 16.5 125.00 0.00 0.00 2 COMP. 19.0 0.037 0.037 118.00 0.01 0.00 3 INCOMP. 31.0 Total Settlement = 0.01 0.00 Sublayer N§. Thick. Elev. Initial Increment Max.Past Press. Settlement (in.) 1 INCOMP. 1.90 119.05 2174.60 0.54 2174.60 0.00 3 1.90 117.15 2345.76 1.34 2345.76 0.00
1 34.50 131.00 49.00 156.00 242.00 Foundation Elev. = 123.75 (ft) Ground Surface Elev.= 136.50 (ft) Water table Elev. = 118.00 (ft) Unit weight of Wat. = 62.40 (pcf) N°. Type Thick. Ratio Weight Settlement (pcf) Secondary 1 INCOMP. 16.5 125.00 0.00 0.00 2 COMP. 19.0 0.037 0.037 118.00 0.01 0.00 3 INCOMP. 31.0 100 Total Settlement = 0.01 0.00 Sublayer Soil Stresses Settlement (ft) (in.) 1 INCOMP. 1 INCOMP. 2 1.90 119.05 2174.60 0.54 2174.60 0.00 3 1.90 119.05 2174.60 0.54 2174.60 0.00
Water table Elev. = 118.00 (ft) Unit weight of Wat. = 62.40 (pcf) Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) Ratio Unit Primary Secondary Settlement (ft) Ratio Weight Settlement (in.) 1 INCOMP. 16.5 125.00 0.00 0.00 2 COMP. 19.0 0.037 0.037 118.00 0.01 0.00 3 INCOMP. 31.0 Total Settlement = 0.01 0.00 0.00 Sublayer Soil Stresses Settlement (ft) (ft) (psf) (psf) (in.) 1 INCOMP. 1 (psf) (psf) (in.) (in.) 1 INCOMP. 2 1.90 119.05 2174.60 0.54 2174.60 0.00 3 1.90 117.15 2345.76 1.34 2345.76 0.00
N°. Type Thick. (ft) Ratio Weight (pcf) Settlement (in.) Settlement (in.) 1 INCOMP. 16.5 2 125.00 0.00 0.00 2 COMP. 19.0 0.037 0.037 118.00 0.01 0.00 3 INCOMP. 31.0 130.00 0.00 0.00 0.00 Sublayer Soil Stresses N§. Thick. Elev. (ft) Initial Increment Max.Past Press. (ft) Settlement (in.) 1 INCOMP. 2 1.90 119.05 2174.60 0.54 2174.60 0.00 3 1.90 117.15 2345.76 1.34 2345.76 0.00
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.01 0.00 3 INCOMP. 31.0 130.00 0.00 0.00 Total Settlement = 0.01 0.00 Sublayer Soil Stresses N§. Thick. Elev. Initial Increment Max.Past Press. Settlement (ft) (ft) (psf) (psf) (psf) (in.) 1 INCOMP. 2 1.90 119.05 2174.60 0.54 2174.60 0.00 3 1.90 117.15 2345.76 1.34 2345.76 0.00
3 INCOMP. 31.0 130.00 0.00 0.00 Total Settlement = 0.01 0.00 Sublayer Soil Stresses 0.01 N§. Thick. Elev. Initial Increment Max.Past Press. Settlement (in.) 1 INCOMP. 0.00 2 1.90 119.05 2174.60 0.54 2174.60 0.00 3 1.90 117.15 2345.76 1.34 2345.76 0.00
Total Settlement = 0.01 0.00 Sublayer Soil Stresses N§. Thick. Elev. Initial Increment Max.Past Press. Settlement (ft) (ft) (ft) (psf) (psf) 1 INCOMP. 2 1.90 119.05 2174.60 0.54 2174.60 0.00 3 1.90 117.15 2345.76 1.34 2345.76 0.00
Sublayer Soil Stresses N§. Thick. Elev. Initial Increment Max.Past Press. Settlement (ft) (ft) (ft) (ft) (psf) 1 INCOMP. 2 1.90 119.05 3 1.90 117.15 2345.76 1.34 2345.76
N§. Thick. Elev. Initial Increment Max.Past Press. Settlement (ft) (ft) (psf) (psf) (psf) (in.) 1 INCOMP. 2 1.90 119.05 2174.60 0.54 2174.60 0.00 3 1.90 117.15 2345.76 1.34 2345.76 0.00
N§. Thick. Elev. Initial Increment Max.Past Press. Settlement (ft) (ft) (psf) (psf) (psf) (in.) 1 INCOMP. 2 1.90 119.05 2174.60 0.54 2174.60 0.00 3 1.90 117.15 2345.76 1.34 2345.76 0.00
1 INCOMP. 2 1.90 119.05 2174.60 0.54 2174.60 0.00 3 1.90 117.15 2345.76 1.34 2345.76 0.00
21.90119.052174.600.542174.600.0031.90117.152345.761.342345.760.00
21.90119.052174.600.542174.600.0031.90117.152345.761.342345.760.00
3 1.90 117.15 2345.76 1.34 2345.76 0.00
5 1.90 113.35 2557.04 3.89 2557.04 0.00
6 1.90 111.45 2662.68 5.39 2662.68 0.00
7 1.90 109.55 2768.32 6.87 2768.32 0.00
8 1.90 107.65 2873.96 8.22 2873.96 0.00
9 1.90 105.75 2979.60 9.40 2979.60 0.00
10 1.90 103.85 3085.24 10.36 3085.24 0.00
11 1.90 101.95 3190.88 11.10 3190.88 0.00
12 INCOMP.

Project Client Date	:	North St Woodard-C 4/6/2023		Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO							
	Increment of stresses obtained using : Boussinesq											
Settlement for X = 18.00 (ft) Y = 145.00 (ft)												
Fo	oting #				Corner Poin		Load					
	1		(+t) Y1(* .50 131.		X2(ft) Y2 49.00 156		(psf) 242.00					
	-											
	ion Ele able El			• •			136.50 (ft) 62.40 (pcf)					
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)												
1 INCOMP. 16.5 125.00 0.00 0.00												
	OMP. 1	9.0 0.0	37 0.037	0.037	118.00	0.01	0.00					
3 IN	COMP. 3	1.0			130.00	0.00	0.00					
			To	tal Set [.]	tlement =	0.01	0.00					
	Subl	aver		Soi	l Stresses							
N§.	Thick.	•	Initial			t Press.	Settlement					
	(ft)	(ft)	(psf)	(psf) (psf)	(in.)					
1	INCOMP											
2	1.90	119.05	2174.60	0.0	63 2174.	60	0.00					
3	1.90		2345.76		55 2345.		0.00					
4	1.90	115.25	2451.40	2.8			0.00					
5	1.90	113.35	2557.04	4.4			0.00					
6	1.90	111.45	2662.68	6.3			0.00					
7	1.90	109.55	2768.32	7.	77 2768.	32	0.00					
8	1.90	107.65	2873.96	9.3	25 2873.	96	0.00					
9	1.90	105.75	2979.60	10.	50 2979.	60	0.00					
10	1.90	103.85	3085.24	11.	51 3085.	24	0.00					
11	1.90	101.95	3190.88	12.2	26 3190.	88	0.00					
12	INCOMP	•										

Project Client Date	5 6											
	Increment of stresses obtained using : Boussinesq											
	Set	tlement f:	or X =	7.00 (f1	:) Y	= 32.00 (ft))					
Fo	oting #				Corner Po		Load					
	1		(+t) Y1(.50 131.		X2(ft) 49.00 1		(psf) 302.00					
C a con da t			120 5	0 ((+)	Current Cu							
	ion Ele able El	ev.		• •		rface Elev.= ht of Wat. =	136.50 (ft) 62.40 (pcf)					
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)						
1 INCOMP. 16.5 125.00 0.00 0.00												
	COMP. 1	.9.0 0.0	37 0.037	0.037	118.00	0.00	0.00					
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00					
			То	tal Sett	:lement =	0.00	0.00					
	C. h]			C								
N§.	Thick.	ayer	Initial		L Stresses	ast Press.	Sottlomont					
112.			(psf)) (p							
	(11)	(11)	(h21)	(bsi)	, (Р	51)	(in.)					
1	INCOMF	· .										
2	1.90	119.05	2174.60	0.0	00 217	4.60	0.00					
3	1.90	117.15	2345.76	0.0	00 234	5.76	0.00					
4	1.90	115.25	2451.40	0.0)1 245	1.40	0.00					
5	1.90	113.35	2557.04	0.0	91 255	7.04	0.00					
6	1.90	111.45	2662.68	0.0	91 266	2.68	0.00					
7	1.90	109.55	2768.32	0.0	92 276	8.32	0.00					
8	1.90	107.65	2873.96	0.0	92 287	3.96	0.00					
9	1.90	105.75	2979.60	0.0	93 297	9.60	0.00					
10	1.90	103.85	3085.24	0.0	308 308	5.24	0.00					
11	1.90	101.95	3190.88	0.0	319	0.88	0.00					
12	INCOMF).										

Project Client Date	5 8											
	Increment of stresses obtained using : Boussinesq											
Settlement for $X = 7.00$ (ft) $Y = 39.50$ (ft)												
Fo	oting #				Corner Poi		Load					
	1		(+t) Y1(* .50 131.	•	X2(ft) Y 49.00 15	• •	(psf) 302.00					
	ion Ele able El			• •		face Elev.= t of Wat. =	136.50 (ft) 62.40 (pcf)					
		Comp lick. ft)	o. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-					
1 IN	ICOMP. 1	.6.5			125.00	0.00	0.00					
	COMP. 1		0.037	0.037	118.00	0.00	0.00					
	ICOMP. 3				130.00	0.00	0.00					
			То	tal Sett	:lement =	0.00	0.00					
	Cubi			Co.i T	l Stresses							
N§.	Thick.	ayer. Elev.	Initial	Increme		st Press.	Sottlomont					
112.			(psf)) (ps ⁻							
	(10)	(10)	(psr)	(psi)) (þs	.)	(in.)					
1	INCOMF											
2	1.90	119.05	2174.60	0.0	00 2174	.60	0.00					
3		117.15	2345.76		2345		0.00					
4	1.90	115.25	2451.40	0.6			0.00					
5	1.90	113.35	2557.04	0.6			0.00					
6	1.90	111.45	2662.68	0.0	2662	.68	0.00					
7	1.90	109.55	2768.32	0.0	92 2768	.32	0.00					
8	1.90	107.65	2873.96	0.0	3 2873	.96	0.00					
9	1.90	105.75	2979.60	0.0	94 2979	.60	0.00					
10	1.90	103.85	3085.24	0.0	95 3085	.24	0.00					
11	1.90	101.95	3190.88	0.0	96 3190	.88	0.00					
12	INCOMF	· .										

Project Client Date	5 6											
	Increment of stresses obtained using : Boussinesq											
Settlement for $X = 7.00$ (ft) $Y = 86.50$ (ft)												
Fc	ooting #		ner Point					Load				
	1		(ft) Y1(.50 131.	•	X2(ft) 49.00	• •		(psf) 302.00				
	-											
	ion Ele able El			• •		Surface El Lght of Wa		136.50 (ft) 62.40 (pcf)				
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight		nent	-				
1 INCOMP. 16.5 125.00 0.00 0.00												
2 0	COMP. 1	9.0 0.0	0.037 0.037	0.037	118.00) 0	.00	0.00				
3 IN	ICOMP. 3	1.0			130.00	0	.00	0.00				
			То	tal Sett	tlement =	= 0	.00	0.00				
	Cult 1			C e d T		_						
N§.	Thick.	ayer Elev.	Initial	Increme	l Stresse	Past Pres	-	ettlement				
NS.							55. 5					
	(10)	(11)	(psf)	(psi)) ((hzi)		(in.)				
1	INCOMP	•										
2	1.90	119.05	2174.60	0.0	94 21	L74.60		0.00				
3	1.90	117.15	2345.76	0.6	2 6 23	845.76		0.00				
4	1.90	115.25	2451.40	0.0) 9 24	151.40		0.00				
5	1.90	113.35	2557.04	0.1	14 25	557.04		0.00				
6	1.90	111.45	2662.68	0.1	19 26	562.68		0.00				
7	1.90	109.55	2768.32	0.2	25 27	768.32		0.00				
8	1.90	107.65	2873.96	0.3	31 28	373.96		0.00				
9	1.90	105.75	2979.60	0.3	39 29	979.60		0.00				
10	1.90	103.85	3085.24	0.4	47 36	85.24		0.00				
11	1.90	101.95	3190.88	0.5	56 31	L90.88		0.00				
12	INCOMP											

Project Client Date	5 0											
	Increment of stresses obtained using : Boussinesq											
Settlement for X = 7.00 (ft) Y = 109.80 (ft)												
Fc	ooting #		ner Point					Load				
	1		(ft) Y1(.50 131.	•	X2(+t) 49.00	• •		(psf) 302.00				
F			120 5	0 ((+)	Constant of							
	ion Ele able El			• •		Surface El Ight of Wa		136.50 (ft) 62.40 (pcf)				
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight		ient	Secondary Settlement (in.)				
1 INCOMP. 16.5 125.00 0.00 0.00												
	COMP. 1		37 0.037	0.037			00	0.00				
3 IN	ICOMP. 3	1.0			130.00) 0.	00	0.00				
			To	tal Sett	tlement =	= 0.	00	0.00				
	Subl	aver		Soi	l Stresse	2S						
N§.	Thick.	•	Initial	Increme	ent Max.	Past Pres	s. Se	ettlement				
	(ft)	(ft)	(psf)	(psf)) ((psf)		(in.)				
1	INCOMP											
1 2	1.90	119.05	2174.60	0.3	18 21	74.60		0.00				
3		117.15	2345.76			345.76		0.00				
4	1.90	115.25	2451.40	0.4		51.40		0.00				
5	1.90	113.35	2557.04	0.6		57.04		0.00				
6	1.90	111.45	2662.68	0.8		62.68		0.00				
7	1.90	109.55	2768.32	1.0		68.32		0.00				
8	1.90	107.65	2873.96	1.3		873.96		0.00				
9	1.90	105.75	2979.60	1.5		79.60		0.00				
10	1.90	103.85	3085.24	1.8		85.24		0.00				
11	1.90	101.95	3190.88	2.2		90.88		0.00				
12	INCOMP											

Project Client Date	5 0											
	Increment of stresses obtained using : Boussinesq											
Settlement for $X = 7.00$ (ft) $Y = 124.80$ (ft)												
Fo	oting #		ner Point				Loa					
	1		(ft) Y1(.50 131.	•	49.00	• •	(psf 302.	•				
	ion Ele able El			• •		Surface El Ight of Wa	ev.= 136. t. = 62.	50 (ft) 40 (pcf)				
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primar Settlem (in.)	ent Set	condary tlement (in.)				
1 IN	ICOMP. 1	6.5			125.00) 0.	00	0.00				
2 C	OMP. 1	9.0 0.0	37 0.037	0.037	118.00) 0.	00	0.00				
	ICOMP. 3				130.00			0.00				
			То	tal Set	tlement =	= 0.	00	0.00				
	Subl	aver		Soi	l Stresse	2						
N§.	Thick.	-	Initial	Increme			s. Settl	ement				
2			(psf)) (ln.)				
1	INCOMP											
1 2	1.90	119.05	2174.60	0.4	17 21	74.60	C	0.00				
3		117.15	2345.76	0.7		345.76		0.00				
4	1.90	115.25	2451.40	1.1		151.40		0.00				
5	1.90	113.35	2557.04	1.5		57.04		0.00				
6	1.90	111.45	2662.68	1.9		62.68		0.00				
7	1.90	109.55	2768.32	2.4		68.32		0.00				
8	1.90	107.65	2873.96	2.9		373.96		0.00				
9	1.90	105.75	2979.60	3.3		79.60		.00				
10	1.90	103.85	3085.24	3.8		85.24		0.00				
11	1.90	101.95	3190.88	4.2		90.88		0.00				
12	INCOMP	•										

Project Client Date	5 6											
	Increment of stresses obtained using : Boussinesq											
Settlement for $X = 7.00$ (ft) $Y = 138.00$ (ft)												
Fc	ooting #		ner Point					Load				
	1		(ft) Y1(.50 131.	•	X2(+t) 49.00	• •		(psf) 302.00				
Foundat	ion []o	.,	- 100 F	o (t+)	Cround			126 50 (£+)				
	ion Ele able El		= 128.5 = 118.0	• •				136.50 (ft) 62.40 (pcf)				
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight		Lement	-				
1 INCOMP. 16.5 125.00 0.00 0.00												
	COMP. 1	9.0 0.0	37 0.037	0.037	118.0	9	0.00	0.00				
3 IN	ICOMP. 3	1.0			130.0	9	0.00	0.00				
			To	tal Set	tlement	=	0.00	0.00				
	Cub]	ayer		501	L Stress							
N§.	Thick.	-	Initial	Increme			PACC	Settlement				
113.			(psf))		C35.	(in.)				
	()	()	(PO.)	(P=-)	/	(P)		()				
1	INCOMP	•										
2	1.90	119.05	2174.60	0.7	75 2	174.60		0.00				
3	1.90	117.15	2345.76	1.2	20 2	345.76		0.00				
4	1.90	115.25	2451.40	1.7	74 24	451.40		0.00				
5	1.90	113.35	2557.04	2.3		557.04		0.00				
6	1.90	111.45	2662.68	2.9		662.68		0.00				
7	1.90	109.55	2768.32	3.0		768.32		0.00				
8	1.90	107.65	2873.96	4.2		873.96		0.00				
9	1.90	105.75	2979.60	4.9		979.60		0.00				
10	1.90	103.85	3085.24	5.4		085.24		0.00				
11	1.90	101.95	3190.88	5.9	96 3:	190.88		0.00				
12	INCOMP	•										

Project Client Date	5 6											
	Increment of stresses obtained using : Boussinesq											
Settlement for $X = 18.00$ (ft) $Y = 37.00$ (ft)												
Fo	oting #				Corner Po		Load					
	1		(+t) Y1(- .50 131.		X2(ft) 49.00 1		(psf) 302.00					
Foundation Elev.= 128.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)												
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)						
1 IN	ICOMP. 1	6.5			125.00	0.00	0.00					
	COMP. 1		37 0.037	0.037								
	ICOMP. 3				130.00		0.00					
			То	tal Sett	:lement =	0.00	0.00					
	Sub]	ayer		Soil	l Stresses							
N§.	Thick.	•	Initial			ast Press.	Settlement					
			(psf)) (p		(in.)					
	()	()	(P=-)	(199)	У Т Р	- /	()					
1	INCOMP	•										
2	1.90	119.05	2174.60	0.0	90 217	4.60	0.00					
3	1.90	117.15	2345.76	0.0	91 234	5.76	0.00					
4	1.90	115.25	2451.40	0.6	91 245	1.40	0.00					
5	1.90	113.35	2557.04	0.0	91 255	7.04	0.00					
6	1.90	111.45	2662.68	0.0		2.68	0.00					
7	1.90	109.55	2768.32	0.0		8.32	0.00					
8	1.90	107.65	2873.96	0.0		3.96	0.00					
9	1.90	105.75	2979.60	0.6		9.60	0.00					
10	1.90	103.85	3085.24	0.6		5.24	0.00					
11	1.90	101.95	3190.88	0.0	6 319	0.88	0.00					
12	INCOMP	•										

Project Client Date	5 0											
	Increment of stresses obtained using : Boussinesq											
Settlement for X = 18.00 (ft) Y = 47.50 (ft)												
Fc	oting #		ner Point				Load					
	1		(ft) Y1(.50 131.		X2(ft) 49.00		(psf) 302.00					
	-											
	cion Eler Cable Ele			• •		urface Elev.= ght of Wat. =	136.50 (ft) 62.40 (pcf)					
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-					
1 INCOMP. 16.5 125.00 0.00 0.00												
2 0	COMP. 19	9.0 0.0	37 0.037	0.037	118.00	0.00	0.00					
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00					
			To	tal Sett	tlement =	0.00	0.00					
	Subl			Soil	l Stresse	c						
N§.	Thick.	-	Initial	Increme		Past Press.	Settlement					
			(psf)) ((in.)					
		X - X	VF - 7	NE - 2		- /						
1	INCOMP	•										
2	1.90	119.05	2174.60	0.0		74.60	0.00					
3	1.90	117.15	2345.76	0.0	23	45.76	0.00					
4	1.90	115.25	2451.40	0.0		51.40	0.00					
5	1.90	113.35	2557.04	0.0		57.04	0.00					
6	1.90	111.45	2662.68	0.0		62.68	0.00					
7	1.90	109.55	2768.32	0.0		68.32	0.00					
8	1.90	107.65	2873.96	0.0		73.96	0.00					
9	1.90	105.75	2979.60	0.0		79.60	0.00					
10	1.90	103.85	3085.24	0.0		85.24	0.00					
11	1.90	101.95	3190.88	0.0	39 31	90.88	0.00					
12	INCOMP	•										

Project Client Date	5 0											
	Increment of stresses obtained using : Boussinesq											
Settlement for X = 18.00 (ft) Y = 86.50 (ft)												
Fo	ooting #		ner Point				Load					
	1		(ft) Y1(.50 131.		X2(ft) 49.00		(psf) 302.00					
	_											
	ion Ele able El			• •		urface Elev.= ght of Wat. =	136.50 (ft) 62.40 (pcf)					
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-					
1 INCOMP. 16.5 125.00 0.00 0.00												
2 C	COMP. 1	9.0 0.0	37 0.037	0.037	118.00	0.00	0.00					
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00					
			To	tal Sett	tlement =	0.00	0.00					
	Ch]			Co.i.		-						
N§.	Thick.	ayer Elev.	Initial	Increme	l Stresse	s Past Press.	Sottlomont					
113.			(psf)) ((in.)					
	(10)	(10)	(psr)	(bar)) (51)	(111.)					
1	INCOMP	•										
2	1.90	119.05	2174.60	0.6	95 21	74.60	0.00					
3	1.90	117.15	2345.76	0.6)9 23-	45.76	0.00					
4	1.90	115.25	2451.40	0.1	L4 24	51.40	0.00					
5	1.90	113.35	2557.04	0.2	20 25	57.04	0.00					
6	1.90	111.45	2662.68	0.2	28 26	62.68	0.00					
7	1.90	109.55	2768.32	0.3	36 27	68.32	0.00					
8	1.90	107.65	2873.96	0.4	16 28	73.96	0.00					
9	1.90	105.75	2979.60	0.5	57 29	79.60	0.00					
10	1.90	103.85	3085.24	0.0	58 30	85.24	0.00					
11	1.90	101.95	3190.88	0.8	30 31	90.88	0.00					
12	INCOMP	•										

Project Client Date	: W	orth St oodard-C /6/2023		Project Number : 177018.00 Project Manager: MJO Computed by : MJO							
	Increment of stresses obtained using : Boussinesq										
Settlement for X = 18.00 (ft) Y = 125.50 (ft)											
Footing # Corner Point P1 Corner Point P2 Load X1(ft) Y1(ft) X2(ft) Y2(ft) (psf)											
	1		(+t) +1(.50 131.			0 156.0		(psf) 302.00			
Foundation Elev.= 128.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)											
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)											
1 INCOMP. 16.5 125.00 0.00 0.00											
	OMP. 19 COMP. 31		37 0.037	0.037		.00 .00	0.01 0.00	0.00 0.00			
			То	tal Set [.]	tlemer	it =	0.01	0.00			
	Subla	ver		Soi	l Stre	SSES					
N§.	Thick.	-	Initial				Press.	Settlement			
	(ft)	(ft)	(psf)	(psf)	(psf)		(in.)			
1	INCOMP.										
2	1.90	119.05	2174.60	2.0	06	2174.60		0.00			
3		117.15	2345.76		11	2345.76		0.00			
4		115.25	2451.40	4.2		2451.40		0.00			
5		113.35	2557.04	5.4		2557.04		0.00			
6		111.45	2662.68	6.		2662.68		0.00			
7		109.55	2768.32	7.		2768.32		0.00			
8 9		107.65 105.75	2873.96 2979.60	8.4 9.2		2873.96 2979.60		0.00 0.00			
9 10		103.85	3085.24	9.3		3085.24		0.00			
10 11		101.95	3190.88	10.1		3190.88		0.00			
12	INCOMP.		5150.00	TO .		5150.00		0.00			
	•										

Client	Project Name: North St Culvert, Agawam Project Number : 177018.00 Client : Woodard-Curran Project Manager: MJO Date : 4/6/2023 Computed by : MJO											
	Increment of stresses obtained using : Boussinesq											
Settlement for X = 18.00 (ft) Y = 135.80 (ft)												
Footing # Corner Point P1 Corner Point P2 Load X1(ft) Y1(ft) X2(ft) Y2(ft) (psf)												
	1	34	.50 131.	00	49.00 156	5.00	302.00					
	ion Ele able El	ev. .ev.					136.50 (ft) 62.40 (pcf)					
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)												
1 INCOMP. 16.5 125.00 0.00 0.00												
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.01 0.00												
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00					
			То	tal Set	tlement =	0.01	0.00					
	Sub1	ayer		Soi	l Stresses							
N§.	Thick.	-	Initial		ent Max.Pas	st Press.	Settlement					
	(ft)	(ft)	(psf)	(psf)) (psf	-)	(in.)					
1	INCOMF)										
1	1.90	119.05	2174.60	3.9	95 2174.	60	0.00					
3		117.15	2345.76		78 2345.		0.00					
4	1.90	115.25	2451.40	7.6			0.00					
5	1.90	113.35	2557.04	9.4	44 2557.	04	0.00					
6	1.90	111.45	2662.68	11.6	2662.	68	0.00					
7	1.90	109.55	2768.32	12.3		32	0.00					
8	1.90	107.65	2873.96	13.4			0.00					
9	1.90	105.75	2979.60	14.2			0.00					
10	1.90	103.85	3085.24	14.7			0.00					
11	1.90	101.95	3190.88	15.3	12 3190.	88	0.00					
12	INCOMF	· •										

Project Client Date	5 6											
	Increment of stresses obtained using : Boussinesq											
Settlement for X = 18.00 (ft) Y = 145.00 (ft)												
Footing # Corner Point P1 Corner Point P2 Load X1(ft) Y1(ft) X2(ft) Y2(ft) (psf)												
	1		.50 131.0			156.00		302.00				
	ion Ele able El			• •				136.50 (ft) 62.40 (pcf)				
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)												
1 INCOMP. 16.5 125.00 0.00 0.00												
2 C	COMP. 1	9.0 0.0	37 0.037	0.037			0.02	0.00				
3 IN	ICOMP. 3	1.0			130.0	90	0.00	0.00				
			To	tal Set	tlement	=	0.02	0.00				
	Subl	aver		Soi	1 Stres	ses						
N§.	Thick.	•	Initial	Increme	ent Ma	x.Past P	ress.	Settlement				
	(ft)	(ft)	(psf)	(psf))	(psf)		(in.)				
1	INCOMP											
2	1.90	119.05	2174.60	4.	53	2174.60		0.00				
3	1.90		2345.76			2345.76		0.00				
4	1.90	115.25	2451.40	8.0		2451.40		0.00				
5	1.90	113.35	2557.04	10.0		2557.04		0.00				
6	1.90	111.45	2662.68	12.3		2662.68		0.00				
7	1.90	109.55	2768.32	13.7		2768.32		0.00				
8	1.90	107.65	2873.96	14.8	87 2	2873.96		0.00				
9	1.90	105.75	2979.60	15.0	66 2	2979.60		0.00				
10	1.90	103.85	3085.24	16.3	18 3	3085.24		0.00				
11	1.90	101.95	3190.88	16.4	47	3190.88		0.00				
12	INCOMP	•										

Project Client Date	5 6											
	Increment of stresses obtained using : Boussinesq											
Settlement for $X = 7.00$ (ft) $Y = 32.00$ (ft)												
Fo	oting #				Corner Poi		Load					
	1		.(ft) Y1([.] 0.00 118.		X2(ft) Y 47.00 13		(psf) 302.00					
C a con da t			100 F	0 ((+)	Consumed Cours	(F]	126 50 ((+)					
Foundation Elev.= 128.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)												
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)												
1 INCOMP. 16.5 125.00 0.00 0.00												
	COMP. 1		0.037 0.037	0.037	118.00	0.00	0.00					
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00					
			To	tal Sett	:lement =	0.00	0.00					
	Sub1	ayer		Soi	l Stresses							
N§.	Thick.	-	Initial	Increme		st Press.	Settlement					
-	(ft)	(ft)	(psf)	(psf)) (ps	f)	(in.)					
_												
1 2	INCOMF		2174 60	0.0	0 2174	60	0.00					
2	1.90	119.05 117.15	2174.60 2345.76	0.0 0.0			0.00					
4	1.90	117.15	2343.70	0.0			0.00					
5	1.90	113.35	2557.04	0.0			0.00					
6	1.90	111.45	2662.68	0.0			0.00					
7	1.90	109.55	2768.32	0.0			0.00					
8	1.90	107.65	2873.96	0.0			0.00					
9	1.90	105.75	2979.60	0.0			0.00					
10	1.90	103.85	3085.24	0.0			0.00					
11	1.90	101.95	3190.88	0.6			0.00					
12	INCOMF											

Project Client Date	5 6											
	Increment of stresses obtained using : Boussinesq											
Settlement for $X = 7.00$ (ft) $Y = 39.50$ (ft)												
Fo	oting #				Corner Poi		Load					
	1		(ft) Y1(.00 118.		X2(ft) Y 47.00 13		(psf) 302.00					
Foundation Elev.= 128.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)												
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)												
1 INCOMP. 16.5 125.00 0.00 0.00												
	COMP. 1		0.037	0.037	118.00		0.00					
	ICOMP. 3				130.00	0.00	0.00					
			To	tal Sett	tlement =	0.00	0.00					
	C. h I			C								
N§.	Thick.	ayer. Elev.	Initial	Increme	l Stresses	ast Press.	Settlement					
112.			(psf)) (ps							
	(10)	(10)	(psr)	(bsi)) (þ.	51)	(in.)					
1	INCOMF											
2	1.90	119.05	2174.60	0.0	00 2174	1.60	0.00					
3		117.15	2345.76	0.6		5.76	0.00					
4	1.90	115.25	2451.40	0.6			0.00					
5	1.90	113.35	2557.04	0.0			0.00					
6	1.90	111.45	2662.68	0.6			0.00					
7	1.90	109.55	2768.32	0.0			0.00					
8	1.90	107.65	2873.96	0.0		3.96	0.00					
9	1.90	105.75	2979.60	0.0	95 2979	9.60	0.00					
10	1.90	103.85	3085.24	0.0	97 3085	5.24	0.00					
11	1.90	101.95	3190.88	0.0	98 3196	0.88	0.00					
12	INCOMF).										

Project Client Date	5 0											
	Increment of stresses obtained using : Boussinesq											
Settlement for $X = 7.00$ (ft) $Y = 86.50$ (ft)												
Fc	oting #		ner Point				Load					
	1		(ft) Y1(.00 118.		X2(ft) 47.00		(psf) 302.00					
	-											
Foundation Elev.= 128.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)												
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)												
1 INCOMP. 16.5 125.00 0.00 0.00												
2 0	COMP. 1	9.0 0.0	37 0.037	0.037	118.00	0.00	0.00					
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00					
			То	tal Sett	tlement =	0.00	0.00					
	Cult 1			C		_						
N§.	Subl Thick.	-	Initial	Increme	l Stresse	Past Press.	Settlement					
NS.			(psf)) ((in.)					
	(10)	(10)	(psr)	(bsi)) (psi)	(111.)					
1	INCOMP											
2	1.90	119.05	2174.60	0.0	99 21	74.60	0.00					
3	1.90	117.15	2345.76			45.76	0.00					
4	1.90	115.25	2451.40	0.2		51.40	0.00					
5	1.90	113.35	2557.04	0.3		57.04	0.00					
6	1.90	111.45	2662.68	0.4		62.68	0.00					
7	1.90	109.55	2768.32	0.5	58 27	68.32	0.00					
8	1.90	107.65	2873.96	0.7	72 28	73.96	0.00					
9	1.90	105.75	2979.60	0.8	36 29	79.60	0.00					
10	1.90	103.85	3085.24	1.6	91 30	85.24	0.00					
11	1.90	101.95	3190.88	1.1	16 31	90.88	0.00					
12	INCOMP	•										

Project Client Date	5 0											
	Increment of stresses obtained using : Boussinesq											
Settlement for X = 7.00 (ft) Y = 109.80 (ft)												
Footing # Corner Point P1 Corner Point P2 Load												
	1		(ft) Y1(.00 118.		X2(ft) Y2(ft) (psf) 47.00 131.00 302.00							
Foundation Elev.= 128.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)												
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)												
1 INCOMP. 16.5 125.00 0.00 0.00												
	COMP. 1		0.037	0.037	118.00		0.00					
	ICOMP. 3				130.00	0.00	0.00					
			To	tal Sett	tlement =	0.00	0.00					
	Sub1	ayer		Soil	l Stresses							
N§.	Thick.	-	Initial	Increme		ast Press.	Settlement					
113.			(psf)) (p		(in.)					
		\	VE - 7	NE - 1	Y AF	- /						
1	INCOMF	· .										
2	1.90	119.05	2174.60	0.6		4.60	0.00					
3	1.90		2345.76	0.9		5.76	0.00					
4	1.90	115.25	2451.40	1.3		1.40	0.00					
5	1.90	113.35	2557.04	1.8		7.04	0.00					
6	1.90	111.45	2662.68	2.2		2.68	0.00					
7	1.90	109.55	2768.32	2.7		8.32	0.00					
8	1.90	107.65	2873.96	3.1		3.96	0.00					
9	1.90	105.75	2979.60	3.5		9.60	0.00					
10	1.90	103.85	3085.24	3.9		5.24	0.00					
11 12	1.90	101.95	3190.88	4.2	20 319	0.88	0.00					
12	INCOMF	•										

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO												
	Increment of stresses obtained using : Boussinesq											
Settlement for $X = 7.00$ (ft) $Y = 124.80$ (ft)												
Footing # Corner Point P1 Corner Point P2 Load												
	1		.00 118.		X2(ft) Y2(ft) (psf) 47.00 131.00 302.00							
	ion Ele able El					urface Elev.= ght of Wat. =	136.50 (ft) 62.40 (pcf)					
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)												
1 INCOMP. 16.5 125.00 0.00 0.00												
	COMP. 1		37 0.037	0.037	118.00		0.00					
	ICOMP. 3				130.00		0.00					
			То	tal Sett	:lement =	0.00	0.00					
	Sub1	ayer		Soi	l Stresses							
N§.	Thick.	-	Initial	Increme		, Past Press.	Settlement					
			(psf)) (p		(in.)					
			VF - 7	NF - 7								
1	INCOMP											
2	1.90	119.05	2174.60	1.6		4.60	0.00					
3		117.15	2345.76	1.6		15.76	0.00					
4	1.90	115.25	2451.40	2.2		51.40	0.00					
5	1.90	113.35	2557.04	2.9		57.04	0.00					
6	1.90	111.45	2662.68	3.5		52.68	0.00					
7	1.90	109.55	2768.32	4.1		58.32	0.00					
8	1.90	107.65	2873.96	4.7		73.96	0.00					
9	1.90	105.75	2979.60	5.1		79.60	0.00					
10	1.90	103.85	3085.24	5.5		35.24	0.00					
11	1.90	101.95	3190.88	5.9	at 318	90.88	0.00					
12	INCOMP	•										

Project Client Date	5 0											
	Increment of stresses obtained using : Boussinesq											
Settlement for X = 7.00 (ft) Y = 138.00 (ft)												
Footing # Corner Point P1 Corner Point P2 Load X1(ft) Y1(ft) X2(ft) Y2(ft) (psf)												
	1		(#t) ¥1(.00 118.		47.00			(psf) 302.00				
Foundation Elev.= 128.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)												
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)												
1 INCOMP. 16.5 125.00 0.00 0.00												
2 C	OMP. 19	9.0 0.0	37 0.037	0.037	118.0	0	0.00	0.00				
	ICOMP. 3				130.0		0.00	0.00				
			То	tal Sett	tlement	=	0.00	0.00				
	Subl	aver		Soi	l Stress	es						
N§.	Thick.	-	Initial	Increme			ress.	Settlement				
			(psf))			(in.)				
4	THEOMO											
1 2	INCOMP 1.90	119.05	2174.60	0.0	57 D	174.60		0.00				
2		117.15	2345.76	1.6		345.76		0.00				
4	1.90	115.25	2451.40	1.5		451.40		0.00				
5	1.90	113.35	2557.04	1.9		557.04		0.00				
6	1.90	111.45	2662.68	2.4		662.68		0.00				
7	1.90	109.55	2768.32	2.9		768.32		0.00				
8	1.90	107.65	2873.96	3.4		873.96		0.00				
9	1.90	105.75	2979.60	3.8		979.60		0.00				
10	1.90	103.85	3085.24	4.2		085.24		0.00				
11	1.90	101.95	3190.88	4.5	56 3	190.88		0.00				
12	INCOMP	•										

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO												
	Increment of stresses obtained using : Boussinesq											
Settlement for $X = 18.00$ (ft) $Y = 37.00$ (ft)												
Fo	oting #				Corner Po		Load					
	1		.(ft) Y1([.] 0.00 118.		X2(ft) 47.00 1		(psf) 302.00					
C a con da t			120 5	0 ((+)	Current Cu							
	ion Ele: able El:			• •		rface Elev.= ht of Wat. =	136.50 (ft) 62.40 (pcf)					
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)												
1 INCOMP. 16.5 125.00 0.00 0.00												
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00												
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00					
			To	tal Sett	lement =	0.00	0.00					
	C			C	Church							
N§.	Thick.	ayer Elev.	Initial	Increme	L Stresses	ast Press.	Cottlomont					
112.			(psf)) (p		(in.)					
	(10)	(10)	(121)	(121)	/ (P	51)	(111.)					
1	INCOMP	•										
2	1.90	119.05	2174.60	0.0	90 217	4.60	0.00					
3	1.90	117.15	2345.76	0.0	91 234	5.76	0.00					
4	1.90	115.25	2451.40	0.0	91 245	1.40	0.00					
5	1.90	113.35	2557.04	0.0	92 255	7.04	0.00					
6	1.90	111.45	2662.68	0.0		2.68	0.00					
7	1.90	109.55	2768.32	0.0		8.32	0.00					
8	1.90	107.65	2873.96	0.0		3.96	0.00					
9	1.90	105.75	2979.60	0.0		9.60	0.00					
10	1.90	103.85	3085.24	0.0		5.24	0.00					
11	1.90	101.95	3190.88	0.0	98 319	0.88	0.00					
12	INCOMP	· •										

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO												
	Increment of stresses obtained using : Boussinesq											
Settlement for $X = 18.00$ (ft) $Y = 47.50$ (ft)												
Fo	oting #		ner Point				Load					
	1		(ft) Y1(.00 118.		X2(+t) 47.00		(psf) 302.00					
Foundation Elev.= 128.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)												
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)												
1 INCOMP. 16.5 125.00 0.00 0.00												
2 C	COMP. 1	9.0 0.0	37 0.037	0.037	118.00	0.00	0.00					
	ICOMP. 3				130.00							
			То	tal Set	tlement =	0.00	0.00					
	Sub1	ayer		Soi	l Stresse	c						
N§.	Thick.	-	Initial				Settlement					
			(psf)) ((in.)					
1	INCOMP											
2	1.90	119.05	2174.60	0.0	31 21	74.60	0.00					
3		117.15	2345.76			45.76	0.00					
4	1.90	115.25	2451.40	0.0		51.40	0.00					
5	1.90	113.35	2557.04	0.0		57.04	0.00					
6	1.90	111.45	2662.68	0.0		62.68	0.00					
7	1.90	109.55	2768.32	0.0		68.32	0.00					
8	1.90	107.65	2873.96	0.0		73.96	0.00					
9	1.90	105.75	2979.60	0.1		79.60	0.00					
10	1.90	103.85	3085.24	0.3		85.24	0.00					
11	1.90	101.95	3190.88	0.1		.90.88	0.00					
12	INCOMP	•										

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO												
	Increment of stresses obtained using : Boussinesq											
Settlement for $X = 18.00$ (ft) $Y = 86.50$ (ft)												
Fo	oting #				Corner Po:		Load					
	1		(ft) Y1(.00 118.		X2(ft) 47.00 1		(psf) 302.00					
Foundat	ion Ele		- 120 E	0 (f+)	Cround Su	afaca Elay -	126 EQ (f+)					
	able El			• •		rface Elev.= ht of Wat. =	136.50 (ft) 62.40 (pcf)					
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)												
1 INCOMP. 16.5 125.00 0.00 0.00												
	COMP. 1		0.037	0.037								
3 IN	ICOMP. 3	31.0			130.00	0.00	0.00					
			To	tal Sett	:lement =	0.00	0.00					
	Cubi			Co.i T								
N§.	Thick.	ayer. Elev.	Initial	Increme	L Stresses	ast Press.	Sottlement					
113.			(psf)) (p:		(in.)					
	(10)	(10)	(µ31)	(bar)	/ (P	51)	(111.)					
1	INCOMP											
2	1.90	119.05	2174.60	0.1	L8 2174	4.60	0.00					
3	1.90	117.15	2345.76	0.2	29 234	5.76	0.00					
4	1.90	115.25	2451.40	0.4	14 245:	1.40	0.00					
5	1.90	113.35	2557.04	0.6	51 255	7.04	0.00					
6	1.90	111.45	2662.68	0.8	30 2662	2.68	0.00					
7	1.90	109.55	2768.32	1.6	91 276	8.32	0.00					
8	1.90	107.65	2873.96	1.2	23 287	3.96	0.00					
9	1.90	105.75	2979.60	1.4	15 2979	9.60	0.00					
10	1.90	103.85	3085.24	1.6	58 308	5.24	0.00					
11	1.90	101.95	3190.88	1.8	39 3190	9.88	0.00					
12	INCOMF).										

Project Client Date	5 6										
Increment of stresses obtained using : Boussinesq											
Settlement for $X = 18.00$ (ft) $Y = 125.50$ (ft)											
Fo	oting #				Corner Poin X2(ft) Y2		Load (psf)				
	1		.00 118.		47.00 131		302.00				
Foundation Elev.= 128.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)											
		Comp Lck. Tt)	. Recomp. Ratio	Swell.	Unit Weight S (pcf)	ettlement	-				
1 IN	ICOMP. 16	5.5			125.00	0.00	0.00				
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.02 0.00											
3 IN	ICOMP. 31	1.0			130.00	0.00	0.00				
			To	tal Set	tlement =	0.02	0.00				
	Subla	aver		Soi	l Stresses						
N§.	Thick.	-	Initial		ent Max.Pas	t Press.	Settlement				
	(ft)	(ft)	(psf)	(psf)) (psf)	(in.)				
1	INCOMP.										
2	1.90	119.05	2174.60	8.8	31 2174.	60	0.00				
3	1.90		2345.76	11.3			0.00				
4	1.90	115.25	2451.40	13.4			0.00				
5	1.90	113.35	2557.04	14.9	94 2557.	04	0.00				
6	1.90	111.45	2662.68	15.9	90 2662.	68	0.00				
7	1.90	109.55	2768.32	16.4	41 2768.	32	0.00				
8	1.90	107.65	2873.96	16.		96	0.00				
9	1.90	105.75	2979.60	16.4	48 2979.	60	0.00				
10	1.90	103.85	3085.24	16.1			0.00				
11	1.90	101.95	3190.88	15.7	75 3190.	88	0.00				
12	INCOMP.										

Increment of stresses obtained using : Boussinesq Settlement for X = 18.00 (ft) Y = 135.80 (ft) Footing # Corner Point P1 Corner Point P2 Load X1(ft) Y1(ft) X2(ft) Y2(ft) (psf) 1 29.00 118.50 47.00 131.00 302.00 Foundation Elev. = 128.50 (ft) Ground Surface Elev.= 136.50 (ft) Water table Elev. = 118.00 (ft) Unit weight of Wat. = 62.40 (pcf) Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. (ft) Ratio Weight Settlement (in.) 1 INCOMP. 16.5 2 COMP. 19.0 0.037 0.037 0.037 118.00 0.01 0.00 3 INCOMP. 31.0 Comp. Second 125.00 0.00 0.00 Comp. 19.0 0.037 0.037 0.037 118.00 0.00 0.00 Total Settlement = 0.01 0.00 Total Settlement = 0.01 0.00 1 INCOMP. 2 1.90 119.05 2174.60 4.55 2174.60 0.00 4 1.90 117.15 2345.76 6.29 2345.76 0.00 4 1.90 117.15 2345.76 6.29 2345.76 0.00 5 1.90 113.35 257.04 9.28 2557.04 0.00 5 1.90 113.35 257.04 9.28 2557.04 0.00 5 1.90 111.45 2662.68 10.37 2662.68 0.00 7 1.90 109.55 7.68.32 11.18 2768.32 0.00 8 1.90 107.65 2873.96 11.73 2873.96 0.00 9 1.90 105.75 2979.60 12.06 2979.60 0.00 1 1.90 103.85 3085.24 12.19 3085.24 0.00 1 1.90 103.85 3085.24 12.19 3085.24 0.00 1 1.90 103.85 3085.24 12.19 3085.24 0.00 1 1.90 103.85 3085.24 12.17 3190.88 0.00 12 INCOMP.	Project Client Date	: ١	North St Woodard-C 4/6/2023		Project Numb Project Mana Computed by	ager: MJO	8.00				
Footing # Corner Point P1 X1(ft) Y1(ft) X2(ft) Y2(ft) (psf) 1 29.00 118.50 47.00 131.00 302.00 Foundation Elev. = 128.50 (ft) Ground Surface Elev.= 136.50 (ft) Water table Elev. = 118.00 (ft) Unit weight of Wat. = 62.40 (pcf) Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement (pcf) (in.) 1 INCOMP. 16.5 0.037 0.037 0.037 118.00 0.01 0.00 3 INCOMP. 31.0 0.037 0.037 118.00 0.01 0.00 Total Settlement = 0.01 0.00 Sublayer Soil Stresses N§. Thick. Elev. Initial Increment Max.Past Press. Settlement (ft) (ft) (psf) (psf) (in.) 1 INCOMP. 2 1.90 119.05 2174.60 4.55 2174.60 0.00 3 1.90 117.15 2345.76 6.29 2345.76 0.00 4 1.90 115.25 2451.40 7.90 2451.40 0.00 5 1.90 113.35 2557.04 9.28 2557.04 0.00 6 1.90 111.45 2662.68 10.37 2662.68 0.00 7 1.90 109.55 2768.32 11.18 2768.32 0.00 8 1.90 107.65 2873.96 11.73 2873.96 0.00 8 1.90 105.75 2979.60 12.06 2979.60 0.00 9 1.90 109.55 2769.32 11.18 2768.32 0.00 8 1.90 107.65 2873.96 11.73 2873.96 0.00 9 1.90 105.75 2979.60 12.06 2979.60 0.00 11 1.90 101.95 3190.88 12.17 3190.88 0.00	Increment of stresses obtained using : Boussinesq										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Settlement for X = 18.00 (ft) Y = 135.80 (ft)										
1 29.00 118.50 47.00 131.00 302.00 Foundation Elev. = 128.50 (ft) Ground Surface Elev.= 136.50 (ft) Water table Elev. = 118.00 (ft) Unit weight of Wat. = 62.40 (pcf) $ \begin{array}{c} Layer & Comp. Recomp. Swell. Unit & Primary & Secondary \\ N^{\circ}. Type & Thick. & Ratio & Weight & Settlement \\ (ft) & Ratio & Weight & Settlement \\ (ft) & 118.00 & 0.00 & 0.00 & 0.00 \\ 2 & COMP. 16.5 & 125.00 & 0.00 & 0.00 & 0.00 \\ 2 & COMP. 19.0 & 0.037 & 0.037 & 0.037 & 118.00 & 0.01 & 0.00 \\ 3 & INCOMP. 31.0 & Total Settlement = 0.01 & 0.00 \\ \hline Sublayer & Soil Stresses \\ N§. Thick. Elev. Initial Increment Max.Past Press. Settlement (ft) (ft) (psf) (psf) (psf) (in.) \\ 1 & INCOMP. \\ 2 & 1.90 & 119.05 & 2174.60 & 4.55 & 2174.60 & 0.00 \\ 3 & 1.90 & 117.15 & 2345.76 & 6.29 & 2345.76 & 0.00 \\ 4 & 1.90 & 115.25 & 2451.40 & 7.90 & 2451.40 & 0.00 \\ 5 & 1.90 & 113.35 & 2557.04 & 9.28 & 2557.04 & 0.00 \\ 6 & 1.90 & 113.35 & 257.04 & 9.28 & 2557.04 & 0.00 \\ 6 & 1.90 & 110.45 & 2662.68 & 10.37 & 2662.68 & 0.00 \\ 7 & 1.90 & 109.55 & 2768.32 & 11.18 & 2768.32 & 0.00 \\ 8 & 1.90 & 107.65 & 2873.96 & 11.73 & 2873.96 & 0.00 \\ 1 & 1.90 & 105.75 & 2979.60 & 12.06 & 2979.60 & 0.00 \\ 10 & 1.90 & 105.75 & 2979.60 & 12.06 & 2979.60 & 0.00 \\ 11 & 1.90 & 101.95 & 3190.88 & 12.17 & 3190.88 & 0.00 \end{array} $	Fo	oting #									
Water table Elev. = 118.00 (ft) Unit weight of Wat. = 62.40 (pcf) Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement (in.) 1 INCOMP. 16.5 2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00 3 INCOMP. 31.0 Total Settlement = 0.01 0.00 Model Total Settlement = 0.01 0.00 Sublayer Soil Stresses N§. Thick. Elev. Initial Increment Max.Past Press. Settlement (ft) (ft) (psf) (psf) (in.) 1 INCOMP. 2 1.90 119.05 2174.60 4.55 2174.60 0.00 3 1.90 117.15 2345.76 6.29 2345.76 0.00 4 1.90 115.25 2451.40 7.90 2451.40 0.00 5 1.90 113.35 2557.04 9.28 2557.04 0.00 6 1.90 111.45 2662.68 10.37 2662.68 0.00 7 1.90 109.55 2768.32 11.18 2768.32 0.00 8 1.90 107.65 2873.96 11.73 2873.96 0.00 9 1.90 105.75 2979.60 12.06 2979.60 0.00 1 1.90 101.95 3190.88 12.17 3190.88 0.00		1									
N°. Type Thick. Ratio Weight Settlement Settlement (ft) Network (ft) Network (ft) Network (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)											
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.01 0.00 3 INCOMP. 31.0 Total Settlement = 0.01 0.00 Total Settlement = 0.01 0.00 Soil Stresses N§. Thick. Elev. Initial Increment Max.Past Press. Settlement (in.) 1 INCOMP. 2 1.90 119.05 2174.60 4.55 2174.60 0.00 3 1.90 117.15 2345.76 6.29 2345.76 0.00 4 1.90 115.25 2451.40 7.90 2451.40 0.00 5 1.90 113.35 2557.04 9.28 2557.04 0.00 6 1.90 111.45 2662.68 10.37 2662.68 0.00 7 1.90 109.55 2768.32 11.18 2768.32 0.00 8 1.90 107.65 2873.96 11.73 2873.96 0.00 9 1.90 105.75 2979.60 12.06 2979.60 0.00 9 1.90<	N°. Type Thick. Ratio Weight Settlement Settlement										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
Total Settlement = 0.01 0.00 $Sublayer Soil Stresses (ft) (ft) (ft) Initial Increment Max.Past Press. Settlement (in.)$ $I INCOMP.$ $2 1.90 119.05 2174.60 4.55 2174.60 0.00$ $3 1.90 117.15 2345.76 6.29 2345.76 0.00$ $4 1.90 115.25 2451.40 7.90 2451.40 0.00$ $5 1.90 113.35 2557.04 9.28 2557.04 0.00$ $6 1.90 111.45 2662.68 10.37 2662.68 0.00$ $7 1.90 109.55 2768.32 11.18 2768.32 0.00$ $8 1.90 107.65 2873.96 11.73 2873.96 0.00$ $9 1.90 105.75 2979.60 12.06 2979.60 0.00$ $10 1.90 103.85 3085.24 12.19 3085.24 0.00$											
SublayerSoil StressesN§. Thick. Elev.InitialIncrementMax.Past Press.Settlement (ft) (ft) (psf) (psf) (psf) $(in.)$ 1INCOMP.21.90119.052174.604.552174.60 0.00 31.90117.152345.76 6.29 2345.76 0.00 41.90115.252451.407.902451.40 0.00 51.90113.352557.04 9.28 2557.04 0.00 61.90111.452662.68 10.37 2662.68 0.00 71.90109.552768.3211.182768.32 0.00 81.90107.652873.96 11.73 2873.96 0.00 91.90105.752979.6012.062979.60 0.00 101.90103.853085.2412.193085.24 0.00	3 IN	COMP. 3	1.0			130.00	0.00	0.00			
N§.Thick.Elev.InitialIncrementMax.Past Press.Settlement(ft)(ft)(psf)(psf)(psf)(in.)1INCOMP.21.90119.052174.604.552174.600.0031.90117.152345.766.292345.760.0041.90115.252451.407.902451.400.0051.90113.352557.049.282557.040.0061.90111.452662.6810.372662.680.0071.90109.552768.3211.182768.320.0081.90107.652873.9611.732873.960.0091.90105.752979.6012.062979.600.00101.90103.853085.2412.193085.240.00111.90101.953190.8812.173190.880.00				To	tal Set	tlement =	0.01	0.00			
N§.Thick.Elev.InitialIncrementMax.Past Press.Settlement(ft)(ft)(psf)(psf)(psf)(in.)1INCOMP.21.90119.052174.604.552174.600.0031.90117.152345.766.292345.760.0041.90115.252451.407.902451.400.0051.90113.352557.049.282557.040.0061.90111.452662.6810.372662.680.0071.90109.552768.3211.182768.320.0081.90107.652873.9611.732873.960.0091.90105.752979.6012.062979.600.00101.90103.853085.2412.193085.240.00111.90101.953190.8812.173190.880.00		Subl	aver		Soi	1 Straccac					
(ft)(ft)(psf)(psf)(psf)(in.)1INCOMP.21.90119.052174.604.552174.600.0031.90117.152345.766.292345.760.0041.90115.252451.407.902451.400.0051.90113.352557.049.282557.040.0061.90111.452662.6810.372662.680.0071.90109.552768.3211.182768.320.0081.90107.652873.9611.732873.960.0091.90105.752979.6012.062979.600.00101.90103.853085.2412.193085.240.00111.90101.953190.8812.173190.880.00	N§.		•	Initial			t Press.	Settlement			
21.90119.052174.604.552174.600.0031.90117.152345.766.292345.760.0041.90115.252451.407.902451.400.0051.90113.352557.049.282557.040.0061.90111.452662.6810.372662.680.0071.90109.552768.3211.182768.320.0081.90107.652873.9611.732873.960.0091.90105.752979.6012.062979.600.00101.90103.853085.2412.193085.240.00111.90101.953190.8812.173190.880.00	-	(ft)	(ft)	(psf)	(psf) (psf))	(in.)			
21.90119.052174.604.552174.600.0031.90117.152345.766.292345.760.0041.90115.252451.407.902451.400.0051.90113.352557.049.282557.040.0061.90111.452662.6810.372662.680.0071.90109.552768.3211.182768.320.0081.90107.652873.9611.732873.960.0091.90105.752979.6012.062979.600.00101.90103.853085.2412.193085.240.00111.90101.953190.8812.173190.880.00	1	THEOMO									
3 1.90 117.15 2345.76 6.29 2345.76 0.00 4 1.90 115.25 2451.40 7.90 2451.40 0.00 5 1.90 113.35 2557.04 9.28 2557.04 0.00 6 1.90 111.45 2662.68 10.37 2662.68 0.00 7 1.90 109.55 2768.32 11.18 2768.32 0.00 8 1.90 107.65 2873.96 11.73 2873.96 0.00 9 1.90 105.75 2979.60 12.06 2979.60 0.00 10 1.90 103.85 3085.24 12.19 3085.24 0.00 11 1.90 101.95 3190.88 12.17 3190.88 0.00				2174 60	4	55 2174 6	50	0 00			
41.90115.252451.407.902451.400.0051.90113.352557.049.282557.040.0061.90111.452662.6810.372662.680.0071.90109.552768.3211.182768.320.0081.90107.652873.9611.732873.960.0091.90105.752979.6012.062979.600.00101.90103.853085.2412.193085.240.00111.90101.953190.8812.173190.880.00											
51.90113.352557.049.282557.040.0061.90111.452662.6810.372662.680.0071.90109.552768.3211.182768.320.0081.90107.652873.9611.732873.960.0091.90105.752979.6012.062979.600.00101.90103.853085.2412.193085.240.00111.90101.953190.8812.173190.880.00											
61.90111.452662.6810.372662.680.0071.90109.552768.3211.182768.320.0081.90107.652873.9611.732873.960.0091.90105.752979.6012.062979.600.00101.90103.853085.2412.193085.240.00111.90101.953190.8812.173190.880.00											
81.90107.652873.9611.732873.960.0091.90105.752979.6012.062979.600.00101.90103.853085.2412.193085.240.00111.90101.953190.8812.173190.880.00		1.90	111.45	2662.68	10.3	37 2662.6	58	0.00			
91.90105.752979.6012.062979.600.00101.90103.853085.2412.193085.240.00111.90101.953190.8812.173190.880.00	7	1.90	109.55	2768.32	11.1	18 2768.3	32	0.00			
101.90103.853085.2412.193085.240.00111.90101.953190.8812.173190.880.00	8	1.90	107.65	2873.96	11.7	73 2873.9	96	0.00			
11 1.90 101.95 3190.88 12.17 3190.88 0.00	9	1.90	105.75	2979.60	12.0	2979.0	50	0.00			
	10	1.90	103.85	3085.24	12.3	19 3085.2	24	0.00			
12 INCOMP.				3190.88	12.3	17 3190.8	38	0.00			
	12	INCOMP	•								

Project Client Date	: Wo	orth St oodard-Ci /6/2023	Culvert, / urran	Projec	t Number t Manage ed by	r: MJO	8.00			
Increment of stresses obtained using : Boussinesq										
Settlement for X = 18.00 (ft) Y = 145.00 (ft)										
Fo	oting #		ner Point					Load		
	1		(ft) Y1(.00 118.			131.00		(psf) 302.00		
Foundation Elev.= 128.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)										
	yer pe Thio (f1	ck.	. Recomp. Ratio	Swell.	Weigh	t Sett	mary lement n.)	-		
1 INCOMP. 16.5 125.00 0.00 0.00										
	OMP. 19. COMP. 31.		37 0.037	0.037	118. 130.		0.01 0.00	0.00 0.00		
			To	tal Set	tlement	=	0.01	0.00		
	Sublay	ver		Soi	l Stres	ses				
N§.	Thick.	Elev.	Initial	Increme			ress.	Settlement		
	(ft)	(ft)	(psf)	(psf)	(psf)		(in.)		
1	INCOMP.									
2	1.90 1	119.05	2174.60	1.4	46	2174.60		0.00		
3	1.90 1	117.15	2345.76	2.2	20	2345.76		0.00		
4		115.25	2451.40	3.0		2451.40		0.00		
5		113.35	2557.04	3.8		2557.04		0.00		
6		111.45	2662.68	4.0		2662.68		0.00		
7 8		109.55 107.65	2768.32	5.3 5.9		2768.32 2873.96		0.00 0.00		
8 9		107.65	2873.96 2979.60	5.4		2873.96		0.00		
10		103.85	3085.24	6.8		3085.24		0.00		
11		101.95	3190.88	7.3		3190.88		0.00		
12	INCOMP.									

Project Client Date	5 0										
Increment of stresses obtained using : Boussinesq											
Settlement for $X = 7.00$ (ft) $Y = 32.00$ (ft)											
Fo	oting #		ner Point		Corner Po		Load				
	1		.(ft) Y1([.] 00 101.0	•	X2(ft) 7.00 1		(psf) 181.00				
	_										
Foundation Elev.= 131.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)											
		Comp nick. (ft)	o. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-				
1 INCOMP. 16.5 125.00 0.00 0.00											
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00											
3 IN	ICOMP. 3	31.0			130.00	0.00	0.00				
			To	tal Sett	:lement =	0.00	0.00				
	<u> </u>			- · ·							
NE		layer	Taitial		l Stresses	act Ducce					
N§.	Thick.		Initial (psf)	Increme) (p:	ast Press.	(in.)				
	(10)	(10)	(hzi)	(bsi)	(P	51)	(111.)				
1	INCOMF	·.									
2	1.90	119.05	2174.60	0.0	2174	4.60	0.00				
3	1.90	117.15	2345.76	0.0	03 234	5.76	0.00				
4	1.90	115.25	2451.40	0.0		1.40	0.00				
5	1.90	113.35	2557.04	0.0	95 255 [°]	7.04	0.00				
6	1.90	111.45	2662.68	0.0	97 266	2.68	0.00				
7	1.90	109.55	2768.32	0.0	98 276	8.32	0.00				
8	1.90	107.65	2873.96	0.1	LØ 287	3.96	0.00				
9	1.90	105.75	2979.60	0.1	L3 2979	9.60	0.00				
10	1.90	103.85	3085.24	0.1		5.24	0.00				
11	1.90	101.95	3190.88	0.1	L8 319	0.88	0.00				
12	INCOMF	P.									

Project Client Date	5 0										
Increment of stresses obtained using : Boussinesq											
Settlement for $X = 7.00$ (ft) $Y = 39.50$ (ft)											
Fo	oting #		ner Point		Corner Po		Load				
	1		.(ft) Y1([.] 00 101.(•	X2(ft) Y2(ft) (psf) 7.00 118.50 181.00						
	-		101.		,	10.50	101.00				
Foundation Elev.= 131.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)											
		Comp nick. (ft)	o. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-				
1 INCOMP. 16.5 125.00 0.00 0.00											
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00											
	ICOMP. 3	81.0			130.00	0.00	0.00				
			To	tal Sett	tlement =	0.00	0.00				
NC		layer	Tuitial		L Stresses		Cottlowout				
N§.	Thick.			Increme		ast Press.					
	(+)	(TU)	(psf)	(psr)) (p	ST)	(in.)				
1	INCOMF	.									
2	1.90	119.05	2174.60	0.0	93 217	4.60	0.00				
3		117.15	2345.76			5.76	0.00				
4	1.90	115.25	2451.40	0.6		1.40	0.00				
5	1.90	113.35	2557.04	0.6		7.04	0.00				
6	1.90	111.45	2662.68	0.1		2.68	0.00				
7	1.90	109.55	2768.32	0.1		8.32	0.00				
8	1.90	107.65	2873.96	0.1		3.96	0.00				
9	1.90	105.75	2979.60	0.2		9.60	0.00				
10	1.90	103.85	3085.24	0.2		5.24	0.00				
11	1.90	101.95	3190.88	0.2		0.88	0.00				
12	INCOMF										

Increment of stresses obtained using : Boussinesq Settlement for X = 7.00 (ft) Y = 86.50 (ft) Footing # Corner Point P1 Corner Point P2 Load X1(ft) Y1(ft) X2(ft) Y2(ft) (psf) 1 -11.00 101.00 7.00 118.50 181.00 Foundation Elev. = 131.50 (ft) Ground Surface Elev.= 136.50 (ft) Water table Elev. = 118.00 (ft) Unit weight of Wat. = 62.40 (pcf)									
Footing # Corner Point P1 Corner Point P2 Load X1(ft) Y1(ft) X2(ft) Y2(ft) (psf) 1 -11.00 101.00 7.00 118.50 181.00 Foundation Elev. = 131.50 (ft) Ground Surface Elev.= 136.50 (ft)									
X1(ft)Y1(ft)X2(ft)Y2(ft)(psf)1-11.00101.007.00118.50181.00Foundation Elev.=131.50 (ft)Ground Surface Elev.=136.50 (ft)									
1-11.00101.007.00118.50181.00Foundation Elev.=131.50 (ft)Ground Surface Elev.=136.50 (ft)									
Foundation Elev. = 131.50 (ft) Ground Surface Elev.= 136.50 (ft)									
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)									
1 INCOMP. 16.5 125.00 0.00 0.00									
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.01 0.00									
3 INCOMP. 31.0 130.00 0.00 0.00									
Total Settlement = 0.01 0.00									
Sublayer Soil Stresses									
N§. Thick. Elev. Initial Increment Max.Past Press. Settlement									
(ft) (ft) (psf) (psf) (psf) (in.)									
1 INCOMP. 2 1.90 119.05 2174.60 4.19 2174.60 0.00									
3 1.90 117.15 2345.76 5.21 2345.76 0.00									
4 1.90 115.25 2451.40 6.11 2451.40 0.00									
5 1.90 113.35 2557.04 6.86 2557.04 0.00									
6 1.90 111.45 2662.68 7.45 2662.68 0.00									
7 1.90 109.55 2768.32 7.88 2768.32 0.00									
8 1.90 107.65 2873.96 8.17 2873.96 0.00									
9 1.90 105.75 2979.60 8.34 2979.60 0.00									
10 1.90 103.85 3085.24 8.41 3085.24 0.00									
11 1.90 101.95 3190.88 8.40 3190.88 0.00									
12 INCOMP.									

Project Client Date	5 6										
Increment of stresses obtained using : Boussinesq											
Settlement for X = 7.00 (ft) Y = 109.80 (ft)											
Fo	oting #		ner Point		Corner Poi	-	Load				
	1		(+t) $Y1(-1)$	•	X2(ft) Y2(ft) (psf) 7.00 118.50 181.00						
Foundation Elev.= 131.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)											
		Comp ick. ft)	. Recomp. Ratio	Swell.	0	Primary Settlement (in.)	Secondary Settlement (in.)				
1 INCOMP. 16.5 125.00 0.00 0.00											
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.05 0.00											
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00				
			To	tal Sett	:lement =	0.05	0.00				
	Subl	ayer		Soil	l Stresses						
N§.	Thick.	-	Initial	Increme	ent Max.Pa	st Press.	Settlement				
	(ft)	(ft)	(psf)	(psf)) (ps	f)	(in.)				
1	INCOMP										
2	1.90	. 119.05	2174.60	59.0	98 2174	. 60	0.01				
3	1.90		2345.76	52.8			0.01				
4	1.90	115.25	2451.40	47.2			0.01				
5	1.90	113.35	2557.04	42.2		.04	0.01				
6	1.90	111.45	2662.68	37.8			0.01				
7	1.90	109.55	2768.32	33.9			0.00				
8	1.90	107.65	2873.96	30.6			0.00				
9	1.90	105.75	2979.60	27.6			0.00				
10	1.90	103.85	3085.24	25.6			0.00				
11 12	1.90 INCOMF	101.95	3190.88	22.7	73 3190	.88	0.00				
12	TINCOMP	•									

Project Client Date	5 8										
Increment of stresses obtained using : Boussinesq											
Settlement for $X = 7.00$ (ft) $Y = 124.80$ (ft)											
Fc	ooting #		ner Point (ft) Y1(Corner Por X2(ft)		Load (psf)				
	1		.00 101.0		7.00 1		181.00				
Foundation Elev.= 131.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)											
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)											
1 INCOMP. 16.5 125.00 0.00 0.00											
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.02 0.00											
3 IN	ICOMP. 31	L.0			130.00	0.00	0.00				
			To	tal Set	tlement =	0.02	0.00				
	Subla	ayer		Soi	l Stresses						
N§.	Thick.	Elev.	Initial	Increme	ent Max.Pa	ast Press.	Settlement				
	(ft)	(ft)	(psf)	(psf)) (p:	sf)	(in.)				
1	INCOMP										
1 2	1.90	119.05	2174.60	16.3	17 217	4.60	0.00				
3	1.90		2345.76	17.2		5.76	0.00				
4	1.90	115.25	2451.40	17.7		1.40	0.00				
5	1.90	113.35	2557.04	17.8		7.04	0.00				
6	1.90	111.45	2662.68	17.6		2.68	0.00				
7	1.90	109.55	2768.32	17.3		8.32	0.00				
8	1.90	107.65	2873.96	16.5	58 287	3.96	0.00				
9	1.90	105.75	2979.60	15.9	90 297	9.60	0.00				
10	1.90	103.85	3085.24	15.3	18 308	5.24	0.00				
11	1.90	101.95	3190.88	14.4	43 319	0.88	0.00				
12	INCOMP										

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO										
Increment of stresses obtained using : Boussinesq										
Settlement for X = 7.00 (ft) Y = 138.00 (ft)										
Footing				Corner Point		Load				
1		.00 101.	•	X2(ft) Y2(f 7.00 118.5	•	(psf) 181.00				
Foundation Elev.= 131.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)										
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)										
1 INCOMP. 16.5 125.00 0.00 0.00										
	19.0 0.0	37 0.037	0.037	118.00	0.01	0.00				
3 INCOMP.	31.0			130.00	0.00	0.00				
		To	tal Sett	lement =	0.01	0.00				
Su	olayer		Soil	Stresses						
N§. Thic	•	Initial	Increme	nt Max.Past	Press.	Settlement				
(ft)	(ft)	(psf)	(psf)	(psf)		(in.)				
1 INCO	ND									
2 1.90		2174.60	1.9	4 2174.60		0.00				
3 1.90		2345.76	2.5			0.00				
4 1.90	115.25	2451.40	3.1			0.00				
5 1.90	113.35	2557.04	3.7	5 2557.04		0.00				
6 1.90	111.45	2662.68	4.2	6 2662.68		0.00				
7 1.90	109.55	2768.32	4.7	1 2768.32		0.00				
8 1.90	107.65	2873.96	5.0			0.00				
9 1.90	105.75	2979.60	5.3			0.00				
10 1.90	103.85	3085.24	5.5			0.00				
11 1.90	101.95	3190.88	5.7	4 3190.88		0.00				
12 INCO	٩Ρ.									

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO										
Increment of stresses obtained using : Boussinesq										
Settlement for $X = 18.00$ (ft) $Y = 37.00$ (ft)										
Fc	oting #		ner Point (ft) Y1(Corner P X2(ft)		Load (psf)			
	1		.00 101.	•	• •	118.50	181.00			
Foundation Elev.= 131.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)										
	•	Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-			
1 INCOMP. 16.5 125.00 0.00 0.00										
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00										
	ICOMP. 3	1.0			130.00	0.00	0.00			
			To	tal Sett	tlement =	0.00	0.00			
	Subl	aver		Soi	l Stresse	c				
N§.	Thick.	-	Initial	Increme		Past Press.	Settlement			
			(psf)) ((in.)			
	x - y	X - X	VF - 7	NF - 7		F - 7				
1	INCOMP									
2	1.90	119.05	2174.60	0.0		74.60	0.00			
3		117.15	2345.76	0.6		45.76	0.00			
4	1.90	115.25	2451.40	0.6		51.40	0.00			
5	1.90	113.35	2557.04	0.6		57.04	0.00			
6	1.90	111.45	2662.68	0.6		62.68	0.00			
7	1.90	109.55	2768.32	0.1		68.32	0.00			
8	1.90	107.65	2873.96	0.1		73.96	0.00			
9 10	1.90	105.75	2979.60	0.1		79.60	0.00			
10 11	1.90 1.90	103.85 101.95	3085.24 3190.88	0.1		85.24	0.00			
11	I.90 INCOMP		2120.00	0.2	21 31	90.88	0.00			
12	TINCOMP	•								

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO										
Increment of stresses obtained using : Boussinesq										
Settlement for $X = 18.00$ (ft) $Y = 47.50$ (ft)										
Fo	oting #		ner Point		Corner Po		Load			
	1		.(ft) Y1([.] 00 101.(•	X2(ft) X 7.00 11		(psf) 181.00			
	-		100 1011		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20130	101100			
Foundation Elev.= 131.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)										
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)										
1 INCOMP. 16.5 125.00 0.00 0.00										
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00										
3 IN	ICOMP. 3	31.0			130.00	0.00	0.00			
			To	tal Sett	:lement =	0.00	0.00			
NC		layer	T		Stresses		Cath I am an t			
N§.	Thick.			Increme		ast Press.				
	(+)	(+t)	(psf)	(рут)) (ps	ьт)	(in.)			
1	INCOMF	.								
2	1.90	119.05	2174.60	0.0	94 2174	1.60	0.00			
3	1.90	117.15	2345.76	0.0	06 234	5.76	0.00			
4	1.90	115.25	2451.40	0.0		L.40	0.00			
5	1.90	113.35	2557.04	0.1	L2 2557	7.04	0.00			
6	1.90	111.45	2662.68	0.1	L6 2662	2.68	0.00			
7	1.90	109.55	2768.32	0.2	20 2768	3.32	0.00			
8	1.90	107.65	2873.96	0.2	24 2873	3.96	0.00			
9	1.90	105.75	2979.60	0.2	29 2979	9.60	0.00			
10	1.90	103.85	3085.24	0.3		5.24	0.00			
11	1.90	101.95	3190.88	0.3	39 3196	0.88	0.00			
12	INCOMF	γ.								

Project Client Date	:	North St Woodard-C 4/6/2023		Project Numb Project Mana Computed by	iger: MJO	18.00				
Increment of stresses obtained using : Boussinesq										
Settlement for $X = 18.00$ (ft) $Y = 86.50$ (ft)										
Fo	oting #		ner Point		Corner Point		Load			
	1		(ft) Y1(.00 101.	•	X2(ft) Y2(7.00 118.	· •	(psf) 181.00			
Foundation Elev.= 131.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)										
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)										
1 INCOMP. 16.5 125.00 0.00 0.00										
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.01 0.00										
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00			
			To	tal Sett	:lement =	0.01	0.00			
	Subl	ayer		Soil	l Stresses					
N§.	Thick.	-	Initial	Increme	ent Max.Past	Press.	Settlement			
	(ft)	(ft)	(psf)	(psf)) (psf)	1	(in.)			
1	INCOMP									
2	1.90	119.05	2174.60	1.7	71 2174.6	6	0.00			
3	1.90		2345.76	2.2			0.00			
4	1.90	115.25	2451.40	2.8			0.00			
5	1.90	113.35	2557.04	3.3	36 2557.0	94	0.00			
6	1.90	111.45	2662.68	3.8	34 2662.6	58	0.00			
7	1.90	109.55	2768.32	4.2			0.00			
8	1.90	107.65	2873.96	4.6			0.00			
9	1.90	105.75	2979.60	4.9			0.00			
10	1.90	103.85	3085.24	5.1			0.00			
11	1.90	101.95	3190.88	5.3	31 3190.8	88	0.00			
12	INCOMP	· •								

Project Client Date	:	North St Woodard-C 4/6/2023		Project Number : 177018.00 Project Manager: MJO Computed by : MJO							
Increment of stresses obtained using : Boussinesq											
Settlement for $X = 18.00$ (ft) $Y = 125.50$ (ft)											
Fo	nt P2	Load									
	1		(+t) YI(.00 101.	•	X2(ft) Y2 7.00 118		(psf) 181.00				
Foundation Elev.= 131.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)											
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)											
1 INCOMP. 16.5 125.00 0.00 0.00											
	COMP. 1 COMP. 3		37 0.037	0.037	118.00 130.00	0.01 0.00	0.00 0.00				
5 11		1.0			130.00	0.00	0.00				
			To	tal Set	tlement =	0.01	0.00				
	C 1 1			<u> </u>							
N§.	Subl Thick.	-	Initial	SO1. Increme	l Stresses ant Max Pas	st Press.	Sottlomont				
113.			(psf)) (psf		(in.)				
	. ,	~ /									
1	INCOMP		•·-· · · •	_							
2	1.90	119.05	2174.60	3.9			0.00				
3	1.90		2345.76		95 2345.		0.00 0.00				
4 5	1.90 1.90	115.25 113.35	2451.40 2557.04	5.8 6.5			0.00				
6	1.90	113.35	2662.68	7.2			0.00				
7	1.90	109.55	2768.32	7.5			0.00				
8	1.90	107.65	2873.96	7.8			0.00				
9	1.90	105.75	2979.60	8.6			0.00				
10	1.90	103.85	3085.24	8.6			0.00				
11	1.90	101.95	3190.88	8.1			0.00				
12	INCOMP										

Project Client Date	:	North St Woodard-C 4/6/2023		Project Number : 177018.00 Project Manager: MJO Computed by : MJO								
	Increment of stresses obtained using : Boussinesq											
Settlement for X = 18.00 (ft) Y = 135.80 (ft)												
Footing # Corner Point P1 Corner Point P2 Load												
	1		(ft) Y1(.00 101.	•	X2(ft) 7.00 1		(psf) 181.00					
Foundation Elev.= 131.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)												
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)												
1 INCOMP. 16.5 125.00 0.00 0.00												
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00												
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00					
			То	tal Set	tlement =	0.00	0.00					
	Sub]	ayer		Soi	l Stresses	5						
N§.	Thick.	-	Initial			Past Press.	Settlement					
	(ft)	(ft)	(psf)	(psf)) (1	osf)	(in.)					
1	TNCOMP											
1 2	INCOMP 1.90	119.05	2174.60	1.2	D∕I 21 ⁻	74.60	0.00					
3		117.15	2345.76	1.6		15.76	0.00					
4	1.90	115.25	2451.40	2.2		51.40	0.00					
5	1.90	113.35	2557.04	2.5		57.04	0.00					
6	1.90	111.45	2662.68	2.9		52.68	0.00					
7	1.90	109.55	2768.32	3.3		58.32	0.00					
8	1.90	107.65	2873.96	3.7		73.96	0.00					
9	1.90	105.75	2979.60	4.6		79.60	0.00					
10	1.90	103.85	3085.24	4.2		35.24	0.00					
11	1.90	101.95	3190.88	4.4		90.88	0.00					
12	INCOMP	•										

<pre>Increment of stresses obtained using : Boussinesq Settlement for X = 18.00 (ft) Y = 145.00 (ft) Footing # Corner Point P1 Corner Point P2 Load</pre>										
Footing # Corner Point P1 Corner Point P2 Load X1(ft) Y1(ft) X2(ft) Y2(ft) (psf)										
X1(ft) Y1(ft) X2(ft) Y2(ft) (psf)										
Foundation Elev.= 131.50 (ft)Ground Surface Elev.=136.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)										
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)										
1 INCOMP. 16.5 125.00 0.00 0.00										
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00										
3 INCOMP. 31.0 130.00 0.00 0.00										
Total Settlement = 0.00 0.00										
Sublayer Soil Stresses										
N§. Thick. Elev. Initial Increment Max.Past Press. Settlement										
(ft) (ft) (psf) (psf) (psf) (in .)										
1 INCOMP.										
2 1.90 119.05 2174.60 0.45 2174.60 0.00										
3 1.90 117.15 2345.76 0.64 2345.76 0.00										
4 1.90 115.25 2451.40 0.85 2451.40 0.00										
5 1.90 113.35 2557.04 1.07 2557.04 0.00										
6 1.90 111.45 2662.68 1.30 2662.68 0.00										
7 1.90 109.55 2768.32 1.54 2768.32 0.00										
8 1.90 107.65 2873.96 1.76 2873.96 0.00										
9 1.90 105.75 2979.60 1.98 2979.60 0.00										
10 1.90 103.85 3085.24 2.18 3085.24 0.00										
11 1.90 101.95 3190.88 2.36 3190.88 0.00										
12 INCOMP.										

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO												
	Increment of stresses obtained using : Boussinesq											
Settlement for $X = 7.00$ (ft) $Y = 32.00$ (ft)												
Footing # Corner Point P1 Corner Point P2 Load X1(ft) Y1(ft) X2(ft) Y2(ft) (psf)												
	1		(+t) Y1(- 0.00 101.0		X2(+t) 45.00 1	· ·	(psf) 181.00					
Foundation Elev.= 131.50 (ft)Ground Surface Elev.=135.00 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)												
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)												
1 INCOMP. 15.0 125.00 0.00 0.00												
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00												
	ICOMP. 3				130.00	0.00	0.00					
			To	tal Sett	tlement =	0.00	0.00					
	Cub1	ayer		Soil	l Stresses							
N§.	Thick.	-	Initial	Increme		ast Press.	Sottlomont					
112.			(psf)) (p		(in.)					
	(10)	(10)	(121)	(121)	/ (P	51)	(111.)					
1	INCOMP	•										
2	1.90	119.05	1987.10	0.0	91 198	7.10	0.00					
3	1.90	117.15	2158.26	0.6	92 215	8.26	0.00					
4	1.90	115.25	2263.90	0.0		3.90	0.00					
5	1.90	113.35	2369.54	0.0	93 236	9.54	0.00					
6	1.90	111.45	2475.18	0.0	94 247	5.18	0.00					
7	1.90	109.55	2580.82	0.0	96 258	0.82	0.00					
8	1.90	107.65	2686.46	0.0	97 268	6.46	0.00					
9	1.90	105.75	2792.10	0.0	98 279	2.10	0.00					
10	1.90	103.85	2897.74	0.1		7.74	0.00					
11	1.90	101.95	3003.38	0.1	12 300	3.38	0.00					
12	INCOMP	•										

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO											
Increment of stresses obtained using : Boussinesq											
Settlement for $X = 7.00$ (ft) $Y = 39.50$ (ft)											
Footing # Corner Point P1 Corner Point P2 Load X1(ft) Y1(ft) X2(ft) Y2(ft) (psf)											
	1		.(+t) Y1(0.00 101.		X2(+t) 45.00 11	· ·	(psf) 181.00				
Foundation Elev.= 131.50 (ft)Ground Surface Elev.=135.00 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)											
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)											
1 INCOMP. 15.0 125.00 0.00 0.00											
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00											
	ICOMP. 3				130.00	0.00	0.00				
			То	tal Sett	tlement =	0.00	0.00				
	Sub1	21/02		Soil	l Stresses						
N§.	Thick.	ayer Elev.	Initial	Increme		ast Press.	Sattlement				
112.			(psf)) (ps		(in.)				
	(10)	(10)	(121)	(bar)) (P:	51)	(111.)				
1	INCOMP	•									
2	1.90	119.05	1987.10	0.0	92 1987	7.10	0.00				
3	1.90	117.15	2158.26	0.0	93 2158	8.26	0.00				
4	1.90	115.25	2263.90	0.0		3.90	0.00				
5	1.90	113.35	2369.54	0.0	95 2369	9.54	0.00				
6	1.90	111.45	2475.18	0.0	97 2475	5.18	0.00				
7	1.90	109.55	2580.82	0.0	98 2586	9.82	0.00				
8	1.90	107.65	2686.46	0.1	LØ 2686	5.46	0.00				
9	1.90	105.75	2792.10	0.1		2.10	0.00				
10	1.90	103.85	2897.74	0.1		7.74	0.00				
11	1.90	101.95	3003.38	0.1	L8 3003	3.38	0.00				
12	INCOMP	•									

Project Client Date	.8.00										
Increment of stresses obtained using : Boussinesq											
Settlement for $X = 7.00$ (ft) $Y = 86.50$ (ft)											
Footing # Corner Point P1 Corner Point P2 Load											
	1		(ft) Y1(* .00 101.0		X2(+t) 45.00	•	,	(psf) 181.00			
Foundat	ion []o		101 5	0 (T+)	Coound		[]	125 00 (f+)			
	ion Ele able El		= 131.50 = 118.00					135.00 (ft) 62.40 (pcf)			
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)											
1 INCOMP. 15.0 125.00 0.00 0.00											
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00											
3 IN	ICOMP. 3	1.0			130.0	0	0.00	0.00			
			To	tal Set	tlement	=	0.00	0.00			
					·						
NC		ayer	T		l Stress			C + +] + + + +			
N§.	Thick.		Initial	Increme			ress.	Settlement			
	(+()	(+)	(psf)	(psr)	(psr)		(in.)			
1	INCOMP	•									
2	1.90	119.05	1987.10	0.5	54 1	987.10		0.00			
3	1.90	117.15	2158.26	0.7	75 2	158.26		0.00			
4	1.90	115.25	2263.90	0.9		263.90		0.00			
5	1.90	113.35	2369.54	1.2	24 2	369.54		0.00			
6	1.90	111.45	2475.18	1.4	19 2	475.18		0.00			
7	1.90	109.55	2580.82	1.7	74 2	580.82		0.00			
8	1.90	107.65	2686.46	1.9	98 2	686.46		0.00			
9	1.90	105.75	2792.10	2.2	20 2	792.10		0.00			
10	1.90	103.85	2897.74	2.3	39 2	897.74		0.00			
11	11 1.90 101.95 3003.38 2.57 3003.38 0.00										
12	INCOMP	•									

Project Client Date	:	North St Woodard-C 4/6/2023		Project Number : 177018.00 Project Manager: MJO Computed by : MJO							
Increment of stresses obtained using : Boussinesq											
Settlement for X = 7.00 (ft) Y = 109.80 (ft)											
5								Load			
	1		.00 101.0	•	•) Y2(+t 118.50	•	(psf) 181.00			
Foundation Elev.= 131.50 (ft)Ground Surface Elev.=135.00 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)											
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)											
1 INCOMP. 15.0 125.00 0.00 0.00											
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00											
	ICOMP. 3				130.		0.00	0.00			
			To	tal Sett	tlement	=	0.00	0.00			
	Sub1	ayer		Soi	l Stres	SOS					
N§.	Thick.	-	Initial	Increme		x.Past P	ress	Settlement			
			(psf))			(in.)			
	x - y	X - X	NF - 7	NF - 7		↓ F = →					
1	INCOMP										
2	1.90	119.05	1987.10	1.5		1987.10		0.00			
3		117.15	2158.26	2.0		2158.26		0.00			
4	1.90	115.25	2263.90	2.5		2263.90		0.00			
5	1.90	113.35	2369.54	3.6		2369.54		0.00			
6	1.90	111.45	2475.18	3.5		2475.18		0.00			
7	1.90	109.55	2580.82	3.9		2580.82		0.00			
8	1.90	107.65	2686.46	4.2		2686.46		0.00			
9 10	1.90	105.75	2792.10	4.5		2792.10		0.00			
	10 1.90 103.85 2897.74 4.74										
11 12	1.90 INCOMP	101.95	3003.38	4.0	57	3003.38		0.00			
12	TINCOMP	•									

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO												
	Increment of stresses obtained using : Boussinesq											
Settlement for $X = 7.00$ (ft) $Y = 124.80$ (ft)												
Footing # Corner Point P1 Corner Point P2 Load X1(ft) Y1(ft) X2(ft) Y2(ft) (psf)												
	1		.(+t) Y1(- 0.00 101.0		X2(+t) 45.00 1	· ·	(psf) 181.00					
Foundation Elev.= 131.50 (ft)Ground Surface Elev.=135.00 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)												
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)												
1 INCOMP. 15.0 125.00 0.00 0.00												
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00												
	ICOMP. 3				130.00	0.00	0.00					
			To	tal Sett	:lement =	0.00	0.00					
	Cub1	ayer		Soil	l Stresses							
N§.	Thick.	-	Initial	Increme		ast Press.	Sattlement					
112.			(psf)) (p		(in.)					
	(10)	(10)	(h21)	(bar)) (P	51)	(111.)					
1	INCOMP											
2	1.90	119.05	1987.10	0.9	95 198	7.10	0.00					
3	1.90	117.15	2158.26	1.3	30 215	8.26	0.00					
4	1.90	115.25	2263.90	1.6		3.90	0.00					
5	1.90	113.35	2369.54	2.0	93 236	9.54	0.00					
6	1.90	111.45	2475.18	2.3		5.18	0.00					
7	1.90	109.55	2580.82	2.7	72 258	0.82	0.00					
8	1.90	107.65	2686.46	3.6	91 268	6.46	0.00					
9	1.90	105.75	2792.10	3.2	27 279	2.10	0.00					
10	1.90	103.85	2897.74	3.4	19 289	7.74	0.00					
11	1.90	101.95	3003.38	3.0	57 300	3.38	0.00					
12	INCOMP	· ·										

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO											
Increment of stresses obtained using : Boussinesq											
Settlement for X = 7.00 (ft) Y = 138.00 (ft)											
Footing # Corner Point P1 Corner Point P2 Load X1(ft) Y1(ft) X2(ft) Y2(ft) (psf)											
	1		(+t) Y1(- .00 101.		X2(+t) Y 45.00 11		(psf) 181.00				
Foundation Elev.= 131.50 (ft)Ground Surface Elev.=135.00 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)											
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)											
1 INCOMP. 15.0 125.00 0.00 0.00											
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00											
	СОМР. З				130.00	0.00	0.00				
			То	tal Sett	:lement =	0.00	0.00				
	Sub1	ayer		Soil	l Stresses						
N§.	Thick.	-	Initial			st Press.	Settlement				
113.			(psf)) (ps		(in.)				
	(10)	(10)	(PSI)	(1997)	, (ps	.,	()				
1	INCOMP	·.									
2	1.90	119.05	1987.10	0.3	37 1987	.10	0.00				
3	1.90	117.15	2158.26	0.5	52 2158	.26	0.00				
4	1.90	115.25	2263.90	0.6	59 2263	.90	0.00				
5	1.90	113.35	2369.54	0.8	38 2369	.54	0.00				
6	1.90	111.45	2475.18	1.0	97 2475	.18	0.00				
7	1.90	109.55	2580.82	1.2		.82	0.00				
8	1.90	107.65	2686.46	1.4			0.00				
9	1.90	105.75	2792.10	1.6			0.00				
10	1.90	103.85	2897.74	1.8			0.00				
11	1.90	101.95	3003.38	1.9	98 3003	.38	0.00				
12	INCOMP	•									

Project Client Date	: W	lorth St loodard-C ./6/2023		Project Number : 177018.00 Project Manager: MJO Computed by : MJO								
	Increment of stresses obtained using : Boussinesq											
Settlement for $X = 18.00$ (ft) $Y = 37.00$ (ft)												
Footing # Corner Point P1 Corner Point P2								Load				
	1		(ft) Y1([.] .00 101.0		•) Y2(+t 118.50	(psf) 181.00					
Foundation Elev.= 131.50 (ft)Ground Surface Elev.=135.00 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)												
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)												
1 INCOMP. 15.0 125.00 0.00 0.00												
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00												
	ICOMP. 31				130.		0.00	0.00				
			To	tal Sett	tlement	=	0.00	0.00				
	Subla	Won		Soi	l Stres	505						
N§.	Thick.	-	Initial	Increme			ress	Settlement				
			(psf))			(in.)				
	()	(/	(F)	VF = 1	/	(F)		()				
1	INCOMP.											
2	1.90	119.05	1987.10	0.0	92	1987.10		0.00				
3	1.90	117.15	2158.26	0.0	ð3	2158.26		0.00				
4	1.90	115.25	2263.90	0.0	ð4	2263.90		0.00				
5		113.35	2369.54	0.0		2369.54		0.00				
6		111.45	2475.18	0.0		2475.18		0.00				
7		109.55	2580.82	0.0		2580.82		0.00				
8		107.65	2686.46	0.1		2686.46		0.00				
9		105.75	2792.10	0.1		2792.10		0.00				
10		103.85	2897.74	0.1		2897.74		0.00				
11		101.95	3003.38	0.1	19	3003.38		0.00				
12	INCOMP.											

Project Client Date	:	North St Woodard-C 4/6/2023	-	Project Number : 177018.00 Project Manager: MJO Computed by : MJO								
	Increment of stresses obtained using : Boussinesq											
Settlement for $X = 18.00$ (ft) $Y = 47.50$ (ft)												
Fc	Load											
	1		(ft) Y1([.] .00 101.0		X2(ft) Y2(ft) (psf) 45.00 118.50 181.00							
	1											
Foundation Elev.= 131.50 (ft)Ground Surface Elev.=135.00 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)												
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)												
1 INCOMP. 15.0 125.00 0.00 0.00												
2 COMP. 19.0 0.037 0.037 0.037 118.00 0.00 0.00												
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00					
			To	tal Sett	tlement =	0.00	0.00					
	Sub1	ayer		Soi	l Stresses							
N§.	Thick.	-	Initial	Increme		Past Press.	Settlement					
-	(ft)	(ft)	(psf)	(psf)) (r	osf)	(in.)					
1 2	INCOMF 1.90		1987.10	0.6	24 100	7 10	0.00					
2		119.05 117.15	2158.26			37.10 58.26	0.00					
4	1.90	115.25	2263.90	0.6		53.90	0.00					
5	1.90	113.35	2369.54	0.1		59.54	0.00					
6	1.90	111.45	2475.18	0.1		75.18	0.00					
7	1.90	109.55	2580.82	0.1		30.82	0.00					
8	1.90	107.65	2686.46	0.2		36.46	0.00					
9	1.90	105.75	2792.10	0.2		92.10	0.00					
10	1.90	103.85	2897.74	0.3		97.74	0.00					
11	1.90	101.95	3003.38	0.3		3.38	0.00					
12	INCOMF											

Project Client Date	:	North St Woodard-C 4/6/2023		Project Number : 177018.00 Project Manager: MJO Computed by : MJO							
Increment of stresses obtained using : Boussinesq											
Settlement for $X = 18.00$ (ft) $Y = 86.50$ (ft)											
Footing # Corner Point P1 Corner Point P2 Load											
	1		(ft) Y1(.00 101.	•	X2(+t) 45.00		(psf) 181.00				
Foundation Elev.= 131.50 (ft)Ground Surface Elev.=135.00 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)											
Layer Comp. Recomp. Swell. Unit Primary Secondary N°. Type Thick. Ratio Weight Settlement Settlement (ft) (pcf) (in.) (in.)											
1 INCOMP. 15.0 125.00 0.00 0.00											
	:OMP. 1		37 0.037	0.037							
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00				
			To	tal Set	tlement =	0.01	0.00				
	Subl	ayer		Soi	l Stresse	S					
N§.	Thick.	Elev.	Initial	Increme	ent Max.	Past Press.	Settlement				
	(ft)	(ft)	(psf)	(psf)) (psf)	(in.)				
1	INCOMP										
2	1.90	119.05	1987.10	1.0	54 19	87.10	0.00				
3		117.15	2158.26			58.26	0.00				
4	1.90	115.25	2263.90	2.0		63.90	0.00				
5	1.90	113.35	2369.54	3.3	19 23	69.54	0.00				
6	1.90	111.45	2475.18	3.0		75.18	0.00				
7	1.90	109.55	2580.82	4.0		80.82	0.00				
8	1.90	107.65	2686.46	4.		86.46	0.00				
9	1.90	105.75	2792.10	4.6		92.10	0.00				
10	1.90	103.85	2897.74		4.81 2897.74 0.00						
11 12	1.90	101.95	3003.38	4.9	96 30	03.38	0.00				
12	INCOMP	•									

Project Client Date	:	North St Woodard-C 4/6/2023		Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO						
	Increment of stresses obtained using : Boussinesq										
Settlement for X = 18.00 (ft) Y = 125.50 (ft)											
Fo	oting #				Corner Poi		Load				
	1		(+t) YI(.00 101.	•	X2(ft) Y 45.00 11		(psf) 181.00				
	ion Ele able El						135.00 (ft) 62.40 (pcf)				
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-				
1 IN	1 INCOMP. 15.0 125.00 0.00 0.00										
	COMP. 1		37 0.037	0.037							
3 IN	ICOMP. 3	1.0			130.00	0.00	0.00				
			To	tal Set	tlement =	0.01	0.00				
	Subl	ayer		Soi	l Stresses						
N§.	Thick.		Initial			st Press.					
	(ft)	(ft)	(psf)	(psf)) (ps	f)	(in.)				
1	INCOMP										
2	1.90	119.05	1987.10	3.8	86 1987	.10	0.00				
3		117.15	2158.26		78 2158		0.00				
4	1.90	115.25	2263.90	5.			0.00				
5	1.90	113.35	2369.54	6.2	26 2369	.54	0.00				
6	1.90	111.45	2475.18	6.			0.00				
7	1.90	109.55	2580.82	7.3			0.00				
8	1.90	107.65	2686.46	7.4			0.00				
9	1.90	105.75	2792.10	7.			0.00				
10	1.90	103.85	2897.74	7.0			0.00				
11 12	1.90	101.95	3003.38	7.0	51 3003	.38	0.00				
12	INCOMP	•									

Project Client Date	:	North St Woodard-C 4/6/2023	Culvert, urran	Agawam	Project Project Compute	Manage	r: MJO	8.00			
	Increment of stresses obtained using : Boussinesq										
	Set	tlement f	or X = 1	8.00 (f	t)	Y = 135	.80 (ft)				
Fo	oting #		ner Point					Load			
	1		(ft) Y1(.00 101.		X2(+t) 45.00	•		(psf) 181.00			
	ion Ele able El		= 131.5 = 118.0					135.00 (ft) 62.40 (pcf)			
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight		lement	-			
1 INCOMP. 15.0 125.00 0.00 0.00											
2 C	COMP. 1	9.0 0.0	37 0.037	0.037	118.0	0	0.00	0.00			
3 IN	ICOMP. 3	1.0			130.0	0	0.00	0.00			
			То	tal Set	tlement	=	0.00	0.00			
	Subl	aver		Soi	l Stress	es					
N§.	Thick.	•	Initial				ress.	Settlement			
2			(psf))			(in.)			
1	INCOMP		1007 10	1	10 1	007 10		0.00			
2	1.90	119.05	1987.10	1.1		987.10		0.00			
3 4	1.90	117.15 115.25	2158.26 2263.90	1.5		158.26 263.90		0.00			
5	1.90	113.35	2369.54	2.4		369.54		0.00			
6	1.90	111.45	2475.18	2.8		475.18		0.00			
7	1.90	109.55	2580.82	3.1		580.82		0.00			
8	1.90	107.65	2686.46	3.4		686.46		0.00			
9	1.90	105.75	2792.10	3.7		792.10		0.00			
10	1.90	103.85	2897.74	3.9		897.74		0.00			
11	1.90	101.95	3003.38	4.3		003.38		0.00			
12	INCOMP										

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO											
	Increment of stresses obtained using : Boussinesq										
	Set	tlement f	for $X = 1$	8.00 (f1	t) Y	= 145.00 (ft)				
Fo	oting #		ner Point				Load				
	1		(ft) Y1(.00 101.		X2(+t) 45.00 1	· ·	(psf) 181.00				
	ion Ele able El					rface Elev.= ht of Wat. =	135.00 (ft) 62.40 (pcf)				
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-				
1 INCOMP. 15.0 125.00 0.00 0.00											
	OMP. 1	9.0 0.0	0.037	0.037			0.00				
	ІСОМР. З				130.00		0.00				
			To	tal Sett	tlement =	0.00	0.00				
	Cub1	ayer		Soil	l Stresses						
N§.	Thick.	-	Initial	Increme		ast Press.	Sottlomont				
112.			(psf)) (p		(in.)				
	(10)	(10)	(031)	(121)		51)	(111.)				
1	INCOMP										
2	1.90	119.05	1987.10	0.4	12 198	7.10	0.00				
3	1.90	117.15	2158.26			8.26	0.00				
4	1.90	115.25	2263.90	0.7		3.90	0.00				
5	1.90	113.35	2369.54	1.6	00 236	9.54	0.00				
6	1.90	111.45	2475.18	1.2		5.18	0.00				
7	1.90	109.55	2580.82	1.4	13 258	0.82	0.00				
8	1.90	107.65	2686.46	1.6	54 268	6.46	0.00				
9	1.90	105.75	2792.10	1.8	33 279	2.10	0.00				
10	1.90	103.85	2897.74	2.6	92 289	7.74	0.00				
11	1.90	101.95	3003.38	2.1	L8 300	3.38	0.00				
12	INCOMP	· ·									

Project Client Date	:	North St Woodard-C 4/6/2023	-	Agawam	Project	Project Number : 177018.00 Project Manager: MJO Computed by : MJO			
	Inc	rement of	stresses	obtaine	ed using	: Bous	sinesq		
	Set	tlement f	or X =	7.00 (fi	t) `	1 = 86	.50 (ft)	
Fc	ooting # 1	X1	ner Point (ft) Y1([.] 7.00 67.0	ft)		Y2(ft)	Load (psf) 490.00	
	ion Ele able El	۷.	= 115.30	0 (ft)	Ground S	Surface	Elev.=	135.00 (ft) 62.40 (pcf)	
		Comp nick. ft)	o. Recomp. Ratio	Swell.	Weight		lement	-	
2 0	ICOMP. 1 COMP. 3 ICOMP. 1	4.5 0.0	937 0.037	0.037	125.00 118.00 130.00	3	0.00 0.37 0.00	0.00 0.00 0.00	
			Tot	tal Sett	tlement :	=	0.37	0.00	
		ayer			l Stresse				
N§.		Elev.	Initial (psf)	Increme (nsf)	ent Max)		ress.	Settlement (in.)	
	(10)	(10)	(951)	(621)		(51)		(111.)	
1	INCOMP		. .						
2		-	ver founda					0.04	
3			2322.28 2479.35	244.9		322.28 479.35		0.04	
4 5	3.45 3.45	111.38 107.92	2671.17	245.7		571.17		0.06 0.06	
6	3.45	107.92	2862.99	225.6		362.99		0.05	
7	3.45	104.47	3054.81	208.5		02.99 054.81		0.04	
8	3.45	97.57	3246.63	188.8		246.63		0.04	
9	3.45	94.13	3438.45	168.6		438.45		0.03	
10	3.45	90.67	3630.27	149.4		530.27		0.03	
11	3.45	87.22	3822.09	131.9		322.09		0.02	
12	INCOMP								

Project Client Date	:	North St Woodard-C 4/6/2023		Agawam	Project	Number : 17 Manager: MJ by : MJ	0			
	Increment of stresses obtained using : Boussinesq									
	Set	tlement f	for X =	7.00 (f	t) Y	= 109.80 (ft)			
Fc	ooting # 1	X1	ner Point (ft) Y1([.] 7.00 67.0	ft)		Y2(ft)	Load (psf) 490.00			
	ion Ele able El						y.= 135.00 (ft) = 62.40 (pcf)			
		Comp nick. ft)	o. Recomp. Ratio	Swell.	Weight	Primary Settlemen (in.)	t Settlement			
1 INCOMP. 15.0 125.00 0.00 0.00										
2 0	:OMP. 3	4.5 0.6	0.037	0.037	118.00	0.11	0.00			
3 IN	ICOMP. 1	.5.5			130.00	0.00	0.00			
			To	tal Set	tlement =	0.11	0.00			
	Sub1	ayer		Soi	l Stresse	c				
N§.		-	Initial			Past Press.	Settlement			
			(psf)				(in.)			
	. ,						· · ·			
1	INCOMP									
2			over founda							
3			2322.28			22.28	0.00			
4	3.45	111.38	2479.35	23.2		79.35	0.01			
5	3.45	107.92	2671.17	52.3		71.17	0.01			
6 7	3.45	104.47	2862.99	67.4 74.2		62.99 54.81	0.02			
8	3.45 3.45	101.03 97.57	3054.81 3246.63	74.2		46.63	0.02 0.02			
8 9	3.45	97.57 94.13	3438.45	76.0		40.03 38.45	0.02			
9 10	3.45	94.13 90.67	3630.27	74.		30.27	0.01			
10	3.45	87.22	3822.09	68.0		22.09	0.01			
12	INCOMP		2011.02							
					-	_				

Project Client Date	:	North St Woodard-C 4/6/2023	Culvert, / Curran	Agawam	Project Project Computed	Manage	r: MJO	18.00			
	Increment of stresses obtained using : Boussinesq										
	Set	tlement f	for X =	7.00 (f [.]	t) Y	= 124	.80 (ft)			
Fc	oting #		ner Point					Load			
	1		.(ft) Y1([.] 7.00 67.0	•	X2(+t) 29.00	•		(psf) 490.00			
	ion Ele able El							135.00 (ft) 62.40 (pcf			
		Comp ick. ft)	o. Recomp. Ratio	Swell.	Weight		lement	-			
1 IN	ICOMP. 1	5.0			125.00		0.00	0.00			
2 0	COMP. 3	4.5 0.0	0.037	0.037	118.00		0.02	0.00			
3 IN	ICOMP. 1	5.5			130.00		0.00	0.00			
			To	tal Set [.]	tlement =		0.02	0.00			
	Cubl	21/22		Co.	l Stresse	~					
N§.	Thick.	ayer	Initial		ent Max.		nacc	Settlement			
113.			(psf)				C33.	(in.)			
	()	()	(PO.)	(P=)	/ (P)		()			
1	INCOMP	•									
2	S	ublayer c	over found	ation E	lev.						
3	2.20	114.20	2322.28	0.0	01 23	22.28		0.00			
4	3.45	111.38	2479.35	0.		79.35		0.00			
5	3.45	107.92	2671.17	2.0		71.17		0.00			
6	3.45	104.47	2862.99	5.		62.99		0.00			
7	3.45	101.03	3054.81	9.		54.81		0.00			
8	3.45	97.57	3246.63	13.		46.63		0.00			
9	3.45	94.13	3438.45	17.		38.45		0.00			
10	3.45	90.67	3630.27	20.9		30.27		0.00			
11	3.45	87.22	3822.09	23.	57 38	22.09		0.00			
12	INCOMP	•									

Project Client Date	:	North St Woodard-C 4/6/2023		Agawam	Project Ma	mber : 1770 nager: MJO y : MJO	18.00			
	Increment of stresses obtained using : Boussinesq									
	Set	tlement f	or X = 18	8.00 (ft	:) Y =	37.00 (ft)			
Fo	oting #				Corner Poi		Load			
	1		(+t) $Y1(+)$		X2(ft) Y 29.00 10		(psf) 490.00			
	ion Ele able El	v. ev.					135.00 (ft) 62.40 (pcf)			
		Comp ick. ft)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)				
	ICOMP. 1				125.00	0.00	0.00			
	COMP. 3 COMP. 1		0.037	0.037	118.00 130.00	0.01 0.00	0.00 0.00			
			Tot	tal Sett	:lement =		0.00			
	Subl	ayer		Soil	Stresses					
N§.	Thick.	Elev.	Initial	Increme	ent Max.Pa	st Press.				
	(ft)	(ft)	(psf)	(psf)) (ps	f)	(in.)			
1	INCOMP	•								
2			over founda							
3			2322.28				0.00			
4 5	3.45 3.45	111.38 107.92	2479.35 2671.17	0.0 0.5			0.00 0.00			
6	3.45	107.92	2862.99	1.4			0.00			
7	3.45	101.03	3054.81	2.9			0.00			
8	3.45	97.57	3246.63	4.8			0.00			
9	3.45	94.13	3438.45	6.8			0.00			
10	3.45	90.67	3630.27	8.8			0.00			
11	3.45	87.22	3822.09	10.7	2 3822	.09	0.00			
12	INCOMP	•								

Project Client Date	5 8										
	Increment of stresses obtained using : Boussinesq										
	Set	tlement f	For X = 1	8.00 (f [.]	t) Y	= 47.50 (*	ft)				
Fc	ooting #		ner Point				Load				
	1		.(ft) Y1([.] 7.00 67.0	•	X2(ft) 29.00	• •	(psf) 490.00				
	T	1	.00 07.0	00	29.00	100.00	490.00				
	ion Ele able El						.= 135.00 (ft) = 62.40 (pcf)				
		Comp ick. ft)	o. Recomp. Ratio	Swell.	Weight	Primary Settlemen (in.)	t Settlement				
1 IN	ICOMP. 1	5.0			125.00	0.00	0.00				
2 0	COMP. 3	4.5 0.6	0.037 0.037	0.037	118.00	0.02	0.00				
3 IN	ICOMP. 1	5.5			130.00	0.00	0.00				
			To	tal Set	tlement =	0.02	0.00				
NC		ayer	T		1 Stresse		Codd I const				
N§.	Thick.		Initial			Past Press.					
	(+)	(+t)	(psf)	(рรт) (1	pst)	(in.)				
1	INCOMP										
2	S	ublayer d	ver found	ation E	lev.						
3	2.20	114.20	2322.28	0.0	01 232	22.28	0.00				
4	3.45	111.38	2479.35	0.4	43 24	79.35	0.00				
5	3.45	107.92	2671.17	2.4	45 26	71.17	0.00				
6	3.45	104.47	2862.99	6.		62.99	0.00				
7	3.45	101.03	3054.81	11.0		54.81	0.00				
8	3.45	97.57	3246.63	15.3	85 324	46.63	0.00				
9	3.45	94.13	3438.45	20.		38.45	0.00				
10	3.45	90.67	3630.27	23.		30.27	0.00				
11	3.45	87.22	3822.09	25.	68 382	22.09	0.00				
12	INCOMP	•									
						_					

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO											
	Increment of stresses obtained using : Boussinesq										
	Set	tlement f	For X = 18	8.00 (fi	t) Y	= 86.50 (ft)				
Fc	oting #		ner Point				Load				
	1		.(ft) Y1(⁻ 7.00 67.0	•	X2(ft) 29.00 1	• •	(psf) 490.00				
	-	,	.00 07.0		23.00 1		490.00				
	ion Ele able El						135.00 (ft) 62.40 (pcf)				
		Comp ick. ft)	o. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	-				
1 IN	ICOMP. 1	5.0			125.00	0.00	0.00				
2 0	:OMP. 3	4.5 0.0	0.037	0.037	118.00	0.62	0.00				
3 IN	ICOMP. 1	5.5			130.00	0.00	0.00				
			To	tal Sett	tlement =	0.62	0.00				
NC		ayer	1		l Stresses		c				
N§.	Thick.		Initial			ast Press.					
	(+t)	(+t)	(psf)	(psr) (p	ST)	(in.)				
1	INCOMP										
2	S	ublayer c	over founda	ation E	lev.						
3			2322.28			2.28	0.08				
4	3.45	111.38	2479.35	480.9	95 247	9.35	0.12				
5	3.45	107.92	2671.17	445.6	97 267	1.17	0.10				
6	3.45	104.47	2862.99	390.7	71 286	2.99	0.09				
7	3.45	101.03	3054.81	333.0	30 30 5	4.81	0.07				
8	3.45	97.57	3246.63	280.2	29 324	6.63	0.06				
9	3.45	94.13	3438.45	235.3		8.45	0.04				
10	3.45	90.67	3630.27	198.2		0.27	0.04				
11	3.45	87.22	3822.09	167.7	71 382	2.09	0.03				
12	INCOMP	•									

Project Client Date	5 6										
	Increment of stresses obtained using : Boussinesq										
	Set	tlement f	For X = 1	8.00 (f [.]	t) Y	´ = 125	.50 (ft)			
Fc	ooting #		ner Point					Load			
	1		L(ft) Y1([.] 7.00 67.0	•	X2(+t) 29.00	•	•	(psf) 490.00			
	-	,			23100	200100		120100			
	ion Ele able El		= 115.3 = 118.0								
		Comp nick. [ft]	o. Recomp. Ratio	Swell.	Weight		lement		ment		
1 IN	1 INCOMP. 15.0 125.00 0.00 0.00										
2 (COMP. 3	84.5 0.6	0.037 0.037	0.037			0.02		.00		
3 IN	NCOMP. 1	.5.5			130.00		0.00	e	.00		
			To	tal Set	tlement =		0.02	0	.00		
NC		ayer	1		l Stresse			c]			
N§.	Thick.		Initial		ent Max.						
	(+t)	(+t)	(psf)	(рรт) (psr)		(in.)			
1	INCOMP	·.									
2			over found	ation E	lev.						
3			2322.28			22.28		0.00)		
4	3.45	111.38	2479.35	0.4		79.35		0.00			
5	3.45	107.92	2671.17	2.4	45 26	71.17		0.00)		
6	3.45	104.47	2862.99	6.	24 28	62.99		0.00)		
7	3.45	101.03	3054.81	11.0	03 30	54.81		0.00)		
8	3.45	97.57	3246.63	15.	85 32	46.63		0.00)		
9	3.45	94.13	3438.45	20.		38.45		0.00			
10	3.45	90.67	3630.27	23.		30.27		0.00			
11	3.45	87.22	3822.09	25.	68 38	22.09		0.00			
12	INCOMP										
					_	_					

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO											
	Increment of stresses obtained using : Boussinesq										
	Sett	lement f	or X =	7.00 (fi	t) Y =	32.00 (ft))				
Fc	ooting #		ner Point		Corner Poir		Load				
	1		(+t) Y1(- .00 28.0	•	X2(ft) Y2 29.00 67		(psf) 510.00				
	ion Elev able Ele					face Elev.= t of Wat. =	132.50 (ft) 62.40 (pcf)				
		Comp ck. t)	. Recomp. Ratio	Swell.	Unit Weight S (pcf)	Settlement	Secondary Settlement (in.)				
1 INCOMP. 11.5 125.00 0.00 0.00											
2 0	COMP. 43	.0 0.0	37 0.037	0.037	118.00	0.41	0.00				
3 IN	ICOMP. 8	.0			130.00	0.00	0.00				
			To	tal Sett	tlement =	0.41	0.00				
	Subla	ver		Soi	l Stresses						
N§.	Thick.	-	Initial	Increme		st Press.	Settlement				
2	(ft)		(psf)) (ps		(in.)				
1	INCOMP.										
2		116.85	1855.44	255.0			0.01				
3	4.30		1983.32	246.4			0.10				
4 5		110.25 105.95	2222.40 2461.48	204.0 174.0			0.07 0.06				
6		101.65	2700.56	152.6			0.05				
7	4.30	97.35	2939.64	134.2			0.04				
8	4.30	93.05	3178.72	117.9			0.03				
9	4.30	88.75	3417.80	103.6			0.02				
10	4.30	84.45	3656.88	91.1			0.02				
11	4.30	80.15	3895.96	80.2			0.02				
12	INCOMP.										

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO											
	Increment of stresses obtained using : Boussinesq										
	Sett	lement f	or X =	7.00 (fi	t) Y =	39.50 (ft))				
Fc	ooting #		ner Point		Corner Point		Load				
	1		(+t) Y1(+ 1.00 28.0	•	X2(ft) Y2(29.00 67.		(psf) 510.00				
	cion Elev Cable Ele				Ground Surfa Unit weight		132.50 (ft) 62.40 (pcf)				
	ayer /pe Thi (f	ck.	. Recomp. Ratio	Swell.	0	rimary ttlement (in.)	Secondary Settlement (in.)				
1 INCOMP. 11.5 125.00 0.00 0.00											
2 0	COMP. 43	.0 0.0	37 0.037	0.037	118.00	0.48	0.00				
3 IN	ICOMP. 8	.0			130.00	0.00	0.00				
			Tot	tal Sett	tlement =	0.48	0.00				
	Subla	von		Soil	l Stresses						
N§.	Thick.	-	Initial	Increme		Press	Settlement				
	(ft)		(psf)) (psf)		(in.)				
		\ - /	XF - 7	NF - 2	/ (F- /						
1	INCOMP.										
2	0.30	116.85	1855.44	255.0			0.01				
3	4.30	114.55	1983.32	254.3	1983.3	2	0.10				
4		110.25	2222.40	244.7			0.09				
5		105.95	2461.48	223.7			0.07				
6		101.65	2700.56	197.9			0.06				
7	4.30	97.35	2939.64	171.9			0.05				
8	4.30	93.05	3178.72	148.1			0.04				
9	4.30	88.75	3417.80	127.2			0.03				
10	4.30	84.45	3656.88	109.4			0.02				
11 12	4.30	80.15	3895.96	94.4	48 3895.9	D	0.02				
12	INCOMP.										

Project Name: North St Culvert, AgawamProject Number : 177018.00Client: Woodard-CurranProject Manager: MJODate: 4/6/2023Computed by: MJO						18.00		
	Incr	rement of	stresses	obtaine	ed using :	Boussinesq		
	Sett	lement f	or X = 18	8.00 (fi	t) Y	= 37.00 (ft)	
Fc	ooting #		ner Point				Load	
	1		(ft) Y1(- .00 28.0		29.00		(psf) 510.00	
	cion Elev Cable Ele	2V.		• •		rface Elev.= ht of Wat. =	132.50 (ft) 62.40 (pcf)	
		Comp ck. ^E t)	. Recomp. Ratio	Swell.	Weight	Primary Settlement (in.)	Secondary Settlement (in.)	
1 IN	1 INCOMP. 11.5 125.00 0.00 0.00							
	COMP. 43		0.037	0.037				
	ICOMP. 8	8.0			130.00	0.00	0.00	
			To	tal Sett	tlement =	0.76	0.00	
	Cub]-			5 a i '	l Stresses			
N§.	Subla Thick.	-	Initial	Increme		ast Press.	Sattlamont	
113.			(psf)) (p		(in.)	
	(10)	(10)	(251)	(1951)	/ (P	51)	(111)	
1	INCOMP.							
2	0.30	116.85	1855.44	510.0	90 185	5.44	0.01	
3	4.30	114.55	1983.32	506.0	97 198	3.32	0.19	
4	4.30	110.25	2222.40	455.2	25 222	2.40	0.15	
5	4.30	105.95	2461.48	370.7	72 246	1.48	0.12	
6	4.30	101.65	2700.56	292.8		0.56	0.09	
7	4.30	97.35	2939.64	232.3		9.64	0.06	
8	4.30	93.05	3178.72	186.9		8.72	0.05	
9	4.30	88.75	3417.80	152.7		7.80	0.04	
10	4.30	84.45	3656.88	126.6		6.88	0.03	
11	4.30	80.15	3895.96	106.3	36 389	5.96	0.02	
12	INCOMP.							

Total Settlement = 0.76 (in.)

Project Client Date						Project Number : 177018.00 Project Manager: MJO Computed by : MJO			
	Increm	nent of	stresses	obtaine	ed using	; : Bous	sinesq		
	Settle	ement fo	or X = 18	3.00 (fi	t)	Y = 47	.50 (ft)		
Fc	ooting #		ner Point (ft) Y1(f					Load (psf)	
	1		.00 28.0			67.00		510.00	
	cion Elev. Cable Elev.		= 117.00 = 118.00	• •				132.50 († 62.40 (j	•
	ayer vpe Thick (ft)	ζ.	Recomp. Ratio	Swell.	Weight		lement	Seconda Settleme (in.)	ent
1 IN	1 INCOMP. 11.5 125.00 0.00 0.00								
2 0	COMP. 43.0	0.03	87 0.037	0.037	118.0	0	0.81	0.0	90
3 IN	ICOMP. 8.0)			130.0	0	0.00	0.0	90
			Tot	al Set	tlement	=	0.81	0.0	90
	Sublaye	er		Soi	l Stress	es			
N§.	Thick. E	lev.	Initial	Increme	ent Max	.Past P	ress.	Settlement	t
	(ft)	(ft)	(psf)	(psf)	(psf)		(in.)	
1	TNCOMD								
1 2	INCOMP. 0.30 11	6.85	1855.44	510.0	20 I	855.44		0.01	
3	4.30 11		1983.32	507.		983.32		0.19	
4		0.25	2222.40	471.9		222.40		0.16	
5		95.95	2461.48	402.		461.48		0.13	
6		01.65	2700.56	328.		700.56		0.10	
7		97.35	2939.64	264.		939.64		0.07	
8	4.30 9	93.05	3178.72	213.3	16 3	178.72		0.05	
9	4.30 8	38.75	3417.80	173.3	11 3	417.80		0.04	
10		34.45	3656.88	142.3	12 3	656.88		0.03	
11		30.15	3895.96	118.0	0 5 3	895.96		0.02	
12	INCOMP.								

Total Settlement = 0.81 (in.)

					Project Ma	Project Number : 177018.00 Project Manager: MJO Computed by : MJO		
	Inc	rement of	stresses	obtaine	ed using :	Boussinesq		
	Set	tlement f	or X =	7.00 (ft	:) Y :	= 32.00 (ft)	
Fc	oting #				Corner Po:		Load	
	1		.(ft) Y1([.] '.00 32.(X2(ft) 33.00		(psf) 90.00	
F			117 0			· (· · · ·		
	ion Ele: able El						132.50 (ft) 62.40 (pcf)	
					_			
		Comp ick. ft)). Recomp. Ratio	Swell.	Unit Weight (pcf)		Secondary Settlement (in.)	
1 IN	1 INCOMP. 11.5 125.00 0.00 0.00							
	COMP. 4		.50 0.037	0.037				
3 IN	ICOMP.	8.0			130.00	0.00	0.00	
			To	tal Sett	:lement =	0.19	0.00	
	C. h 1			C - 11	Charles			
N§.	Subl Thick.	-	Initial	Increme	L Stresses	ast Press.	Settlement	
113.) (p:		(in.)	
	(10)	(10)	(001)	(P31)	/ (P·	51)	(1)	
1	INCOMP	•						
2	0.30	116.85	1855.44	22.5	50 185	5.44	0.00	
3	4.30	114.55	1983.32	21.6	53 198	3.32	0.06	
4	4.30	110.25	2222.40	15.9	95 2222	2.40	0.04	
5	4.30	105.95	2461.48	11.3	35 246:	1.48	0.03	
6	4.30	101.65	2700.56	8.4	18 2700	0.56	0.02	
7	4.30	97.35	2939.64	6.5		9.64	0.01	
8	4.30	93.05	3178.72	5.2	25 3178	8.72	0.01	
9	4.30	88.75	3417.80	4.2	341	7.80	0.01	
10	4.30	84.45	3656.88	3.5	52 3650	5.88	0.01	
11	4.30	80.15	3895.96	2.9	95 389	5.96	0.00	
12	INCOMP	•						

Total Settlement = 0.19 (in.)

Project Name: North St Culvert, Agawam Client : Woodard-Curran Date : 4/6/2023				Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO			
	Incr	rement of	stresses	obtaine	ed using :	Boussinesq		
	Sett	lement f	or X =	7.00 (fi	:) Y =	= 39.50 (ft)	
Fc	ooting #		ner Point		Corner Poi		Load	
	1		(+t) Y1(- '.00 32.0	•	X2(ft) Y 33.00 3		(psf) 90.00	
	tion Elev Cable Ele			• •		rface Elev.= nt of Wat. =	132.50 (ft) 62.40 (pcf)	
	•	Comp ick. ^f t)	. Recomp. Ratio	Swell.	0	Primary Settlement (in.)	Secondary Settlement (in.)	
1 IN	1 INCOMP. 11.5 125.00 0.00 0.00							
2 0	COMP. 43	3.0 0.2	50 0.037	0.037	118.00		0.00	
3 IN	ICOMP. 8	3.0			130.00	0.00	0.00	
			To	tal Sett	:lement =	0.11	0.00	
	Subla	war		Soi	l Stresses			
N§.	Thick.	-	Initial	Increme		ast Press.	Settlement	
			(psf)) (ps		(in.)	
		. ,						
1	INCOMP.							
2	0.30	116.85	1855.44	0.6			0.00	
3	4.30		1983.32	3.6			0.01	
4	4.30	110.25	2222.40	9.3			0.02	
5 6	4.30 4.30	105.95 101.65	2461.48 2700.56	8.8			0.02 0.02	
6 7	4.30 4.30	97.35	2700.56	7.3 5.9			0.02 0.01	
8	4.30	93.05	3178.72	4.9			0.01	
9	4.30	88.75	3417.80	4.6			0.01	
10	4.30	84.45	3656.88	3.3			0.01	
11	4.30	80.15	3895.96	2.8			0.00	
12	INCOMP							

Total Settlement = 0.11 (in.)

Project Client Date						Project Number : 177018.00 Project Manager: MJO Computed by : MJO			
	Incr	rement of	stresses	obtaine	ed using	: Bous	sinesq		
	Sett	lement f	or X = 1	8.00 (fi	z) `	Y = 37	.00 (ft))	
Fo	oting #		ner Point		Corner I			Load	
	1		(ft) Y1(.00 32.	•		Y2(+t 37.00		(psf) 90.00	
	cion Elev Cable Ele							132.50 (ft) 62.40 (pcf)	
		Comp ick. ^E t)	. Recomp. Ratio	Swell.		Sett	mary lement n.)		
1 IN	ICOMP. 11	L.5			125.00	9	0.00	0.00	
	OMP. 43		50 0.037	0.037			0.34	0.00	
	ICOMP. 8	3.0			130.00		0.00	0.00	
			To	tal Sett	lement :	=	0.34	0.00	
	Subla	Won		Soi	L Stresse	26			
N§.	Thick.	-	Initial	Increme			ress	Settlement	
113.			(psf))		C55.	(in.)	
	(10)	(10)	(251)	(191)		(1991)		(1)	
1	INCOMP								
2	0.30	116.85	1855.44	45.0	00 18	355.44		0.01	
3	4.30	114.55	1983.32	43.2	21 19	983.32		0.12	
4	4.30	110.25	2222.40	31.1		222.40		0.08	
5	4.30	105.95	2461.48	20.8	33 24	461.48		0.05	
6	4.30	101.65	2700.56	14.3	33 27	700.56		0.03	
7	4.30	97.35	2939.64	10.2	24 29	939.64		0.02	
8	4.30	93.05	3178.72	7.5	59 33	178.72		0.01	
9	4.30	88.75	3417.80	5.8	30 34	417.80		0.01	
10	4.30	84.45	3656.88	4.5	56 36	556.88		0.01	
11	4.30	80.15	3895.96	3.6	56 38	395.96		0.01	
12	INCOMP	,							

Total Settlement = 0.34 (in.)

Project Name: North St Culvert, Agawam Client : Woodard-Curran Date : 4/6/2023				Agawam	Project Number : 177018.00 Project Manager: MJO Computed by : MJO			
	Inc	rement of	stresses	obtaine	ed using : E	Boussinesq		
	Set	tlement f	or X = 1	8.00 (ft	t) Y =	47.50 (ft))	
Fc	ooting #		ner Point		Corner Poir X2(ft) Y2		Load (psf)	
	1		2.00 32.0	•	33.00 37		90.00	
	tion Elev table Elev				Ground Surf Unit weight		132.50 (ft) 62.40 (pcf)	
	•	Comp ick. ft)	o. Recomp. Ratio	Swell.	0	Primary Settlement (in.)	Secondary Settlement (in.)	
1 IN	1 INCOMP. 11.5 125.00 0.00 0.00							
2 0	COMP. 4	3.0 0.2	.50 0.037	0.037	118.00	0.05		
3 IN	ICOMP.	8.0			130.00	0.00	0.00	
			To	tal Sett	tlement =	0.05	0.00	
	Subla	aver		Soil	l Stresses			
N§.	Thick.	-	Initial	Increme		st Press.	Settlement	
	(ft)	(ft)	(psf)	(psf)) (psf	F)	(in.)	
	THEOME							
1 2	INCOMP 0.30	116.85	1855.44	0.6	00 1855.	11	0.00	
3		114.55	1983.32	0.1			0.00	
4	4.30	110.25	2222.40	1.7			0.00	
5	4.30	105.95	2461.48	3.7			0.01	
6	4.30	101.65	2700.56	4.6			0.01	
7	4.30	97.35	2939.64	4.7			0.01	
8	4.30	93.05	3178.72	4.3	30 3178.	.72	0.01	
9	4.30	88.75	3417.80	3.7	78 3417.	.80	0.01	
10	4.30	84.45	3656.88	3.2	26 3656.	. 88	0.00	
11	4.30	80.15	3895.96	2.8	30 3895.	.96	0.00	
12	INCOMP	•						

Total Settlement = 0.05 (in.)

-	n St Culvert, Agawam nrd-Curran 2023	Project Number : 1770 Project Manager: MJO Computed by : MJO	018.00
Incremen	t of stresses obtain	ed using : Boussinesq	
Settleme	nt for X = 7.00 (f	t) Y = 32.00 (f	t)
Footing # 1 2 3 4	Corner Point P1 X1(ft) Y1(ft) 2.80 28.00 29.00 28.00 3.00 36.00 29.00 36.00	Corner Point P2 X2(ft) Y2(ft) 7.00 36.00 33.00 36.00 7.00 43.00 33.00 43.00	Load (psf) 371.00 371.00 186.00 186.00
Foundation Elev. Water table Elev.	• •	Ground Surface Elev. Unit weight of Wat.	• •
Layer N°. Type Thick. (ft)	Comp. Recomp. Swell. Ratio	Unit Primary Weight Settlement (pcf) (in.)	Secondary Settlement (in.)
1 INCOMP. 11.5 2 COMP. 43.0 3 INCOMP. 8.0	0.037 0.037 0.037	125.000.00118.000.09130.000.00	0.00 0.00 0.00
	Total Set	tlement = 0.09	0.00
Sublayer N§. Thick. Ele (ft) (f 1 INCOMP.	ev. Initial Increm		Settlement (in.)
I INCOM			

2	4.30	118.85	1691.20	77.33	1691.20	0.04
3	4.30	114.55	1983.32	43.19	1983.32	0.02
4	4.30	110.25	2222.40	27.62	2222.40	0.01
5	4.30	105.95	2461.48	19.55	2461.48	0.01
6	4.30	101.65	2700.56	14.83	2700.56	0.00
7	4.30	97.35	2939.64	11.77	2939.64	0.00
8	4.30	93.05	3178.72	9.63	3178.72	0.00
9	4.30	88.75	3417.80	8.05	3417.80	0.00
10	4.30	84.45	3656.88	6.83	3656.88	0.00
11	4.30	80.15	3895.96	5.87	3895.96	0.00
12	INCOM	ς.				

Total Settlement = 0.09 (in.)

÷	h St Culvert, Agawam ard-Curran 2023	Project Number : 177018.00 Project Manager: MJO Computed by : MJO							
Increme	nt of stresses obtair	ned using : Boussinesq							
Settlem	Settlement for $X = 7.00$ (ft) $Y = 39.50$ (ft)								
Footing #	Corner Point P1	Corner Point P2	Load						
	X1(ft) Y1(ft)	X2(ft) Y2(ft)	(psf)						
1	2.80 28.00	7.00 36.00	371.00						
2	29.00 28.00	33.00 36.00	371.00						
3	3.00 36.00	7.00 43.00	186.00						
4	29.00 36.00	33.00 43.00	186.00						
Foundation Elev.= 126.50 (ft)Ground Surface Elev.=132.50 (ft)Water table Elev.= 118.00 (ft)Unit weight of Wat. =62.40 (pcf)									
Layer	Comp. Recomp. Swell.	Unit Primary	Secondary						
N°. Type Thick.		Weight Settlement	Settlement						
(ft)	Nacio	(pcf) (in.)	(in.)						
(10)		(per) (11.)	(111.)						
1 INCOMP. 11.5		125.00 0.00	0.00						
	0.037 0.037 0.037		0.00						
3 INCOMP. 8.0		130.00 0.00	0.00						
		190100 0100	0.00						
	Total Set	tlement = 0.07	0.00						
		1. 61							
Sublayer		1 Stresses							
_	ev. Initial Increm		Settlement						
(ft) (ft) (psf) (psf) (psf)	(in.)						
1 INCOMP.									
2 4.30 118	.85 1691.20 51.	51 1691.20	0.02						

1	INCOMP	· ·				
2	4.30	118.85	1691.20	51.51	1691.20	0.02
3	4.30	114.55	1983.32	33.67	1983.32	0.01
4	4.30	110.25	2222.40	23.57	2222.40	0.01
5	4.30	105.95	2461.48	17.57	2461.48	0.01
6	4.30	101.65	2700.56	13.75	2700.56	0.00
7	4.30	97.35	2939.64	11.13	2939.64	0.00
8	4.30	93.05	3178.72	9.22	3178.72	0.00
9	4.30	88.75	3417.80	7.77	3417.80	0.00
10	4.30	84.45	3656.88	6.64	3656.88	0.00
11	4.30	80.15	3895.96	5.73	3895.96	0.00
12	INCOM	ς.				

Total Settlement = 0.07 (in.)

-	h St Culvert, Agawan ard-Curran 2023	n Project Number : 177 Project Manager: MJO Computed by : MJO	
Increme	nt of stresses obtai	ned using : Boussinesq	
Settlem	ent for X = 7.00 ((ft) Y = 86.50 (f	t)
Footing #	Corner Point P1	Corner Point P2	Load
	X1(ft) Y1(ft)	X2(ft) Y2(ft)	(psf)
1	2.80 28.00	7.00 36.00	371.00
2	29.00 28.00	33.00 36.00	371.00
3	3.00 36.00	7.00 43.00	186.00
4	29.00 36.00	33.00 43.00	186.00
Foundation Elev. Water table Elev.	= 126.50 (ft) = 118.00 (ft)		• • •
Layer N°. Type Thick. (ft)	Comp. Recomp. Swell Ratio	. Unit Primary Weight Settlement (pcf) (in.)	Secondary Settlement (in.)
1 INCOMP. 11.5		125.00 0.00	0.00
2 COMP. 43.0	0.037 0.037 0.03		0.00
3 INCOMP. 8.0	0.03/ 0.03/ 0.03	130.00 0.00	0.00
		190.00 0.00	0.00
	Total Se	ettlement = 0.00	0.00
Sublayer	Sc	oil Stresses	
-	ev. Initial Incre		Settlement
(ft) (ft) (psf) (ps	sf) (psf)	(in.)
1 INCOMP.			
2 4.30 118	.85 1691.20 0	0.02 1691.20	0.00

-	THCOM	•				
2	4.30	118.85	1691.20	0.02	1691.20	0.00
3	4.30	114.55	1983.32	0.06	1983.32	0.00
4	4.30	110.25	2222.40	0.13	2222.40	0.00
5	4.30	105.95	2461.48	0.23	2461.48	0.00
6	4.30	101.65	2700.56	0.35	2700.56	0.00
7	4.30	97.35	2939.64	0.47	2939.64	0.00
8	4.30	93.05	3178.72	0.60	3178.72	0.00
9	4.30	88.75	3417.80	0.71	3417.80	0.00
10	4.30	84.45	3656.88	0.81	3656.88	0.00
11	4.30	80.15	3895.96	0.89	3895.96	0.00
12	INCOM	▷.				

Total Settlement = 0.00 (in.)

÷	ard-Curran	Project Number : 1770 Project Manager: MJO Computed by : MJO	018.00				
Increment of stresses obtained using : Boussinesq							
Settlem	ent for X = 18.00 (1	ft) $Y = 37.00$ (ft	t)				
Footing #	Corner Point P1	Corner Point P2	Load				
	X1(ft) Y1(ft)	X2(ft) Y2(ft)	(psf)				
1	2.80 28.00	7.00 36.00	371.00				
2	29.00 28.00	33.00 36.00	371.00				
3	3.00 36.00	7.00 43.00	186.00				
4	29.00 36.00	33.00 43.00	186.00				
Foundation Elev. Water table Elev.	= 126.50 (ft) = 118.00 (ft)		• •				
Layer	Comp. Recomp. Swell	. Unit Primary	Secondary				
N°. Type Thick.		Weight Settlement	Settlement				
(ft)		(pcf) (in.)	(in.)				
X - 7							
1 INCOMP. 11.5		125.00 0.00	0.00				
2 COMP. 43.0	0.037 0.037 0.037	7 118.00 0.04	0.00				
3 INCOMP. 8.0		130.00 0.00	0.00				
	Total So	ttlement = 0.04	0.00				
	TOLAL SET	0.04	0.00				
Sublayer	So:	il Stresses					
	ev. Initial Increm		Settlement				
(ft) ((in.)				
			· · ·				
1 INCOMP.							
2 4 30 118	.85 1691.20 7.	.96 1691.20	0.00				

2	4.30	118.85	1691.20	7.96	1691.20	0.00
3	4.30	114.55	1983.32	14.20	1983.32	0.01
4	4.30	110.25	2222.40	16.19	2222.40	0.01
5	4.30	105.95	2461.48	15.42	2461.48	0.01
6	4.30	101.65	2700.56	13.63	2700.56	0.00
7	4.30	97.35	2939.64	11.70	2939.64	0.00
8	4.30	93.05	3178.72	9.95	3178.72	0.00
9	4.30	88.75	3417.80	8.46	3417.80	0.00
10	4.30	84.45	3656.88	7.23	3656.88	0.00
11	4.30	80.15	3895.96	6.22	3895.96	0.00
12	INCOMF	₽.				

Total Settlement = 0.04 (in.)

-	n St Culvert, Agawam ard-Curran 2023	Project Manager:					
Incremen	Increment of stresses obtained using : Boussinesq						
Settleme	ent for X = 18.00 (f	t) Y = 47.50	(ft)				
Footing #		Corner Point P2 X2(ft) Y2(ft)	Load (psf)				
1	2.80 28.00	7.00 36.00	371.00				
2	29.00 28.00	33.00 36.00	371.00				
3	3.00 36.00	7.00 43.00	186.00				
4	29.00 36.00	33.00 43.00	186.00				
Foundation Elev. Water table Elev.	= 126.50 (ft) = 118.00 (ft)	Ground Surface El Unit weight of Wa	ev.= 132.50 (ft) t.= 62.40 (pcf)				
Layer N°. Type Thick. (ft)	Comp. Recomp. Swell. Ratio	Unit Primar Weight Settlem (pcf) (in.)	ent Settlement				
1 INCOMP. 11.5		125.00 0.	0.00				
	0.037 0.037 0.037						
3 INCOMP. 8.0		130.00 0.					
	Total Set	tlement = 0.	0.00				
	Soi ev. Initial Increm ft) (psf) (psf		s. Settlement (in.)				

	(ft)	(+t)	(psf)	(psf)	(pst)	(in.)
1	тысом	۰ ۲				
1	INCOM					
2	4.30	118.85	1691.20	2.81	1691.20	0.00
3	4.30	114.55	1983.32	6.09	1983.32	0.00
4	4.30	110.25	2222.40	8.26	2222.40	0.00
5	4.30	105.95	2461.48	9.05	2461.48	0.00
6	4.30	101.65	2700.56	8.91	2700.56	0.00
7	4.30	97.35	2939.64	8.30	2939.64	0.00
8	4.30	93.05	3178.72	7.51	3178.72	0.00
9	4.30	88.75	3417.80	6.70	3417.80	0.00
10	4.30	84.45	3656.88	5.95	3656.88	0.00
11	4.30	80.15	3895.96	5.27	3895.96	0.00
12	INCOM	▷.				

Total Settlement = 0.02 (in.)

÷	lard-Curran	Project Number : 1770 Project Manager: MJO Computed by : MJO	18.00				
Increment of stresses obtained using : Boussinesq							
Settlen	nent for X = 18.00 (f	t) Y = 86.50 (ft)				
Footing #	Corner Point P1	Corner Point P2	Load				
		X2(ft) Y2(ft)	(psf)				
1	2.80 28.00	7.00 36.00	371.00				
2	29.00 28.00	33.00 36.00	371.00				
3	3.00 36.00	7.00 43.00	186.00				
4	29.00 36.00	33.00 43.00	186.00				
Foundation Elev.	= 126.50 (ft)	Ground Surface Elev.=	132.50 (ft)				
Water table Elev.		Unit weight of Wat. =					
		<u> </u>					
Lavon	Comp Bocomp Sucl	Unit Dnimany	Secondany				
Layer N°. Type Thick.		Unit Primary Weight Settlement					
(ft)	Katio	(pcf) (in.)	(in.)				
(10)		(per) (11.)	(111.)				
1 INCOMP. 11.5		125.00 0.00	0.00				
2 COMP. 43.0	0.037 0.037 0.037	118.00 0.00	0.00				
3 INCOMP. 8.0		130.00 0.00	0.00				
	Total Set	tlement = 0.00	0.00				
Sublayer		1 Stresses	Cattles 1				
N§. Thick. El							
(ft) ((ft) (psf) (psf) (psf)	(in.)				
1 INCOMP.							
	3.85 1691.20 0.	02 1691.20	0.00				
2 4 20 11/		0 1092 22	0.00				

2	4.30	118.85	1691.20	0.02	1691.20	0.00
3	4.30	114.55	1983.32	0.06	1983.32	0.00
4	4.30	110.25	2222.40	0.14	2222.40	0.00
5	4.30	105.95	2461.48	0.24	2461.48	0.00
6	4.30	101.65	2700.56	0.37	2700.56	0.00
7	4.30	97.35	2939.64	0.50	2939.64	0.00
8	4.30	93.05	3178.72	0.63	3178.72	0.00
9	4.30	88.75	3417.80	0.75	3417.80	0.00
10	4.30	84.45	3656.88	0.85	3656.88	0.00
11	4.30	80.15	3895.96	0.93	3895.96	0.00
12	INCOM	₽.				

Total Settlement = 0.00 (in.)

Seismic Site Class Calculation

Project: North Street over White Brook - Culvert Replacement

Location: Agaw	am, MA	
Calculated By:	MJO	Date: 2/3/2023
Checked By:	JBH	Date: 3/31/2023
Revised By:		Date:
Checked By:		Date:

- Objective:Determine seismic site class & seismic design parameters for the replacement culvert (proposed aluminum arch culvert)
in accordance with MassDOT LRFD Bridge Design Manual, which references the AASHTO Guide Specifications for LRFD
Seismic Bridge Design (2nd edition, 2011 with interim revisions).
- SubsurfaceRecent borings BB-1 through BB-3 performed between December 28 and 30, 2022 by Seaboard Drilling, Inc., observedInformation:and logged by GZA. Also includes select information from previous borings WB-1 and WB-2 performed on November 12,
2020, observed and logged by O'Reilly, Talbot & Okun Engineering Associates (OTO) because the recent borings were
performed using drive and wash techniques and the previous borings were performed with hollow-stem-auger
techniques.

<u>Approach</u>: 1) Assess if site conditions are known in sufficient detail to establish site class. If not, an assumption of Site Class D is permitted unless conditions for Site Class E or F are established.

- 2) Check for the four categories of Site Class F requiring site-specific evaluation:
 - Soils vulnerable to potential failure (liquefiable soils, sensitive clays, weakly cemented soils)
 - Peats or highly organic clays greater than 10 feet in thickness
 - Thick layers (greater than 25 feet) of highly plastic clay (PI > 75)
 - Very thick soft/medium stiff clays (greater than 125 feet)

3) Check for existence of greater than 10 feet of soft clay (where $s_u < 500 \text{ psf}$, w > 40%, and PI > 20). If these conditions are met, classify as Site Class E.

(NOTE: FOR THIS SITE, THE ABOVE CONDITIONS ARE NOT MET)

- 4) Categorize the site using the V_s , \overline{N} , \overline{ors}_u methods.
- 5) Determine the appropriate Site Class based on the boring-specific results. If appropriate, split the site into two or more different site classes.
- 6) North Street is not on or over any of the National Highway System (NHS) routes, therefore the proposed culvert replacement is <u>not</u> considered a critical/essential bridge. Therefore, use the AASHTO LRFD Seismic Bridge Design Manual, 2011 to calculate SD₁, SD₅, and As.

Site Class ResultsFor the purpose of this calculation, SPT N-values obtained from recent borings BB-1 through BB-3 and select SPT N-valuesper Boring:from previous borings WB-1 and WB-2, which did not overlap with samples from recent borings BB-2 and BB-3, were

Exploration	Ν	Site Class per Boring
BB-1	1 <u>1</u> .0	E
BB-2	<u>8.</u> 0	E
BB-3	5.9	E

<u>Site Class:</u> Based on the above, we recommend the site be classified as <u>Site Class E</u>.

Seismic Site Class Calculation

Project: North Street over White Brook - Culvert Replacement

Location:	Agawam, MA		
Calculated By:	MJO	Date:	2/3/2023
Checked By:	JBH	Date:	3/31/2023
Revised By:		Date:	
Checked By:		Date:	

Seismic Design Parameters:

Based on the criteria speficied in the MassDOT LRFD Bridge Manual, the culvert structure is considered a non-critical/nonessential, conventional bridge. Therefore, seismic design parameters may be developed using the hazard maps contained in AASHTO LRFD Seismic, which are based on a 1,000-year return period event.

$$\begin{split} S_{D1} &= F_{\nu}S_{1} ~(\text{AASHTO Eq 3.4.1-3}) \\ S_{DS} &= F_{a}S_{s} ~(\text{AASHTO Eq 3.4.1-2}) \\ A_{s} &= F_{pga}PGA ~(\text{AASHTO Eq 3.4.1-1}) \end{split}$$

	S ₁ = 0.038	S _{D1} =	0.133
	S ₅ = 0.131	S _{D5} =	0.328
	PGA = 0.059	PGA =	0.148
F _v =	3.5	(AASHTO Table 3.4.2.3-2)	
F _a =	2.5	(AASHTO Table 3.4.2.3-1)	
F _{pga} =	2.5	(AASHTO Table 3.4.2.3-1)	

AASHTO Table 3.4.2.1-1 - Site Class Definitions

Site Class	Soil Type and Profile					
Α	Hard rock with measured shear wave velocity, $\overline{v}_s > 5,000$ ft/s					
В	Rock with 2,500 ft/sec $< \overline{v}_s < 5,000$ ft/s					
С	Very dense soil and soil rock with 1,200 ft/sec $< \overline{v}_s < 2,500$ ft/s, or with either $\overline{N} > 50$ blows/ft, or $\overline{s}_{\mu} > 2.0$ ksf					
D	Stiff soil with 600 ft/s $< \overline{v}_{s} < 1,200$ ft/s, or with either $15 < \overline{N} < 50$ blows/ft, or $1.0 < \overline{s}_{u} < 2.0$ ksf					
Е	Soil profile with $\overline{v}_s < 600$ ft/s or with either $\overline{N} < 15$ blows/ft or $\overline{s}_u < 1.0$ ksf, or any profile with more than 10 ft of soft clay defined as soil with $PI > 20$, $w > 40$ percent and $\overline{s}_u < 0.5$ ksf					
F	 Soils requiring site-specific evaluations, such as: Peats or highly organic clays (H > 10 ft of peat or highly organic clay where H = thickness of soil) Very high plasticity clays (H > 25 ft with PI > 75) Very thick soft/medium stiff clays (H > 120 ft) 					

Attachments:

Seismic parameters from the USGS.gov designmaps web analysis tool based on the site location and site class

North Street over White Brook - Culvert Replacement

North Street over White Br	rook - Culvert	Replaceme	nt				Calculated By:	MJO	Date: 2/3/2023
Agawam, MA							Checked By:	JBH	Date: 3/31/2023
INPUT									
Exploration ID:	BB-1	l		Ground Surfa	ice Elevation:	136.5	De	epth of Boring:	52.5 ft
Depth to Bedrock:	42.5	ft							
EQUATIONS									
$\overline{N} = \frac{\sum_{i=1}^{m} d_i}{\sum_{i=1}^{m} \frac{d_i}{N_i}}$		N _i = the Star in the f	kness of any so ndard Penetratio ield without corr	ections.	STM D 1586) not to exce	ed 100 blows/ft as directly m midpoint between SPT sam		ess noted otherwise).
CALCULATION									
	1					<u>N</u> =	11.0		
	SPT Interv	al Depth	SPT Elevation						
Soil Strata				SPT N-value	d _i (ft)	<i>d</i> _{<i>i</i>} / N _i		Comments	
	Top, ft	Bottom, ft	(mid-interval)						
	0.0	2.0	135.5	9	2.0	0.222			
	2.0	4.0	133.5	4	2.0	0.500			
	4.0	6.0	131.5	6	2.0	0.333			
Fill	6.0	8.0	129.5	6	2.0	0.333			
	8.0	10.0	127.5	6	2.0	0.333			
	10.0	12.0	125.5	8	2.5	0.313			
	13.0	15.0	122.5	6	4.0	0.667			
	18.0	20.0	117.5	4	5.0	1.250			
SILT/CLAY	23.0	25.0	112.5	5	5.0	1.000			
SIL I/OLAT	28.0	30.0	107.5	2	5.0	2.500]		
	33.0	35.0	102.5	7	3.5	0.500]		
GLACIAL TILL	35.0	37.0	100.5	10	3.5	0.350]		
GLACIAL TILL	40.0	42.0	95.5	21	4.0	0.190]		
Bedrock	42.5	100.0	65.3	100	57.5	0.575	N=100 assumed for bedroc	k	

DATA VALIDATION $\Sigma d_i =$ 100.0 \checkmark North Street over White Brook - Culvert Replacement

Agawam, MA Checked By: JBH Date: 3/31/2023 INPUT Exploration ID: BB-2/WB-1 Ground Surface Elevation: 135.0 Depth of Boring: 56.8 ft Depth to Bedrock: 53.8 ft EQUATIONS m = number of layers $\overline{N} = \frac{\sum_{i=1}^{m} d_i}{\sum_{i=1}^{m} \frac{d_i}{N_i}}$ d_i = the thickness of any soil or rock layer between 0 and 100 feet. N_i = the Standard Penetration Resistance (ASTM D 1586) not to exceed 100 blows/ft as directly measured in the field without corrections. Note: d₁ calculated assuming breaks between sub-layers occur at the midpoint between SPT sample intervals (unless noted otherwise). CALCULATION N = 8.0 SPT Interval Depth SPT Elevation d_i (ft) Soil Strata SPT N-value d_i / N_i Comments (mid-interval) Top, ft Bottom, ft 0.5 2.5 133.5 35 3.8 0.107 Blow count from BB-02 5.0 7.0 129.0 5 4.8 0.950 Blow count from WB-1 FILL 124.0 Blow count from WB-1 10.0 12.0 9 4.0 0.444 13.0 15.0 121.0 6 4.0 0.667 Blow count from BB-02 18.0 20.0 116.0 3 5.0 1.667 Blow count from BB-02 23.0 25.0 111.0 3 5.0 1.667 Blow count from BB-02 28.0 30.0 106.0 2 2.500 Blow count from BB-02 5.0 SILT/CLAY 33.0 35.0 101.0 7 5.0 0.714 Blow count from BB-02 38.0 40.0 96.0 8 0.625 Blow count from BB-02 5.0 43.0 45.0 91.0 5 5.0 1.000 Blow count from BB-02 48.0 50.0 86.0 3 5.0 1.667 Blow count from BB-02 Glacial Till 53.0 53.8 81.6 100 2.3 0.023 Blow count from BB-02 Bedrock 53.8 100.0 58.1 100 46.2 0.462 N=100 assumed for bedrock

Calculated By:

MJO

Date:

2/3/2023

DATA VA	LIDATION	
$\sum d_i =$	100.0	•

North Street over White Brook - Culvert Replacement

Agawam, MA Checked By: JBH Date: 3/31/2023 INPUT Exploration ID: BB-3/WB-2 Ground Surface Elevation: 132.5 Depth of Boring: 66.5 ft Depth to Bedrock: 62.5 ft EQUATIONS m = number of layers d_i = the thickness of any soil or rock layer between 0 and 100 feet. $\frac{1}{N = \frac{\displaystyle\sum_{i=1}^{m} d_i}{\displaystyle\sum_{i=1}^{m} \frac{d_i}{N_i}}}$ N_i = the Standard Penetration Resistance (ASTM D 1586) not to exceed 100 blows/ft as directly measured in the field without corrections. Note: d₁ calculated assuming breaks between sub-layers occur at the midpoint between SPT sample intervals (unless noted otherwise). CALCULATION N = 5.9 SPT Interval Depth SPT Elevation d_i (ft) Soil Strata SPT N-value d_i / N_i Comments (mid-interval) Top, ft Bottom, ft 0.0 2.0 131.5 35 3.5 0.100 Blow count from BB-03 5.0 7.0 126.5 2 5.0 2.500 Blow count from WB-2 FILL 10.0 121.5 Blow count from WB-2 12.0 6 4.0 0.667 13.0 15.0 118.5 16 2.5 0.156 Blow count from BB-03 15.0 17.0 116.5 3 3.5 1.167 Blow count from WB-2 20.0 22.0 111.5 2 4.0 2.000 Blow count from WB-2 23.0 25.0 108.5 2 2.5 1.250 Blow count from BB-03 SILT/CLAY 25.0 27.0 106.5 4 5.0 1.250 Blow count from BB-03 33.0 35.0 98.5 2 9.0 4.500 Blow count from BB-03 2.000 43.0 45.0 88.5 5 10.0 Blow count from BB-03 53.0 55.0 78.5 13 13.5 1.038 Blow count from BB-03 Bedrock 62.5 100.0 51.3 100 37.5 0.375 N=100 assumed for bedrock

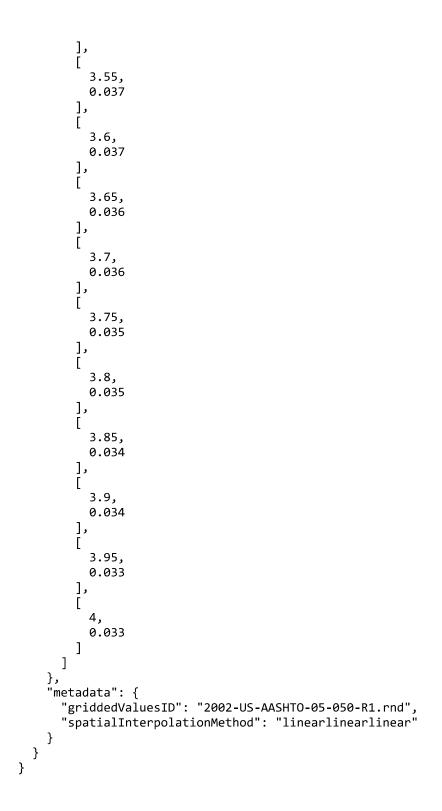
Calculated By:

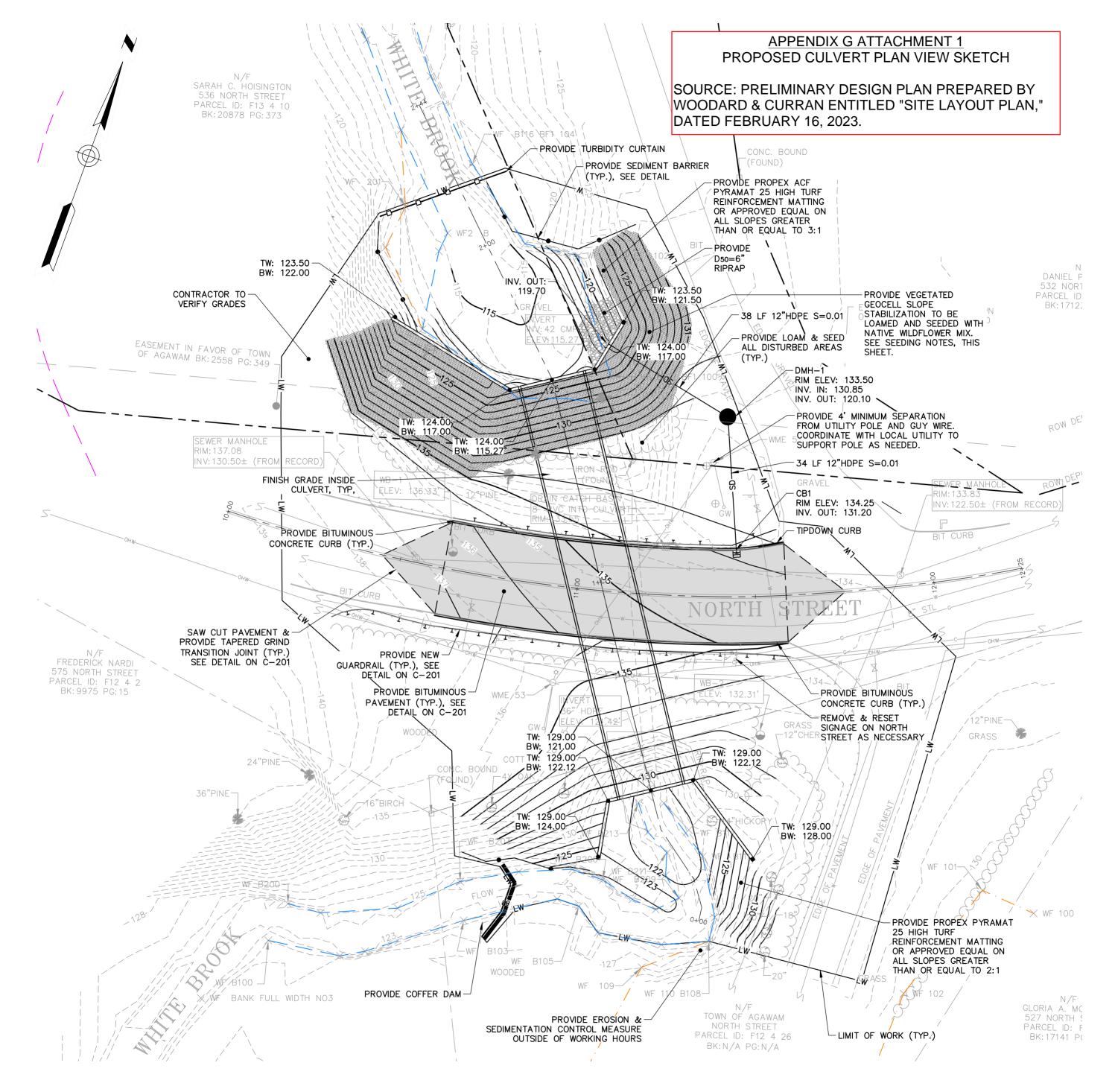
MJO

Date:

2/3/2023

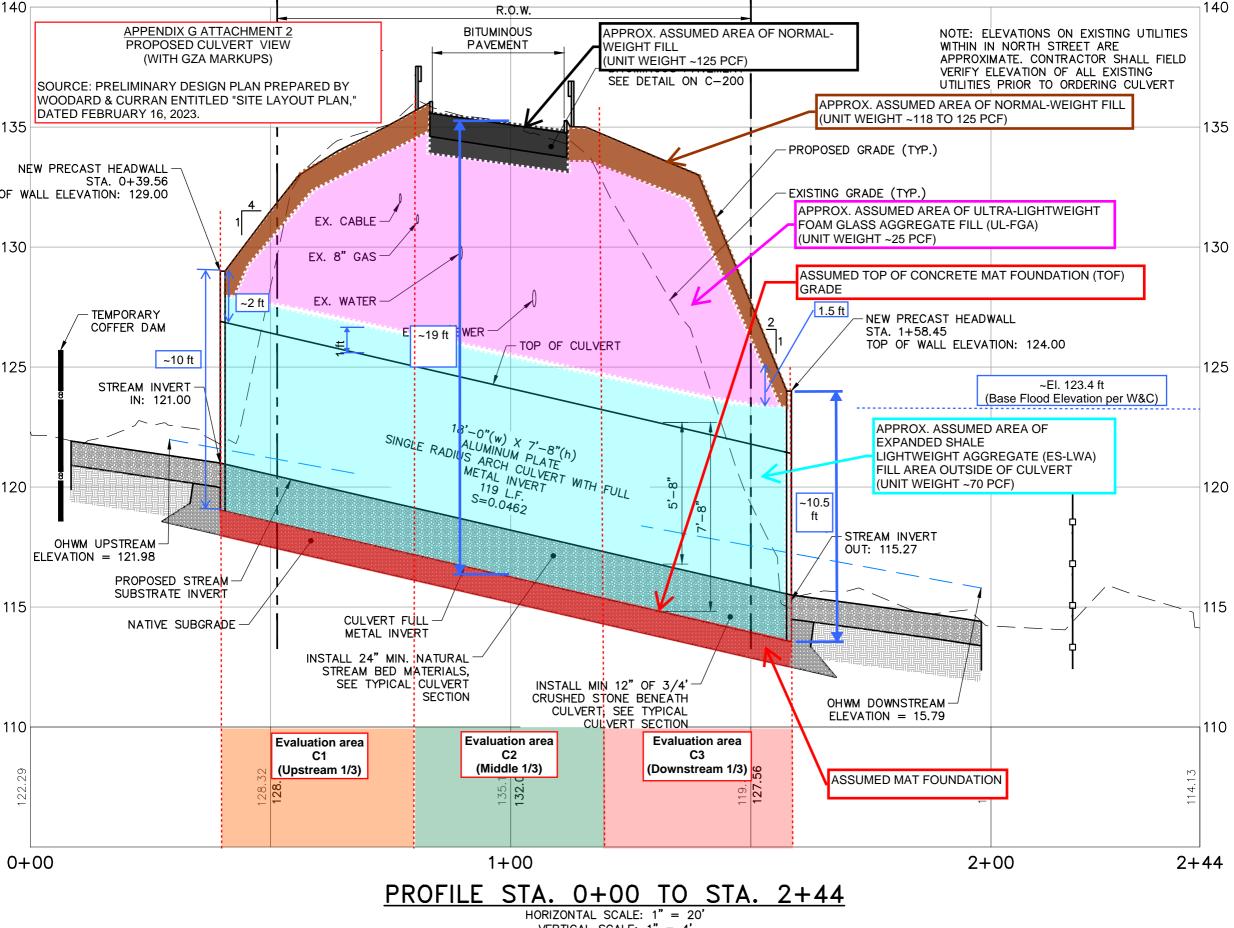
DATA VALIDATION				
$\Sigma d_i =$	100.0			

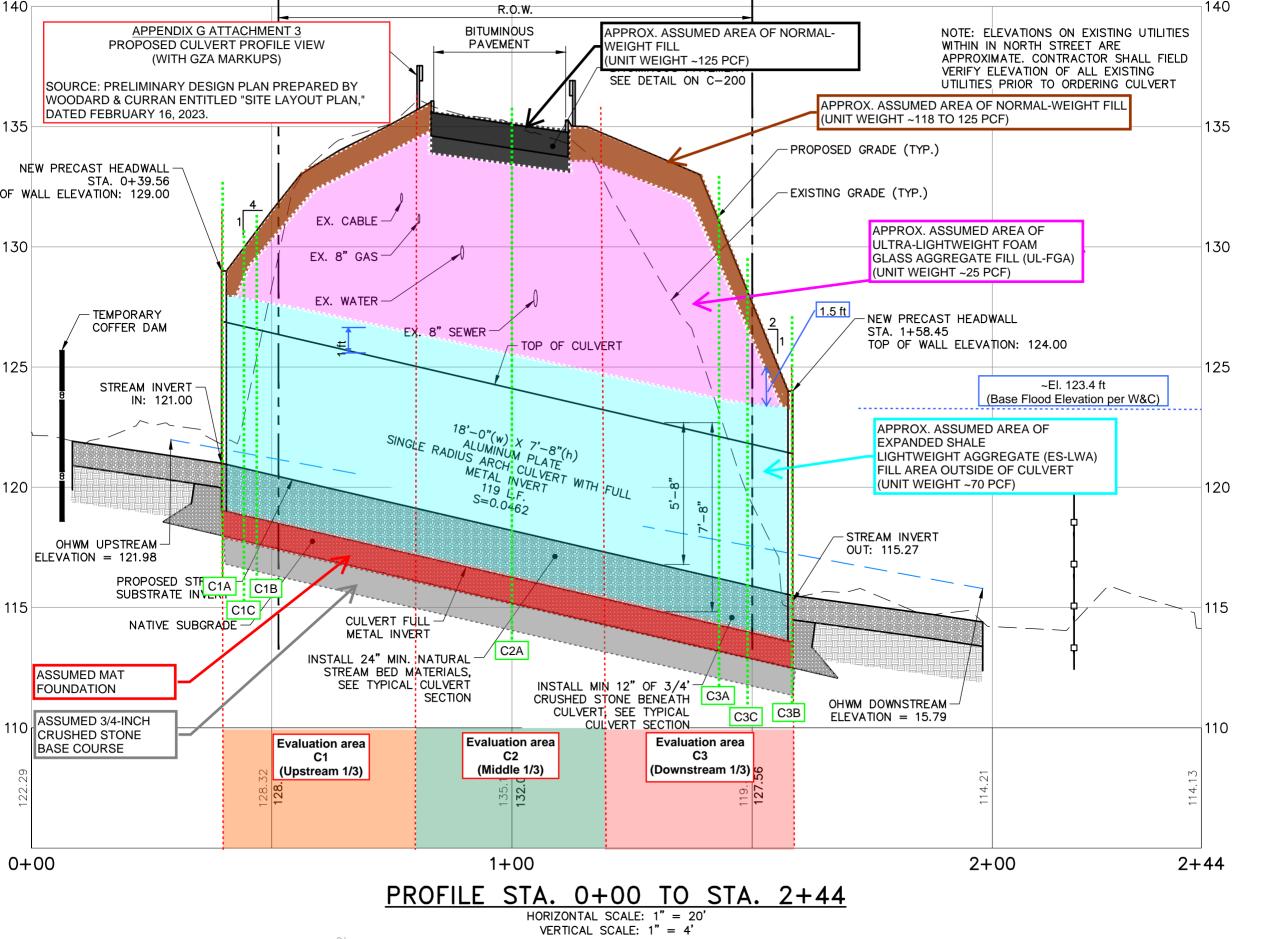

```
{
  "request": {
    "date": "2023-02-07T17:13:59.798Z",
    "referenceDocument": "AASHTO-2009",
    "status": "success",
    "url": "https://earthquake.usgs.gov/ws/designmaps/aashto-2009.json?
latitude=42.081&longitude=-72.663&siteClass=E&title=NorthStreet",
    "parameters": {
      "latitude": 42.081,
      "longitude": -72.663,
      "siteClass": "E",
      "title": "NorthStreet"
    }
 },
"response": {
"'-+>": {
    "data": {
      "pga": 0.059,
      "fpga": 2.5,
      "as": 0.148,
      "ss": 0.13,
      "fa": 2.5,
      "sds": 0.326,
      "s1": 0.038,
      "fv": 3.5,
      "sd1": 0.132,
      "sdc": "A",
      "ts": 0.405,
      "t0": 0.081,
      "twoPeriodDesignSpectrum": [
        [
          0,
          0.148
        ],
        Γ
          0.025,
          0.203
        ],
        [
          0.05,
          0.258
        ],
        Γ
          0.081,
          0.326
        ],
        [
          0.1,
          0.326
        ],
        [
          0.15,
          0.326
        ],
        [
          0.2,
          0.326
        ],
        [
          0.25,
          0.326
        ],
        Γ
          0.3,
          0.326
```


], [0.35, 0.326], Ε 0.4, 0.326], [0.405, 0.326], [0.45, 0.294], [0.5, 0.264], [0.55, 0.24], [0.6, 0.22], [0.65, 0.203], [0.7, 0.189], [0.75, 0.176], [0.8, 0.165], [0.85, 0.156], [0.9, 0.147], [0.95, 0.139], [1, 0.132], [1.05, 0.126],

Ε 1.1, 0.12], [1.15, 0.115], [1.2, 0.11], [1.25, 0.106], [1.3, 0.102], [1.35, 0.098], [1.4, 0.094], [1.45, 0.091], [1.5, 0.088], Ε 1.55, 0.085], [1.6, 0.083], [1.65, 0.08], [1.7, 0.078], Ε 1.75, 0.076], [1.8, 0.073], [1.85, 0.071], [

1.9, 0.07], [1.95, 0.068], [2, 0.066], [2.05, 0.064], [2.1, 0.063], [2.15, 0.061], [2.2, 0.06], [2.25, 0.059], [2.3, 0.057], Ε 2.35, 0.056], [2.4, 0.055], [2.45, 0.054], [2.5, 0.053], [2.55, 0.052], [2.6, 0.051], [2.65, 0.05], [2.7,


	0.049
], [
L	2.75, 0.048
], [
1	2.8, 0.047
[],	2.85,
],	0.046
[2.9, 0.046
], [
-	2.95, 0.045
], [3
],	3, 0.044
[3.05,
], [0.043
_	3.1, 0.043
], [2.45
],	3.15, 0.042
ĺ	3.2,
],	0.041
[3.25, 0.041
], [
1	3.3, 0.04
], [3.35,
], [0.039
Ľ	3.4, 0.039
], [
_	3.45, 0.038
], [3.5,
	0.038



 $\frac{\text{BAR SCALE}}{1" = 20'}$ CHECK GRAPHIC SCALE BEFORE USING

VERTICAL SCALE: 1" = 4'

APPENDIX H – LIGHTWEIGHT FILL PRODUCT INFORMATION

Expanded Shale, Clay and Slate (ESCS) Lightweight Aggregate Soil Mechanics

Properties and Applications

A CONTRACTOR OF THE OWNER

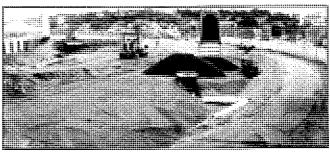
Equal Weights (25 Tons / 1Truckload) of Ordinary Granular Aggregate (*left*) and ESCS Lightweight Aggregate (*Right*)

Expanded Shale, Clay and Slate (ESCS) compacted geotechnical fills are approximately half the weight of ordinary aggregate fills. This advantage, coupled with the high angle of internal friction of ESCS, can also reduce lateral forces by more than one-half. ESCS has been effectively used to solve numerous geotechnical engineering problems and to convert unstable soil into usable land. ESCS is a reliable, economical geotechnical solution.

ABSTRACT of the following paper: Structural grade lightweight aggregates (LWA) have been extensively used throughout North America for more than [80] years in cast-in-place structural lightweight concretes for high-rise buildings and bridges, and are now being widely used for geotechnical applications. Structural grade LWA, when used in backfills and over soft soils, provides geotechnical physical properties that include reduced density, high stability, high permeability, and high thermal resistance. These improved physical properties are found in aggregates with a reduced specific gravity and a predictable stability resulting from a consistently high angle of internal friction. The open texture available from a closely controlled manufactured aggregate gradation ensure high permeability. High thermal resistance results from porosity developed during the production process. In this publication, the physical properties of structural grade LWA and geotechnical engineering properties of LWA backfills are illustrated. Additionally, references to extensive testing programs that developed data on shear strength, compressibility, durability, and in-place density are given. Representative case studies are reported from [several hundred] projects that illustrate completed applications of structural grade LWA fills over soft soils and behind retaining walls and bridge abutments.

Lightweight Aggregate Soil Mechanics: *Properties and Applications*

T.A. Holm and A.J. Valsangkar


For more than [80] years, shales, clays, and slates have been expanded in rotary kilns to produce structural grade LWA for use in concrete and masonry units. Millions of tons of structural grade LWA produced annually are used in structural concrete applications. Its availability is currently widespread throughout most of the industrially developed world. Consideration of structural grade LWA as a remedy to geotechnical problems stems primarily from the improved physical properties of reduced dead weight, high internal stability, high permeability, and high thermal resistance. These significant advantages arise from the reduction in particle specific gravity, stability that results from the inherent high angle of internal friction, the controlled open-textured gradation available from a manufactured aggregate which assures high permeability, and the high thermal resistance developed because of the high particle porosity.

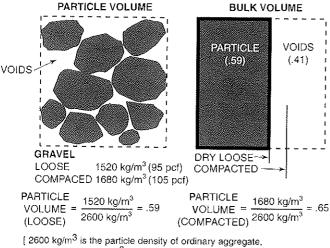
PHYSICAL PROPERTIES OF STRUCTURAL LIGHTWEIGHT AGGREGATES

Particle Shape and Gradation

As with naturally occurring granular materials, manufactured LWA's have particle shapes that vary from round to angular with a characteristically high interstitial void content that results from a narrow range of particle sizes. Applications of LWA to geotechnical situations require recognition of two primary attributes: (a) the high interstitial void content typical of closely controlled manufactured granular coarse aggregate that closely resembles a clean, crushed stone, and (b) the high volume of pores enclosed within the cellular particle.

Structural grade LWA gradations commonly used in highrise concrete buildings and long-span concrete bridge decks conform to the requirements of ASTM C330. The narrow

Retaining wall backfill, Providence, Rhode Island


range of particle sizes ensures a high interstitial void content that approaches 50% in the loose state. North American rotary kiln plants producing expanded shales, clays, and slates currently supply coarse [and fine] aggregates to readymix and precast concrete manufacturers with 20 to 5 mm (3/4 - #4), 13 to 5 mm (1/2 - #4), or 10 to 2 mm (3/8 - #8)gradations [and various fine aggregate gradings]. With [coarse] gradations there is a minimum percentage of fines smaller than 2 mm (#8 mesh) and insignificant amounts passing the 100 mesh screen.

Particle Porosity and Bulk Density

When suitable shales, clays, and slates are heated in rotary kilns to temperatures in excess of 1100° C (2012°F), a cellular structure is formed of essentially noninterconnected spherical pores surrounded by a strong, durable ceramic matrix that has characteristics similar to those of vitrified clay brick. Oven-dry specific gravities of LWA vary but commonly range from 1.25 to 1.40. Combination of this low specific gravity with high interparticle void content results in LWA bulk dry densities commonly in the range of 720 kg/m³ (45 pcf). Compaction of expanded aggregates in a manner similar to that used with crushed stone provides a highly stable interlocking network that will develop in-place moist densities of less than [960 kg/m³ (60 pcf)].

Differences in porosity and bulk density between LWA's

and ordinary soils may be illustrated by a series of schematic depictions. For comparative purposes, Figure 1 shows the interparticle voids in ordinary coarse aggregate. Although normal weight aggregates commonly have porosities of 1-2%, the schematic assumes ordinary aggregates to be 100% solid. For illustrative purposes, the bulk volume is shown to be broken into one entirely solid part with the remaining fraction being interparticle voids.

 $SG = 2.60 \times 1000 \text{ kg/m}^3$.]

FIGURE 1 Voids in ordinary coarse aggregates

Figure 2 shows the cellular pore structure of a typical LWA. ASTM procedures prescribe measuring the "saturated" (misnamed in the case of LWA's; partially saturated after a 1-day soak is more accurate) specific gravity in a pycnometer and then determining the moisture content on the sample that had been immersed in water for 24 hours. After a 1-day immersion in water, the rate of moisture absorption into the lightweight aggregate will be so low that the partially saturated specific gravity will be essentially unchanged during the time necessary to take weight measurements in the pycnometer, When the moisture content is known, the oven-dry specific gravity may be directly computed. This representative coarse LWA with a measured dry loose bulk unit weight of 714 kg/m³ (44.6 pcf) and computed oven-dry specific gravity of 1.38 results in the aggregate particle occupying 52% of the total bulk volume, with the remaining 48% composed of interparticle voids.

The specific gravity of the pore-free ceramic solid fraction of a lightweight aggregate may be determined by standard procedures after porous particles have been thoroughly pulverized in a jaw mill. Pore-free ceramic solids specific gravities measured on several pulverized LWA samples developed a mean value of 2.55. The representative LWA with a dry specific gravity of 1.38 will develop a 54% fraction of enclosed aggregate particle ceramic solids and a remaining 46% pore volume (Figure 2).

This leads to the illustration of the overall porosity in a bulk loose LWA sample as shown in Figure 3. Interparticle voids of the overall bulk sample are shown within the enclosed dotted area, and the solid pore-free ceramic and the internal pores are shown within the solid particle lines. For this representative LWA, the dry loose bulk volume is shown to be composed of 48% voids, 28% solids, and 24% pores.

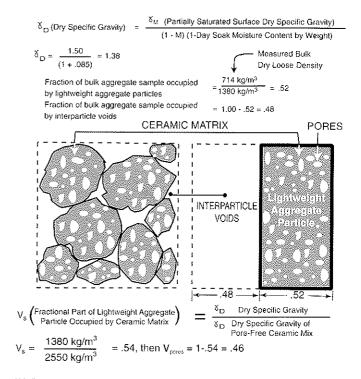
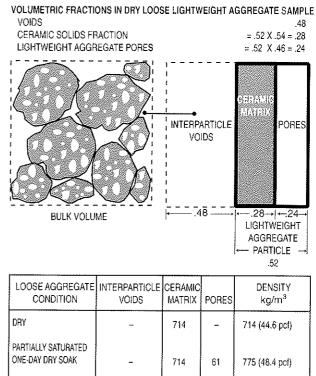
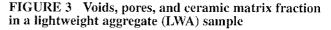
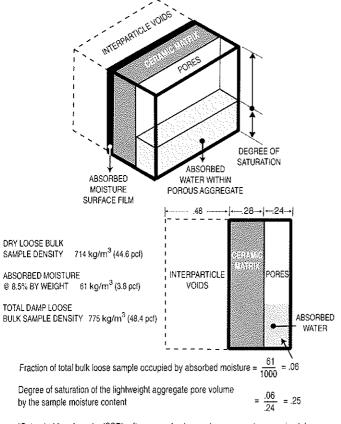




FIGURE 2 Interparticle voids and within-particle pores of lightweight aggregate (LWA)

				· · · (++.0 poi)
PARTIALLY SATURATED		ļ :		
ONE-DAY DRY SOAK	-	714	61	775 (48.4 pcf)
VACUUM SATURATION	-	714	240	954 (59.6 pcf)
LONG TIME SATURATION [Submerged]	480	714	240	1434 -1000 = `434 (27.1 pcf)
				*D


*Buoyant Unit Weight

Absorption Characteristics

LWA's stored in exposed stockpiles in a manner similar to crushed stone will have some internal pores partially filled and may also carry an adsorbed moisture film on the surface of the particles. The moisture content that is defined in ASTM procedures as "absorption" based on a 24-hour immersion and routinely associated in concrete technology with "saturated" surface-dry specific gravity is, in fact, a condition in which considerably less than 50% of the particle pore volume is filled.

The issue is further clarified by a schematic volumetric depiction (see Figure 4) of the degree of pore volume saturation of a LWA particle that shows that the sample had a measured damp loose bulk unit weight of 775 kg/m³ (48.4 pcf) with an 8.5% absorbed moisture and would, in fact, represent

"Saturated," surface dry (SSD), after a one day immersion represents approximately one-quarter degree of saturation of the pores of the particular aggregate

FIGURE 4 Degree of saturation of partially saturated lightweight aggregate (LWA)

a condition in which approximately 25% of the pore volume is water filled.

Structural grade LWA exposed to moisture in production plants and stored in open stockpiles will contain an equilibrium moisture content. LWA's that are continuously submerged will, however, continue to absorb water over time. In one investigation, the effective specific gravity of a submerged LWA sample was measured throughout a one-year period to demonstrate long-term weight gain. Long-term

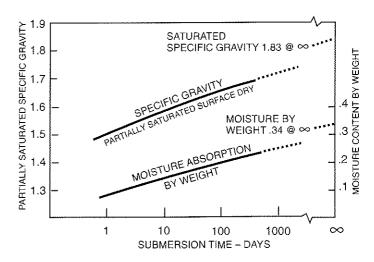


FIGURE 5 Moisture absorption (by weight) and partially saturated, surface dry specific gravity of lightweight aggregate (LWA) versus time of submersion

absorption characteristics are shown in Figure 5 for a LWA sample with a measured 1-day immersion moisture content of 8.5% associated with a partially saturated surface-dry specific gravity of 1.5. When moisture absorption-versus-time relationships are extrapolated or theoretical calculations used to estimate the total filling of all the LWA pores, it can be shown that for this particular LWA the absorbed moisture content at infinity will approach 34% by weight with a totally saturated specific gravity of 1.83. Complete filling of all pores in a structural grade LWA is unlikely because the non-interconnected pores are enveloped by a very dense ceramic matrix. However, these calculations do reveal a conservative upper limit for submerged design considerations.

Durability Characteristics

The durability of LWA's used in structural concrete applications is well known. More than 400 major U.S. bridges built using structural lightweight concrete (LWC) have demonstrated low maintenance and limited deterioration. Long-term durability characteristics of LWA's were demonstrated in 1991 by reclaiming and testing samples of the LWA fill supplied in 1968 to a Hudson River site. Magnesium soundness tests conducted on the reclaimed aggregate sample exposed to long-term weathering resulted in soundness loss values comparable to those measured and reported in routine quality control testing procedures 23 years earlier, indicating little long-term deterioration due to continuous submersion and freeze-thaw cycling at the waterline.

Although ASTM standard specifications C330 and C331 for lightweight aggregate make no mention of corrosive chemicals limitations, foreign specifications strictly limit SO₃ equivalents to 0.5% (*Japanese Industrial Standard J5002*) or 1.0% (*German Standard DIN 4226*). The American Concrete Institute Building Code (ACI 318) mandates chloride limitations in the overall concrete mass because of concern for reinforcing bar corrosion, but no limits are specified for individual constituents. Numerous geotechnical projects specifications calling for lightweight aggregates have limited watersoluble chloride content in the aggregate to be less than 100 ppm when measured by AASHTO T291.

GEOTECHNICAL PROPERTIES OF LIGHTWEIGHT FILL

In-Place Compacted Moist Density

Results of compacted LWA density tests conducted in accordance with laboratory procedures (Proctor tests) should be interpreted differently from those for natural soils. Two fundamental aspects of lightweight aggregate soil fill will modify the usual interpretation soils engineers place on Proctor test data. The first is that the absorption of LWA is greater than natural soils. Part of the water added during tests will be absorbed within the aggregate particle and will not affect interparticle physics (bulking, lubrication of the surfaces, etc.). Second, unlike cohesive natural soils, structural grade LWA contains limited fines, limiting the increase in density due to packing of the fines between large particles. The objective in compacting structural grade LWA fill is not to aim for maximum in-place density, but to strive for an optimum density that provides high stability without unduly increasing compacted density. Optimum field density is commonly achieved by two to four passes of rubber tire equipment. Excessive particle degradation developed by steel-tracked rolling equipment should be avoided. Field density may be approximated in the laboratory by conducting a one-point ASTM D698, AASHTO T99 Proctor test [using a 0.5 ft.3 bucket] on a representative LWA sample that contains a moisture content typical of the field delivery. Many projects have been successfully supplied where specifications called for an in-place, compacted, moist density not to exceed 960 kg/m3 (60 pcf).

Shear Strength

Structural grade LWA's provide an essentially cohesionless, granular fill that develops stability from inter-particle friction. Extensive testing on large 250 x 600 mm (10 x 24 in. high) specimens has confirmed angles of internal friction of more than 40 degrees (1). Triaxial compression tests completed on LWA from six production plants, which included variations in gradations, moisture content, and compaction levels, revealed consistently high angles of internal friction. With a commonly specified in-place moist compacted unit weight less than 960 kg/m³ (60 pcf), it may be seen from a simplistic analysis that lateral pressures, overturning moments, and gravitational forces approach one-half of those generally associated with ordinary soils.

A summary of the extensive direct shear testing program conducted by Valsangkar and Holm (2), presented in the following table, confirm the high angle of internal friction measured on large-scale triaxial compression testing procedures as reported earlier by Stoll and Holm (1).

	Angle of Internal Friction (degree)	
Material	Loose	Compacted
Minto [LWA]	40.5	48.0
Solite [LWA]	40.0	45.5
Limestone	37.0	N/A
Solite (1) [LWA]	39.5	44.5

Compressibility

Large-scale compressibility tests completed on lightweight aggregate fills demonstrated that the curvature and slope of the LWA fill stress-strain curves in confined compression were similar to those developed for companion limestone samples (2). Cyclic plate-bearing tests on LWA fills indicated vertical subgrade reaction responses that were essentially similar for the lightweight and normal weight aggregate samples tested (3).

Attempts by concrete technologists to estimate aggregate strength characteristics by subjecting unbound LWA samples to piston ram pressures in a confined steel cylinder have provided inconsistent and essentially unusable data for determination of the strength making characteristics of concretes that incorporate structural grade LWA. By ASTM C330 specifications, all structural grade LWA's are required to develop concrete strengths above 17.2 MPa (2500 psi). Most structural grade LWA concrete will develop 34.4 MPa (5000 psi), and a small number can be used in concretes that develop compressive strengths greater than 69 MPa (10,000 psi).

Thermal Resistance

For more than [8] decades, design professionals have used lightweight concrete masonry and lightweight structural concrete on building facades to reduce energy losses through exterior walls. It is well demonstrated that the thermal resistance of LWC is considerably less than that of ordinary concrete, and this relationship extends to aggregates in the loose state (4).

Permeability

Attempts to measure permeability characteristics of unbound LWA have not been informative because of the inability to measure the essentially unrestricted high flow rate of water moving through open-graded structure. This characteristic has also been observed in the field, where large volumes of water have been shown to flow through LWA drainage systems. Exfiltration applications of LWA have demonstrated a proven capacity to effectively handle high volumes of storm water runoff. Subterranean exfiltration systems have provided competitive alternatives to infiltration ponds by not using valuable property areas as well as eliminating the long-term maintenance problems associated with open storage of water.

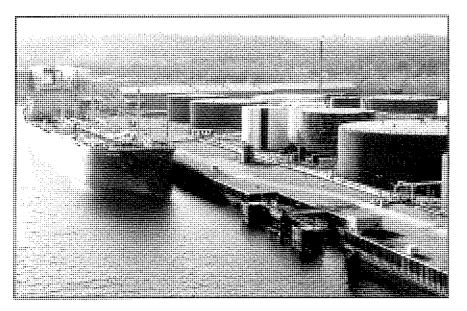
Interaction Between Lightweight Aggregate Fills and Geotextiles

Valsangkar and Holm (5) reported results of testing programs on the interaction between geotextiles and LWA fills that included the variables of differing aggregate types and densities, thickness of aggregate layer, and geotextile types. The results indicated that the overall roadbed stiffness is unaffected when LWA is used instead of normal weight aggregate for small deflections and initial load applications. These tests were followed by a large-scale test (2), which reported that the comparison of the friction angles between the LWA or the normal weight aggregate and the geotextiles indicate that interface friction characteristics are, in general, better for LWA than normal weight aggregates.

APPLICATIONS

During the past decade several hundred diverse geotechnical applications have been successfully supplied with structural grade LWA. The applications primarily fit into the following major categories:

- Backfill behind waterfront structures, retaining walls, and bridge abutments;
- Load compensation and buried pipe applications on soft soils;
- Improved slope stability situations; and
- High thermal resistance applications.


fication of an angle of internal friction greater than 40 degrees. No constructability problems were experienced by the contractor while transporting, placing, and compacting the LWA soil fill. Peak shipment were more than 1,000 tons per day without any logistical difficulties. The material was trucked to the point of deposit at the job site and distributed by front-end loaders. This project used approximately 20,000 m³ (27,000 yd³) of compacted LWA and resulted in overall savings by reducing sizes of sheet piling and lowering costs associated with the anchor system.

On the Charter Oak Bridge project, Hartford, Connecticut, constructed in 1989 to 1990, LWA fill was placed in the east abutment area to avoid placing a berm that would have been

necessary to stabilize an earth fill embankment. According to the designer, construction of a berm would have required relocating a tributary river. LWA fill was also used in other areas to avoid increasing stresses and settlements in an old brick sewer (7). When all applications were totaled, this project incorporated more than 100,000 tons of structural grade LWA.

Load Compensation and Buried Pipe Applications on Soft Soils

In numerous locations throughout North America, design of pavements resting on soft soils has been facilitated by a "load compensation" replacement of heavy soils with a free-draining structural grade LWA with low density and high stability. Replacing existing heavy soil with LWA permits raising elevations to necessary levels without providing any further surcharge loads to the lower-level soft soils. Rehabilitation of Colonial Parkway near Williamsburg, Virginia, built alongside the James and York rivers, provides a representative example of the procedure. Soft marsh soil sections of this roadway had a low load-bearing capacity, and had experienced continuous settlement. The concrete roadway slabs were removed along with the soil beneath to a depth of more than 3 ft. The normal weight soil was then replaced with structural-grade LWA with a compacted moist density of less than 960 kg/m³ (60 pcf), providing effective distribution of load to the soft soil layer, load compensation, and side

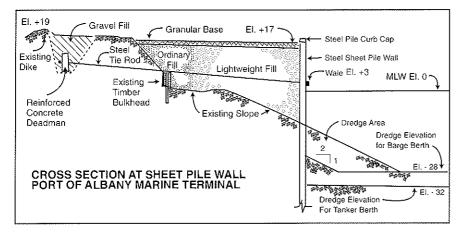


FIGURE 6 Rehabilitation of Port of Albany, New York [1981]

Backfill Behind Waterfront Structures, Retaining Walls and Bridge Abutments

A classic example of how unusable river front was reclaimed and large industrial site extended by the use of sheet piles and lightweight fill is demonstrated in Figure 6 (6). LWA fill specifications for this project required rotary kiln expanded shale to have a controlled coarse aggregate gradation of 20 to 5 mm (3/4 - #4) and laboratory test certi-

slope stability. Reconstruction was completed in two stages by first completely rehabilitating in one direction, followed by excavation of the opposing lane with delivery, compaction, and slab construction routinely repeated.

Construction of pipelines in soft soil areas has frequently been facilitated by equalizing the new construction weight (pipe plus LWA backfill) to the weight of the excavated natural soil. Supporting substrates do not "see" any increased loading and settlement forces are minimized.

Improved Slope Stability

Improvement of slope stability has been facilitated by LWA in a number of projects prone to sliding. Waterside railroad tracks paralleling the Hudson River in the vicinity of West Point, New York, had on several occasions suffered serious misalignment due to major subsurface sliding because of soft clay seams close to grade level. After riverbank soil was excavated by a barge-mounted derrick, LWA was substituted and the railroad track bed reconstructed. Reduction of the gravitational force driving the slope failure combined with the predictable LWA fill frictional stability provided the remedy for this problem. Troublesome subsoil conditions in other area, including the harbors in Norfolk, VA, and Charleston, SC, have also been similarly remedied.

High Thermal Resistance Applications

Structural LWA has been effectively used to surround hightemperature pipelines to lower heat loss. Long-term, hightemperature stability characteristics can be maintained by aggregates that have already been exposed to temperatures of 1100° C (2012° F) during the production process. Other applications have included placing LWA beneath heated oil processing plants to reduce heat flow to the supporting soils.

ECONOMICS

An economic solution provided by a design that calls for an expensive aggregate requires brief elaboration. In many geographical areas, structural-grade LWA's are sold to readymix, precast, and concrete masonry producers on the basis of a price per ton, FOB the plant. On the other hand, the contractor responsible for the construction of the project bases costs on the compacted material necessary to fill a prescribed volume. Because of the significantly lower bulk density, a fixed weight of this material will obviously provide a greater volume. To illustrate that point, one may presume that if a LWA is available at \$X/ton, FOB the production plant, and trucking costs to the project location call for additional \$Y/ton, the delivered job site cost will be \$(X+Y)/ton. As mentioned previously, many projects have been supplied with structural LWA aggregates delivered with a moist, loose density of about [770 kg/m3 (48 pcf)] and compacted to a moist, in-place density [less than the typically specified 960 kg/m³ (60 pcf)]. This would result in an in-place, compacted moist density material cost (not including compaction cost) of

 $\{(X + Y) \times 60 \times 27\}/2,000$

for the compacted, moist lightweight aggregate.

[Additional Economic Benefits - April 2001]

- Approximately twice as much volume of LWA can be transported per load as compared to normal weight.
- In restricted or commercial areas, cutting the number of trucks by half is environmentally significant.
- Loader or crane bucket volume can be increased to allow faster placement and longer reaches.
- In tight spaces where hand placement and compaction is required, LWA is much easier to handle and offers considerable labor savings.

CONCLUSIONS

Structural grade LWA fills possessing reduced deusity, high internal stability, and high permeability have been extensively specified and used to replace gravel, crushed stone, and natural soils for geotechnical applications at soft soil sites and in backfills where the assured reduction in lateral and gravitational forces has provided economical solutions.

REFERENCES

- Stoll, R.D., and T.A. Holm; Expanded Shale Lightweight Fill: Geotechnical Properties, *Journal of Geotechnical Engineering*, ASCE, Vol. 111, No. 8, Aug. 1985
- Valsangkar, A.J., and T.A. Holm; Geotechnical Properties of Expanded Shale Lightweight Aggregate, *Geotechnical Testing Journal*, ASTM, Vol. 13, No.1, March 1990, pp 10-15
- Valsangkar, A.J., and T.A. Holm; Cyclic Plate Load Tests on Lightweight Aggregate Beds, Presented at the 72nd Annual Meeting of the Transportation Research Board, Washington, D.C., Jan. 1993
- 4. Valore, R.C.; *The Thermophysical Properties of Masonry and Its Constituents*, International Masonry Institute, Washington D.C., 1988
- Valsangkar, A.J., and T.A. Holm; Model Tests on Peat-Geotextile-Lightweight Aggregate System, *Geotextiles* and *Geomembranes*, Elsevier Science Publishers, Ltd., England, 1987
- Childs, K., D.L. Porter, and T.A. Holm; Lightweight Fill Helps Albany Port Expand, *Civil Engineering*, ASCE, April 1983
- 7. Dugan, J.P., Jr.; *Engineering News Record*, Haley and Aldrich, Inc., ENR Letters, New York, Aug. 23, 1990

Reprinted with permission of the Transportation Research Board, National Research Council, Washington, D.C., *Transportation Research Record 1422; Soils Geology and Foundations; Lightweight Artificial and Waste Materials for Embankments Over Soft Soils*, T.A. Holm and A.J. Valsangkar, January 1993 Reprinted March 2001

The principal author, Thomas Holm, has supervised this reprinting by the Expanded Shale, Clay and Slate Institute. Under his direction, Figures 1, 2, and 3 have been modified for clarity. Other updated information is indicated by brackets [].

ESCS Structural Lightweight Aggregate Is Approximately Half the Weight of Ordinary Aggregates

SOIL

GRAVEL

ESCS

SAND

Equal Weights of Aggregates (Note: ESCS is approximately twice the volume)

Expanded Shale, Clay and Slate Institute 2225 Murray-Holladay Road • Suite 102 Salt Lake City, Utah 84117 • 801-272-7070 • Fax 801-272-3377 www.escsi.org

Publication No. 6610 • April 2001

Printed in U.S.A.

Ultra-lightweight Foamed Glass Aggregate

Design and Construction Considerations

1.0 INTRODUCTION

This document presents guidelines for the use of ultra-lightweight foamed glass aggregate (UL-FGA). UL-FGA is a lightweight material that can be used for many applications including embankment fill, retaining wall or MSE backfill, utility backfill, and insulation for buildings or roadways. This document includes a discussion of the typical properties of UL-FGA, applications where UL-FGA may be beneficial, and UL-FGA design and construction requirements and considerations.

Foamed Glass Aggregates are extremely lightweight, manufactured aggregates produced from 100% recycled glass. The manufacturing process takes recycled glass powder and mixes it with a foaming agent, where it is then sent through a kiln and softened. During this process, bubbles are created within the softened glass due to the foaming agent creating foamed glass aggregates.

1.1 Typical Uses of Foamed Glass Aggregate

UL-FGA is intended to be used as a lightweight or insulating fill for embankments, backfill behind retaining structures, MSE wall backfill over soft soils to mitigate settlement, or place as fill over existing buried structures or utilities where the weight of conventional backfill can result in excessive settlement and/or structural damage. UL-FGA is also used as an insulation material in many applications due to its low thermal conductivity.

1.2 Foamed Glass Aggregate Properties

The physical properties of UL-FGA G15 in lightweight fill applications are as follows:

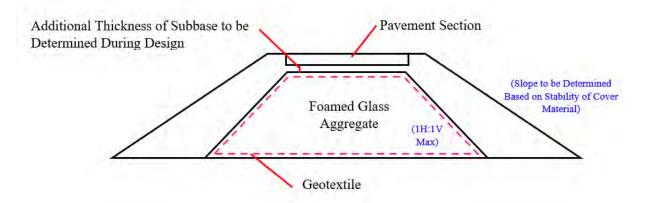
- 1. Unit Weight: The unit weight a designer may consider will depend on the maximum, typical, minimum value, bulk vs. compacted state (and specified percent compaction), and moisture content. The maximum dry bulk unit weight of UL-FGA G15 is 15 pcf. Moist bulk unit weights can vary but are generally between 15 and 18.75 pcf. A moist, in-place unit weight of 23.5 pcf can be used for design considering 20% compaction for each lift.
- 2. Buoyant Unit Weight: The buoyant unit weight of UL-FGA G15 has been determined through testing to be -15 pcf. Therefore, applying a factor of safety of 1.5, the design buoyant unit weight of UL-FGA is -22 pcf.

3. Shear Strength: Shear strength parameters will be affected by the proposed normal stress. The apparent friction angle was determined per ASTM D 3080 modified. The friction angle data is shown in Table 1.2-1. Most UL-FGA applications will fall into the <1200 psf normal stress range, but every application should be evaluated by the designer.

Normal Stress, maximum	Apparent Peak Friction Angle, Degrees
1200 psf	54-55
3000 psf	41-45

 Table 1.2-1 – Fiction Angles for Varying Normal Stresses

- 4. Permeability: The grain size distribution for UL-FGA G15 (pre- and postcompaction) and the particle shape make UL-FGA comparable to gravel and crushed aggregate. This means that the permeability is likely ≥ 0.03 ft/s (1 cm/s).
- 5. Resilient Modulus, Mr: The resilient modulus of UL-FGA G15 at a representative compacted unit weight has been tested per AASHTO T 307-99. The average Mr results for samples with dry unit weights between 16.4 and 17.2 pcf vary between 14,800 and 47,400 psi under a range of confining and cyclic deviator stresses. The resilient modulus for a layer of UL-FGA G15 can be utilized for pavement subgrade conditions in a linear-elastic analysis of a pavement cross section.
- Elastic Modulus, E: The elastic modulus for UL-FGA may vary based on the overlying, adjacent, and underlying layers. Typically, the elastic modulus is between 7,290 to 10,070 psi determined through 12" plate load test or lightweight deflectometer (LWD) testing on compacted UL-FGA.
- 7. Creep: Creep testing on UL-FGA up to a stress of 5,200 psf (2.6 tsf) extrapolates that creep deformation (i.e., the deformation that will occur after one day) at 50 years to range between 0.6% and 1.8%. When designing structures, the thickness of UL-FGA, the bearing pressure of the structure on the UL-FGA layer, and the allowable settlement should be considered. Scandinavian UL-FGA manufacturers recommend that bearing pressures on the UL-FGA layer be limited to 80-120 kPa (~1670-2500 psf) to limit creep strains to <0.1% from Day 1 to Year 50.</p>


2.0 DESIGN REQUIREMENTS AND CONSIDERATIONS

Generally, geotechnical analyses are required to design UL-FGA for lightweight fill applications. These analyses include settlement and global slope stability. In some cases, additional analyses including bearing resistance and sliding must be performed. These analyses are discussed below along with other design requirements and considerations for the use of UL-FGA.

2.1 Settlement Analyses (Creep/Static Load Conditions)

UL-FGA may be used as an option to eliminate or reduce the estimated settlement from embankment construction to a tolerable level. A typical UL-FGA embankment section is shown in Figure 2.1-1. Usually, settlement analyses of underlying soil is performed to justify the need for the use of UL-FGA in place of more standard or other lightweight fill materials and to also determine the required limits of the UL-FGA within the embankment crosssection. Immediate, primary consolidation, and secondary consolidation settlement must be considered for underlying fine-grained soil layers. The settlement of underlying soils can be evaluated using the design unit weight for UL-FGA and other overlying layers. A differential settlement analysis of the underlying soil layers should be evaluated for the UL-FGA roadway section and adjacent sections. If differential settlement is a concern, the UL-FGA layer may be sloped in a transition section.

For structures, settlement analyses should also consider the elastic and creep settlement of the UL-FGA layer in addition to the settlement of the soil layers underlying the UL-FGA layer.

2.2 Global Slope Stability Analyses

Global slope stability analyses may be performed similar to analyses performed for conventional embankments constructed with earth materials. Since the in-situ foundation material will often be saturated, cohesive soil, both undrained and drained shear strength parameters must be used in the analyses. In general, embankments or walls that are 50 feet and smaller will operate at normal stresses less than 1200 psf. For embankments greater than 50 feet or those with special loading conditions such as under structures, a more detailed analysis of stress conditions will be necessary. Based on the results of this analysis, the UL-FGA layer may be subdivided and assigned the appropriate friction angle based on the anticipated normal stress (Refer to Section 1.2).

2.3 Buoyancy

Closed cell foamed glass aggregate is buoyant and susceptible to uplift when submerged in water because of its low unit weight. Consequently, a buoyancy analysis must be performed if UL-FGA is used in the vicinity of a stream, river, etc. and is usually based on the anticipated high water level (e.g., the 100-year storm elevation). This analysis will confirm that the proposed cover material provides enough ballast force to prevent movement of the UL-FGA. Additionally, in the event the area is subject to flooding/ponding, the contractor should provide a staging plan or propose other measures to ensure that all placed UL-FGA is properly ballasted. Traffic loads and any other temporary or short-term loads should not be included when calculating the uplift resisting force. The design value to be used for the buoyant unit weight is provided in Section 1.2.

2.4 UL-FGA Dynamic/Live Load Conditions

The anticipated dynamic loads in flexible pavement systems should be properly considered in the pavement design where UL-FGA is an underlying layer. UL-FGA does not replace subbase in a flexible pavement system. The design resilient modulus for a layer of UL-FGA can be utilized for pavement subgrade conditions in a linear-elastic analysis of a pavement cross section.

During construction, vehicles and other construction equipment may have limited travel over the UL-FGA layer once a minimum of 6 inches of capping material is placed. If a haul road is to be located over the UL-FGA layer, an evaluation of the capping material thickness under the haul road should be completed.

2.5 Bearing Resistance

The bearing capacity/resistance analysis may be necessary (especially where treatment for settlement involves soft foundation materials). In general, the placement of signs, lights, and other structures with significant bearing pressures should be avoided within the UL-FGA layer. The typical detail for a lighting foundation is shown in Figure 2.5-1 and is supported on crushed stone or natural material. However, the concrete footing shown in Figure 2.5-1 should be moved so that the induced pressure distribution only acts in conventional backfill material or the dissimilar bearing materials shall be accounted for in the design. If structures are proposed on the UL-FGA layer, a proper settlement analysis using creep data should be completed.

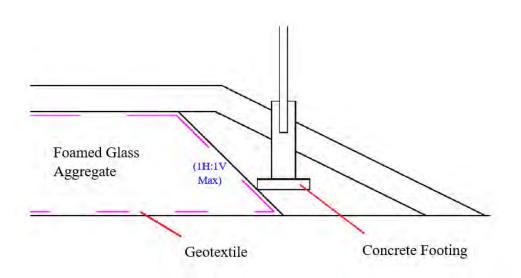


Figure 2.5-1 – Typical Detail of Lighting Foundation where UL-FGA is used.

Roadway embankments typically contain drainage pipes and inlet boxes, and often also have underground utilities, utility poles, light poles, signs, guide rail posts and other appurtenances. These can be incorporated into an UL-FGA embankment, but careful consideration should be given during design. When possible, locate these appurtenances outside the limits of the UL-FGA or in the embankment cover material above the UL-FGA.

2.6 Lateral Load/Earth Pressure Considerations

Lateral earth pressure from soil or aggregate backfill placed behind UL-FGA must be considered during design. For example, if UL-FGA is used to backfill behind an abutment

or retaining wall and embankment material is used to construct the remainder of the embankment cross-section, lateral earth pressure from the embankment material may be applied to the UL-FGA which in turn will transfer the lateral load to the wall or abutment. In order to avoid developing lateral earth pressure, the embankment material behind the UL-FGA must be placed at a slope that is independently stable, such as 2H:1V (i.e., sufficiently beyond the active earth pressure wedge such that no lateral loads can be transferred to the wall) or the lateral loads from the fill placed behind the UL-FGA must be accounted for in the design.

2.7 Cover Requirements:

There are numerous capping materials that may be used to cover the UL-FGA layer including embankment material subbase, topsoil, or rock.

Thickness: The minimum compacted lift thickness of capping material in non-live load situations should be six (6) inches. For live load conditions, see Section 2.4.

2.8 Mechanically Stabilized Earth (MSE) Structures

UL-FGA may be utilized as MSE backfill soil. Lift thicknesses may be influenced by the location of reinforcement within the UL-FGA. Compaction of UL-FGA adjacent to structures or panels should be completed with a plate compactor at lift thicknesses of 12 inches or less. Full-scale pullout testing (per ASTM D 6706/modified) will be required to be submitted to verify the properties used in the internal stability analysis.

2.9 Removal and Reuse of UL-FGA Material

UL-FGA may be removed and reused. UL-FGA will always be separated from other materials with a geotextile which will enable easy separation from other soils during excavation. If UL-FGA is reused in design, it is suggested that the design unit weight be increased by 25% to account for crushing of material during handling.

2.10 Pipe Backfill Envelope

If UL-FGA is proposed for use within a pipe backfill envelope, the design should demonstrate the that the proposed pipe installation using UL-FGA in the pipe backfill envelope meets structural and service requirements.

3.0 CONSTRUCTION REQUIREMENTS AND CONSIDERATIONS

The construction requirements below must be accounted for during design of UL-FGA embankments.

3.1 Subgrade Preparation, Placement, and Drainage

In general, the subgrade soil should be prepared for UL-FGA placement. However, UL-FGA may be placed over poor subgrade soils. Removal of ponded water is required. Placement of a 6 oz./sy (minimum) or Class 2 nonwoven geotextile (per AASHTO M 288) is required above, below, and along the sides of the UL-FGA layer. UL-FGA should be placed in accordance with the contract drawings and specifications.

UL-FGA is a highly permeable layer (similarly to other open graded gravel soils) and will provide water storage (exhibit a "bathtub effect") if adjacent soil is less permeable and no other drainage is provided. Provide sufficient drainage for UL-FGA using grading or a pipe collector system.

3.2 Capping/Cover Requirements:

A minimum 6 inches of compacted capping material is required. See Section 2.7 for Cover types and installation requirements.

The capping material must be placed within 2 weeks after placement of the geotextile to help prevent degradation of the geotextile.

These design and construction considerations have been compiled based on standard applications and experience. For applications outside of the conditions mentioned, please contact the Aero Aggregates technical department.