STRUCTURAL CALCULATIONS

for

SOUTH RIVER ROAD OVER ALBEE BROOK BRIDGE NO. C-05-027 (0ET) CHARLEMONT, MASSACHUSETTS

Prepared for:

TOWN OF CHARLEMONT

STRUCTURAL CALCULATIONS NOVEMBER 2024

Prepared by:

63 Kendrick Street Needham, MA 02494

PAGE 68
CALC BY TRS
CHECK BY DCH
date_OCT_2024

INDEX TO CALCULATIONS

PAGE

EXISTING PLANS
VIRTIS INPUT FOR BEAM RATINGS
GENERAL INFORMATION
DEAD LOADS
LIVE LOAD DISTRIBUTION FACTORS 17-36
ALTERNATE LIVE LOAD DISTRIBUTION FACTORS
DETERIORATION
SECTION PROPERTIES
SHEAR CONNECTORS
VIRTIS OUTPUT FOR BEAM RATINGS

	CLIENT TOWN OF CHARLEMONT	page0f68
	PROJECT SOUTH RIVER ROAD	calc by TRS
	BRIDGE NO. <u>C-05-027</u>	CHECK BY DCH
ENGINEERING	SUBJECT STRUCTURAL CALCS.	date OCT 2024

Load Rating - Plans

C-05-027

<u>Plans</u>

PAGE <u>3</u> of <u>68</u> CALC BY TRS CHECK BY DCH DATE OCT 2024

Load Rating - Plans

<u>C-05-0</u>27

	CLIENT TOWN OF CHARLEMONT	page40f68
	project <u>SOUTH RIVER ROAD</u>	calc by TRS
	bridge no. <u>C-05-027</u>	CHECK BY DCH
ENGINEERING	SUBJECT STRUCTURAL CALCS.	date OCT 2024

Load Rating - General Information

C-05-027

General Information

ın ın

page <u>5</u> of <u>68</u> calc by <u>TRS</u> check by <u>DCH</u> date <u>OCT</u> 2024

Load Rating - General Information

C-05-027

References:

1) AASHTO Standard Specifications, 17th Edition, 2002

2) MassDOT Bridge Manual 2024

3) 1995 Mass Highway Bridge Manual

- 4) AISC Steel Construction Manual, 15th Edition, 2017
- 5) AASHTO LRFD Bridge Design, 9th Edition, 2020 with 2021 Errata

6) AASHTO Manual for Bridge Evaluation, 3rd Edition, 2018 thru 2022 Interim

Bridge Geometry

Add'I.

Beam I Span =	30.34 ft	
Beam 2 Span =	24.34 ft	
Beams 3-8 Span =	21.0 ft	
Beam 1-2 Shape =	W14x68	
Beam 3-8 Shape =	W14x53	
WI4x68 $t_f =$	0.060 ft =	0.720
WI4x53 $t_f =$	0.055 ft =	0.660
WI4x68 $w_{tf} =$	10.00 in	
WI4x53 $w_{tf} =$	8.06 in	
WI4x68 $t_w =$	0.415 m	
WI4x53 $t_w =$	0.370 in	
WI4x68A =	20.0 in²	
WI4x53 A =	15.6 m²	
Na at Passa	o	
No. of Dearns =	2 00 #	
Beem 2 Specing -	2.00 11	
Beers 4 8 George	2.37 11	
Deam 4-0 Spacing =	2.95 ft	
Beam T Overhang =	1.63 ft	
Beam 8 Overhang =	2.46 ft	
Beam 1 Overhang Thickness=	0.813 ft	
Beam 8 Overhang Thickness=	0.807 ft	
. Deck Depth at Overhang =	0.083 ft	

page 6 of 68
CALC BY TRS
CHECK BY DCH
DATE OCT 2024

ad Rating - General Information				C-05-027
Roadway Width -	216#			
Safaty Curb Width -	21.01			
Jalety Curb Width -	1.63 1			
Wearing Surface Depth =	0.250 ft			
Deck Thickness =	0.667 ft			
Haunch Height =	1.00 in			
-				
Diaphragm Shape =	WIOx2I			
Diaphragm Cut Length =	0.042 ft		*Assumina Dia	aphraams are cut 0.5"
			before reach	ing beam web allowing
			space	for connection
			,	
Railing Type =	Thrie Beam (Guardrail		
No. of Rail Posts South =	6			
Railing Length South =	31.3 ft			
Post Height =	2.00 ft			
Curb Width =	1.63 ft			
Height of Curb above WS =	0.667 ft			
West Crown Depth =	1.15 ft			
West Curb Depth =	1.03 ft			
East Crown Depth =	1.02 ft			
East Curb Depth =	0.91 ft			
WS Depth =	0.250 ft			
Beam $d_e =$	-0.017 ft =	1.63 ft -	1.63 ft -	0.017 ft
Beam 8 d_e =	0.818 ft =	2.46 ft -	1.63 ft -	0.015 ft

page 7 of 68 calc by TRS check by DCH date OCT 2024

Load Rating - General Information		C-05-027
Material Properties		
<u>Unit Weights</u>		
Concrete =	0.150 kcf	(1) 3.3.6
Wearing Surface =	0.150 kcf	(1) 3.3.6
Gravel Borrow =	0.120 kcf	(1) 3.3.6
Steel =	0.490 kcf	(1) 3.3.6
Steel Member Weights		
W14x53 =	0.053 klf	(4) I-25
W14x68 =	0.068 klf	(4) 1-25
$W O_{x2} =$	0.021 klf	
Material Properties		
f' _{c.deck} =	5.00 ksi	(6) 6B.5.2.1-1
n =	6.76	· · · · · · · · · · · ·
Е _в =	29,000 ksi	(5) 6.4.
$E_D =$	4291 ksi	(5) C5.4.2.4-2
F	22	

	CLIENT TOWN OF CHARLEMONT	page0f68
	project	calc by TRS
	bridge no. <u>C-05-027</u>	CHECK BY DCH
ENGINEERING	SUBJECT STRUCTURAL CALCS.	date OCT 2024

Load Rating - Dead Loads

C-05-027

Dead Loads

page 9 of 68	
calc by TRS	
CHECK BY DCH	
DATE OCT 2024	

Load Rating - Dead Loads

C-05-027

References:

- 1) AASHTO Standard Specifications, 17th Edition, 2002
- 2) MassDOT Bridge Manual 2024
- 3) 1995 Mass Highway Bridge Manual
- 4) AISC Steel Construction Manual, 15th Edition, 2017
- 5) AASHTO LRFD Bridge Design, 9th Edition, 2020 with 2021 Errata

Narrative:

Calculate proposed dead loads. Dead loads distributed per (2) 3.5.3 and 3.5.4.

Summary:

<u>Beam</u>	DCI	DC2	DW	BRR DCI
1	0.429 klf	0.573 klf	0.101 klf	0.048 klf
2	0.384 klf	0.452 klf	0.101 klf	0.016 klf
3	0.365 klf	0.452 klf	0.101 klf	0.015 klf
4	0.363 klf	0.452 klf	0.101 klf	0.015 klf
5	0.363 klf	0.452 klf	0.101 klf	0.015 klf
6	0.363 klf	0.452 klf	0.101 klf	0.015 klf
7	0.363 klf	0.452 klf	0.101 klf	0.015 klf
8	0.511 klf	0.583 klf	0.101 klf	0.064 klf

Bridge Geometry

No. of Beams =	8	
Beam 1-3 Spacing =	3.00 ft	
Beam 3-8 Spacing =	2.95 ft	
Beam Span =	30.3 ft	
Beam 2 Span =	24.3 ft	
Beams 3-8 Span =	21.0 ft	
Beam I Trib. Width =	3.13 ft =	1.63 ft +

Beam I Trıb. Wıdth =	3.13 ft =	1.63 ft +	1.50 ft
Beam 2 Trib. Width =	3.00 ft =	3.00 ft	
Beam 3 Trib. Width =	2.97 ft =	1.50 ft +	1.47 ft
Beam 4-7 Trib. Width =	2.95 ft =	2.95 ft	
Beam 8 Trib. Width =	3.93 ft =	1.47 ft +	2.46 ft

GILL ENGINEERING	CLIENT TOWN PROJECT SC BRIDGE NO. C- SUBJECT STRU	N OF CHARLEMONT DUTH RIVER ROAD 05-027 JCTURAL CALCS.	PAGE 10 of 68 CALC BY TRS CHECK BY DCH DATE OCT 2024
Load Rating - Dead Loads			C-05-027
Calculate DCI (Non-Composite DL)	oads		
Concrete Deck			
Unit Weight = Depth = Load =	0.150 kcf 0.667 ft 0.100 ksf		
<u>Haunch</u> Beam I Unit Weight = WI 4x68 w _{tf} =	0.150 kcf 10.00 m		
Haunch Width = Haunch Height = Haunch Area = Load =	$\begin{array}{rrr} 1 & 0.00 \text{ in} \\ 1 & 0.00 \text{ in} \\ 0.076 & \text{ft}^2 = & (11) \\ 0.011 & \text{klf} = & 0.00 \end{array}$	*assuming add an inch on inside to account for haunch shape 1.00 in x 1.00 in)/ 144 076 ft ² x 0.150 kcf	
Beam 8 Unit Weight = WI 4x53 w _{tf} = Haunch Width = Haunch Height =	0. 50 kcf 8.06 in 9.06 in 1.00 in	*assuming add an inch on inside	
Haunch Area = Load = Beam 2 Unit Weight = WI 4x68 w _{rf} =	$\begin{array}{l} 0.063 \text{ ft}^2 = \\ 0.009 \text{ klf} = \\ 0.150 \text{ kcf} \\ 10.00 \text{ in} \end{array}$	(9.06 in x 1.00 in)/ 144 063 ft ² x 0.150 kcf	
Haunch Width = Haunch Height =	l 2.00 in I .00 in	*assuming add an inch on each s to account for haunch shape	əide

Haunch Area = 0.083 ft^2 = (12.00 in x 1.00 in)/

Haunch Area = 0.070 ft^2 = (10.06 in x 1.00 in)/

Load = $0.010 \text{ klf} = 0.070 \text{ ft}^2 \times 0.150 \text{ kcf}$

Unit Weight = 0.150 kcf

Haunch Width = 10.06 in

Haunch Height = 1.00 in

8.06 in

WI4x53 $w_{tf} =$

Beam 3-7

Load = 0.013 klf = 0.083 ft² x 0.150 kcf

144

144

*assuming add an inch on each side

to account for haunch shape

page _____ of ____68 calc by ____TRS check by ____DCH date __OCT_2024

Load Rating - Dead Loads

C-05-027

Overhang					
Beam I					
Overhang Length =	1.63 ft				
Depth of Addt. Conc. =	0.146 ft =	0.813 ft -	0.667 ft		
Unit Weight =	0.150 kct				
Load =	0.036 klt				
Deam o					
Overnang Length =	2.46 ft	0 807 14			
Depth of Adat. Conc. =	0.141 IL =	0.007 11 -	0.667 11		
	0.052 klf				
	0.032 KI				
<u>Girder Self Weight</u>					
Beam 1 2 -	0.008 44				
Beam 3-8 =	0.060 kii				
Deam 5-6 -	0.000 kii				
<u>Diaphragm Self Weight</u>					
W Ox2 =	0.021 klf				
Cut Length Int. Beams =	0.083 ft =	2 x	0.042 ft		
Cut Length Ext. Beams =	0.042 ft				
Beam I Diaphragm Length =	1.46 ft =	3.13 ft -	1.63 ft -	0.042 ft	
Beam 2 Diaphragm Length =	2.92 ft =	3.00 ft -	0.083 ft		
Beam 3 Diaphragm Length =	2.89 ft =	2.97 ft -	0.083 ft		
Beam 4-7 Diaphragm Length =	2.86 ft =	2.95 ft -	0.083 ft		
Beam 8 Diaphragm Length =	1.43 ft =	3.93 ft -	2.46 ft -	0.042 ft	
No. of Diaphragms =	3				
Beam I Diaphragm Load =	0.031 k =	1.46 ft x	0.021 klf		
Beam 2 Diaphragm Load =	0.061 k =	2.92 ft x	0.021 klf		
Beam 3 Diaphragm Load =	0.061 k =	2.89 ft x	0.021 klf		
Beam 4-7 Diaphragm Load =	0.060 k =	2.86 ft x	0.021 klf		
Beam 8 Diaphragm Load =	0.030 k =	1.43 ft x	0.021 klf		
Anales Qtv =	4.00				
$L_{6x4x3/8}$ Weight =	12.30 plf				
Angle ength =	0.500 ft				
Angle Weight =	0.025 k =	0.50 ft x	1 2.30 plf x	4.00/	1.000
				· ·	,

PAGE 12 OF 68 CALC BY TRS CHECK BY DCH DATE OCT 2024

Load Rating - Dead Loads

C-05-027

Add 5% to total weight for connection	ons exterior di	aphragms only l	nave 2 angles	
Beam Diaphragm Tot.Load =	0.045 k =	(0.03 k +	0.012 k) x	1.050
Beam 2 Diaphragm Tot Load =	0.090 k =	(0.061 k +	0.025 k) x	1.050
Beam 3 Diaphragm Tot. Load =	0.090 k =	(0.061 k +	0.025 k) x	1.050
Beam 4-7 Diaphragm Tot. Load =	0.089 k =	(0.060 k +	0.025 k) x	1.050
Beam 8 Diaphragm Tot. Load =	0.044 k =	(0.030 k +	0.012 k) x	1.050

Table showing breakdown of each beams DC1 loading. Load units in klf

Beam #	I	2	3	4
Trib Width	3.13 ft	3.00 ft	2.97 ft	2.95 ft
Span Length	30.3 ft	24.3 ft	21.0 ft	21.0 ft
Deck	0.3 3 klf	0.300 klf	0.297 klf	0.295 klf
Haunch	0.011 klf	0.013 klf	0.010 klf	0.010 klf
Overhang	0.036 klf	n/a	n/a	n/a
Gırder Weight	0.068 klf	0.068 klf	0.053 klf	0.053 klf
Diaphragm Weight	0.001 klf	0.004 klf	0.004 klf	0.004 klf
DCI =	0.429 klf	0.384 klf	0.365 klf	0.363 klf
Beam #	5	6	7	8
Trib Width	2.95 ft	2.95 ft	2.95 ft	3.93 ft
Span Length	21.0 ft	21.0 ft	21.0 ft	21.0 ft
Deck	0.295 klf	0.295 klf	0.295 klf	0.393 klf
Haunch	0.010 klf	0.010 klf	0.010 klf	0.010 klf
Overhang	n/a	n/a	n/a	0.052 klf
Gırder Weight	0.053 klf	0.053 klf	0.053 klf	0.053 klf
Diaphragm Weight	0.004 klf	0.004 klf	0.004 klf	0.002 klf
DCI =	0.363 klf	0.363 klf	0.363 klf	0.511 klf

page $\frac{13}{06}$ of $\frac{68}{13}$
CALC BY TRS
CHECK BY DCH
date OCT 2024

Load Rating - Dead Loads

C-05-027

Calculate DC2 (Superimposed Load) Loads Railing Railing = Thrie Beam Guardrail 6.00 No. of Rail Posts South = 31.3 ft Railing Length South = Post Height = 2.00 ft Post Unit Weight = 0.015 klf 2.00 ft x 6.00 Total Post Weight = 0.180 k = 0.015 klf x Post Linear Weight = 0.006 klf = 0.180 k/ 31.3 ft Thrie Beam Weight = 0.011 klf Railing Weight = 0.017 klf = 0.011 klf + 0.006 15% Additional Weight for 0.003 klf = 0.017 klf x 0.150 Connection =Total Railing Weight = 0.019 klf = 0.003 klf + 0.017 klf Safety Curb Safety Curb assumed to be rectangle with dimensions using the average height of the curb through the span 0.97 ft = 2.00 Avg. Gravel Depth at Curb = (1.03 ft + 0.91 ft)/ 1.89 ft = 0.67 ft + 0.25 ft + 0.97 ft Avg. Curb Height = Unit Weight = 0.150 kcf Curb Width = 1.63 ft Load = 0.460 klf = 1.89 ft x 1.63 ft x 0.150 kcf Gravel Borrow Type B No. of Beams = 8 Unit Weight = 0.120 kcf 1.15 ft West Crown Depth = West Curb Depth = 1.03 ft East Crown Depth = 1.02 ft 0.91 ft East Curb Deth = Avg. Crown Depth = 1.08 ft = (1.15 ft + 1.02 ft)/ 2.00 Avg. Curb Depth = 0.97 ft = (1.03 ft + 0.91 ft)/ 2.00 1.03 ft = 1.08 ft + 0.97 ft/ 2.00 Avg. Depth = Rdwy Width = 21.6 ft Gravel Load = 2.66 klf =1.03 ft x 21.6 ft x 0.120 kcf *Interior beams have load from both railings and curbs Total DC2 Load Beam # Railing Load Curb Load Gravel Load 0.019 klf 0.460 klf 2.66 klf 3.140 klf Beam I Beam 2 0.039 klf 0.920 klf 2.66 klf 3.619 klf

0.920 klf

0.920 klf

0.460 klf

2.66 klf

2.66 klf

2.66 klf

3.619 klf

3.619 klf

3.140 klf

Beam 3

Beam 8

Beam 4-7

0.039 klf

0.039 klf

0.019 klf

page 14 of 68 calc by TRS check by DCH date OCT 2024

Load Rating - Dead Loads

C-05-027

Calculate and Distribute DW Loads

Wearing Surface

No. of Beams = 8 WS Unit Wt. = 0.150 kcf Rdwy Width = 21.6 ft WS Depth = 0.250 ft WS Load = 0.101 klf = 0.150 kcf x 21.58 ft x 0.25 ft x 0.125

DW Load = 0.101 klf

Distribute DC2 Loads

Per (2) distribute DC2 loads to beams using the pile cap method to exterior stems. DC2 loads shall be distributed to interior stems equally.

Stems will be treated as individual beams, where their sums will equal the load applied to the NEXTD beams for design.

$$CG = \frac{\Sigma xA}{\Sigma A}$$

x= horizontal distance from left edge of bridge deck A= Area of girder section

Bean	ı x	A	x*A
Beam I	1.625	1.000	1.625
Beam 2	4.625	1.000	4.625
Beam 3	3 7.625	1.000	7.625
Beam 4	10.575	1.000	10.58
Beam 5	13.525	1.000	13.53
Beam 6	6.475	1.000	16.48
Beam 7	19.425	1.000	19.43
Beam 8	3 22.375	1.000	22.38
	7 =	8 000	96 250

-10.34 ft (CL Beam 8 to CG Beam Group)

x_{Beam8} =

	CLIENT TOWN OF CHARLEMONT			page0f68
	PROJECT SOUTH RIV		RIVER ROAD	CALC BY TRS
	BRIDGE NO C-05-027		CHECK BY DCH	
		STRUCTUR		= = 0 CT 2024
ENGINEEKING	SUBJECT			DATE OCT 2024
Load Pating Dead Loads				C 05 027
LOAD RALING - DEAD LOADS				<u> </u>
$x^2_{Beaml} =$	108.29	x _{Beam1} =	10.41	
$x^2_{Beam2} =$	54.85	$x_{Beam2} =$	7.41	
x ² _{Beam3} =	19.42	x _{Beam3} =	4.41	
x ² _{Beam4} =	2.12	$x_{Beam4} =$	1.46	
$x^2_{Beam5} =$	2.23	x _{Beam5} =	-1.49	
x ² _{BeamG} =	19.75	$x_{BeamG} =$	-4.44	
x ² _{Beam7} =	54.67	$x_{Beam7} =$	-7.39	
x ² _{Beam6} =	106.99	x _{Beam8} =	-10.34	
$\Sigma x^2 =$	368.32			
$\sqrt{5}v^2$ –	0 0283			
$x_{\text{Beam}} / 2x - x_{\text{Beam}} / x_{\text{Beam}} $	0.0205			
$x_{\text{Beam8}} / 2x =$	0.0201			
South Railing $e =$	11.22 ft		*Assuming Railing CG @ Ce	nter of Curb
North Railing $e =$	11.99 ft		, , , ,	
South Curb e =	11.22 ft		1 V	$\sum a$
North Curb e =	11.99 ft		$\frac{1}{N} + \frac{\Lambda_{ext}}{\Sigma_{ext}}$	$\frac{2e}{2}$
Gravel e =	0.385 ft			
Beam 1 South Railing DF =	0.442			
Beam 8 North Railing DF =	0.462			
Beam 2-7 Kailing DF =	0.125			
Beam South Curb DF =	0.442			
Beam 8 North Curb DF =	0.462			
Beam 2-7 Curb DF =	0.125			
Boam I Cravel DE -	0.130			
Beam & Gravel DF =	0.136			
Beam 2-7 Gravel DF =	0.125			
	1		1	
Beam #	Railing Load	DF	Factored DC2 Load	
DC2 Deam 7 DC2 Beam 2-7	0.019 kil	0.442	0.005 kit	
DC2 Beam 8	0.019 klf	0.462	0.009 klf	
	I		1	
		25		
Beam #	O 4CO LIF		O 203 klf	
DC2 Beam 2-7	0.920 klf	0.125	0.115 klf	
DC2 Beam 8	0.460 klf	0.462	0.212 klf	
	•		·	
		DE	Easterna J DCO La L	
Beam #	Gravel Load	UF 0 130	O 3CL UIF	—
DC2 Deam 1 DC2 Beam 2-7	2.660 kil	0.136	0.333 klf	
DC2 Beam 8	2.660 klf	0.136	0.361 klf	

	CLIENT TOWN OF CHARLEMONT	page0f68
	project	CALC BY TRS
	bridge no. <u>C-05-027</u>	CHECK BY DCH
ENGINEERING	SUBJECT STRUCTURAL CALCS.	date_OCT_2024

Load Rating - Live Loads

C-05-027

Live Load Distribution Factors

GILL	
ENGINEERING	

page 18 of 68 calc by TRS check by DCH date OCT 2024

Load Rating - Live Load Distribution Factors

C-05-027

References:

- 1) AASHTO Standard Specifications, 17th Edition, 2002
- 2) MassDOT Bridge Manual 2024
- 3) 1995 Mass Highway Bridge Manual
- 4) AISC Steel Construction Manual, 15th Edition, 2017
- 5) AASHTO LRFD Bridge Design, 9th Edition, 2020 with 2021 Errata

Narrative:

Calculate live load distribution factors per (2) and (5) Section 3.5.4.

Summary:

Beam	LLDF M	<u>LLDF V</u>	LLDF M FAT.	LLDF V FAT.	LLDF DEFLECTION
1	0.333	0.333	0.278	0.278	0.250
2	0.346	0.480	0.248	0.400	0.250
3	0.349	0.479	0.253	0.399	0.250
4	0.347	0.478	0.252	0.398	0.250
5	0.347	0.478	0.252	0.398	0.250
6	0.347	0.478	0.252	0.398	0.250
7	0.347	0.478	0.252	0.398	0.250
8	0.365	0.365	0.304	0.304	0.250

Geometry:

Spacing, S Beam 1-2 =	3.00 ft
Spacing, S Beam 3 =	2.97 ft
Spacing, S Beam 4-8 =	2.95 ft
t _s =	0.67 ft
Span Length, L Beam 1 =	30.3 ft
Span Length, L Beam 2 =	24.3 ft
Span Length, L Beam 3-8 =	21.0 ft
$N_b =$	8
Roadway Width =	21.6 ft
Number of Lanes =	I

page0f68	
calc by TRS	
CHECK BY DCH	
date OCT 2024	

C-05-027

Load Rating - Live Load Distribution Factors

Beam Geometry:

Beam I-2 Type =	W14x68
Beam I-2 A =	20.0 in ²
Beam I-2 Depth =	14.0 in
Beam I-2 Y_t =	7.00 in
Beam I-2 $I_x =$	722 ın 4
Beam 3-8 Type =	W14x53
Beam 3-8 A =	15.6 m²
Beam 3-8 Depth =	13.9 in
Beam 3-8 Y_t =	6.95 in
Beam 3-8 I _x =	541 ın 4

Calculate Kg:

Beam I-2 $e_g =$	11.0 in	(8.00 ın x	0.5) +	7.00 in
Beam 3 e _g =	11.0 in	(8.00 in x	0.5) +	6.95 m
Beam 4-8 e _g =	11.0 in	(8.00 in x	0.5) +	6.95 m
n =	6.76	29000 ksı/	4291 ksi	(5) 4.6.2.2.1-2
Beam I-2 K _g =	21,234 m⁴			(5) 4.6.2.2.1-1
Beam 3-8 K _g =	16,297 m⁴			(5) 4.6.2.2.1-1

	CLIENT TOWN OF CHARLEMONT	page_20_0f_68_
	project	calc by TRS
	bridge no. <u>C-05-027</u>	CHECK BY DCH
ENGINEERING	SUBJECT STRUCTURAL CALCS.	date OCT 2024

C-05-027

Load Rating - Live Load Distribution Factors

Moment for Interior Beams:

Per (2) - Section 3.5.3.849, Distribution of live load to interior beams shall be calculated using (5) - Section 4.6.2.2.2

Applicability

$3.5 \le S \le 16.0 \\ 4.5 \le t_s \le 12.0 \\ 20 \le L \le 240 \\ N_b \ge 4 \\ 10,000 \le K_g \le \\ 7,000,000$			(5) Table 4.6.2.2.2b-1
	Beam 2	Beam 2 Check	
S =	3.00 ft	NO GOOD	
t _s =	8.00 in	OKAY	
L =	24.34 ft	OKAY	
$N_b =$	8	OKAY	
K _g =	21,234 m ⁴	OKAY	
	Beam 3	Beam 3-7 Check	
S =	2.97 ft	NO GOOD	
t _s =	8.00 in	OKAY	
L =	21.0 ft	OKAY	
$N_b =$	8	OKAY	
K _g =	16,297 ın⁴	OKAY	
	Beam 4-7	Beam 3-7 Check	
S =	2.95 ft	NO GOOD	
t _s =	8.00 in	OKAY	
L =	21.0 ft	OKAY	
$N_b =$	8	OKAY	
K _g =	16,297 ın⁴	OKAY	

The existing beam spacing is below the minimum beam spacing specified in the Range of Applicability for live load distribution factors (LLDFs) for shear and moment of interior beams, as given in Tables 4.6.2.2.2b-1 and 4.6.2.2.3a-1. Consequently, an alternate analysis is performed further on by theoretically increasing the beam spacing to the minimum value specified in these tables. By demonstrating that the beams are adequate at this larger spacing, which falls within the range of applicability, it is shown that they will be adequate for the actual smaller spacing. This is because the distribution factors would be lower in the real conditions at the smaller spacing. The interior beams were checked to rate above statutory with the alternate distribution factors. The results presented use the distribution factors from the actual beam spacing.

PAGE 21	OF	8
CALC BY _	TRS	
CHECK BY	DCH	
DATE OC	CT 202	4

Load Rating - Live Load D	Distribution Facto	5	C-05-027
(4) Table 4.6.2.2.2b-1			
Concrete Deck or Filled Grid, Partially Filled Grid, or Unfilled Grid Deck Composite with Reinforced Concrete Slab on Steel or Concrete Beams; Concrete T-Beams, T- and Double T-Sections	a, e, k and also i, j if sufficiently connected to act as a unit	One Design Lane Loaded: $0.06 + \left(\frac{S}{14}\right)^{0.4} \left(\frac{S}{L}\right)^{0.3} \left(\frac{K_g}{12.0Lt_s^3}\right)^{0.1}$ Two or More Design Lanes Loaded: $0.075 + \left(\frac{S}{9.5}\right)^{0.6} \left(\frac{S}{L}\right)^{0.2} \left(\frac{K_g}{12.0Lt_s^3}\right)^{0.1}$ use lesser of the values obtained from the	$5 \le S \le 16.0 5 \le t_s \le 12.0 0 \le L \le 240 N_b \ge 4 0,000 \le K_g \le 7,000,000 N_b = 3$
<u>Beam 2</u> One Lane Lo DF _{Mom.E} Two or More Lanes Lo	paded _{Beam2} = 0.29	7 0.06 + $\left(\frac{3.00 \text{ ft}}{14}\right)^{0.4} \left(\frac{3.0}{24.3}\right)^{1.4}$	$ \begin{array}{c} & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.3 \\ & 0.4 \\ & 0.2 \\ & 0.2 \end{array} $ 0.1 0.1 0.1 0.2
DF _{Mom.E}	_{beam2} = 0.34	$\begin{array}{c} 6 \\ x \\ x \\ \hline 12.0 \\ x \end{array} \begin{pmatrix} 3.00 \\ 10.0 \\ 10.0 \\ \hline 12.0 \\ x \\ \hline 12.0 \\ x \\ \hline 24.3 \\ \hline 24.3 \\ \hline 12.0 \\ x \\ \hline 24.3 \\ \hline 24.3 \\ \hline 12.0 \\ x \\ \hline 24.3 \\ \hline 24$	$ \begin{array}{c} 0.2 \\ \hline 34 \text{ ft} \\ ,234 \text{ in}^4 \\ \hline 4 \text{ ft x} \\ \end{array} \begin{array}{c} 0.2 \\ \hline 6.00 \text{ in} \\ \end{array} \right)^3 \end{array} \right)^{-1} $
One Lane Lo DF _{Mom.E}	oaded _{Beam2} = 0.29	7	
Two or More Lanes Lo DF _{Mom.E}	oaded _{beam2} = 0.34	6	
Critical F DF _{Mom.E}	⁼ actor _{Beam2} = 0.34	6	

page_22_0f_68
calc by TRS
CHECK BY DCH
DATE_OCT 2024

Beam 3				
One Lane Loaded			0.4	
DF _{Mom.Beam3} =	0.303	0.06 +	(2.97 ft) $(2.97 ft)$	
			[14] [21.00 ft]	2 ^{0.1}
		×	16,297 m*	3
			(12.0 x 21.00 ft x	q.00 m jj
Two or More Lanes Loaded			0.6 0.2	
DF _{Mom.Beam3} =	0.349	0.075 +	$\left(2.97 \text{ ft}\right)^{0.0} \left(2.97 \text{ ft}\right)^{0.2}$	
			9.5 21.00 ft	0.1
		×	I 6,297 in⁴	3]
			[12.0 x 21.00 ft x	β.00 in)°
One Lane Loaded				
DF _{Mom.Beam3} =	0.303			
Two or More Lanes Loadad				
	0.349			
Mom.Deam3	0.010			
Cartural Frister				
Critical Lactor	0 2 4 9			
Mom.Beam3	0.345			
Beam 4-7				
One Lane Loaded			0.4 _ 0.3	
DF _{Mom.Beam4-7} =	0.302	0.06 +	(2.95 ft) $(2.95 ft)$	
			[14] [21.00 ft]	_0.1
		×	16,297 in*	<u> </u>
				ų
Two or More Lanes Loaded			0.6 _ 0.2	
DF _{Mom.Beam4-7} =	0.347	0.075 +	(2.95 ft) $(2.95 ft)$	
			9.5] [21.00 ft]	_0.1
		Х	16,297 m ⁴	<u> </u>
				ę, J.J
Urie Lane Loaded	0 302			
VI Mom.Beam4-7	0.302			
Two or More Lanes Loaded				
DF _{Mom.Beam4-7} =	0.347			
Critical Factor				

	CLIENT TOWN OF CHARLEMONT	page_23_0f_68_
	project SOUTH RIVER ROAD	calc by TRS
	bridge no. <u>C-05-027</u>	CHECK BY DCH
ENGINEERING	SUBJECT STRUCTURAL CALCS.	date OCT 2024

Load Rating - Live Load Distribution Factors

Shear for Interior Beams:

Per (2) - Section 3.5.3.8\$9, Distribution of live load to interior beams shall be calculated using (5) - Section 4.6.2.2.2

Applicability

 $\begin{array}{l} 3.5 \leq S \leq 16.0 \\ 20 \leq L \leq 240 \\ 4.5 \leq t_s \leq 12.0 \\ N_b \geq 4 \end{array}$

	Beam 2	Beam 2 Check
S =	3.00 ft	NO GOOD
t _s =	8.00 ft	OKAY
L =	24.34 ft	OKAY
$N_{\flat} =$	8.00 ft	OKAY
	Beam 3	Beam 3-7 Check
S =	2.97 ft	NO GOOD
t _s =	8.00 ft	OKAY
L =	21.00 ft	OKAY
$N_{\flat} =$	8.00 ft	OKAY
	Beam 3-7	Beam 3-7 Check
5 =	2.95 ft	NO GOOD
t _s =	8.00 ft	OKAY
L =	21.00 ft	OKAY
$N_{\flat} =$	8.00 ft	OKAY

(5) Table 4.6.2.2.3a-I

C-05-027

(5) Table 4.6.2.2.3a-1

Concrete Deck or Filled Grid, Partially Filled Grid, or Unfilled Grid Deck Composite with Reinforced Concrete Slab on Steel or Concrete	a, e, k and also i, j if sufficiently connected to act as a unit	$0.36 + \frac{S}{25.0}$	$0.2 + \frac{S}{12} - \left(\frac{S}{35}\right)^{2.0}$	$3.5 \le S \le 16.0$ $20 \le L \le 240$ $4.5 \le t_s \le 12.0$ $N_b \ge 4$
Beams; Concrete T-Beams, T- and		Lever Rule	Lever Rule	$N_b = 3$
Double 1-Sections				

page 24 of 68 calc by TRS check by DCH date OCT 2024

Load Rating - Live Load Distribution	on Factors				C-05-027
Beam 2					
One Lane Loaded					
DF _{Shaan} Baam ₂ =	0.480	0.36 +	(3.00 ft)		
Jilean,Deaniz			25		
Two or More Lanes Loaded				2.0	
DF _{Shear,Beam2} =	0.443	0.2 +	(3.00 ft -	(3.00 ft)	
			2	35	
C	One Lane Loaded				
$DF_{Shear,Beam2} =$	0.480				
T					
i wo or Mo	re laries loaded				
DF _{Shear,Beam2} =	0.443				
Critical Factor					
DF _{Shear,Beam2} =	0.480				
<u>Beam 3</u>					
One Lane Loaded					
DF _{Shear,Beam3} =	0.479	0.36 +	(2.97 ft)		
			25		
Two or More Lanes Loaded				2.0	
DFShear Beam3 =	0.441	0.2 +	(2.97 ft -)	$(2.97 \text{ ft})^{2.0}$	
Jitea , Deality			12	35	
C	One Lane Loaded				
$DF_{Shear,Beam3} =$	0.479				
Two or Mo	re Lanes Loaded				
$DF_{Shear,Beam3} =$	0.441				
Critical Factor					
DF _{Shear,Beam3} =	0.479				

Load Rating - Live Load Distributi	on Factors				C-05-027
Beam 4-7					
One Lane Loaded					
$DF_{Shear,Beam4-7} =$	0.478	0.36 +	$\left(\frac{2.95 \text{ ft}}{25}\right)$		
Two or More Lanes Loaded				2.0	
$DF_{Shear,Beam4-7} =$	0.439	0.2 +	$\left(\frac{2.95 \text{ ft}}{12}\right)$	$\frac{\left(2.95 \text{ ft}}{35}\right)^{-10}$	
(One Lane Loaded				
$DF_{Shear,Beam4-7} =$	0.478				
Two or Mc	ore Lanes Loaded				
$DF_{Shear,Beam4-7} =$	0.439				
Critical Factor					
DF _{Shear Beam4-7} =	0.478				

Moment for Exterior Beams:

Per (2) - Section 3.5.3.10, Distribution of live load to exterior beams under safety curb or barrier shall be calculated using (4) - Section 4.6.2.2.2

Per (4) - Section 4.6.2.2.2d - Exterior beam distribution factors shall be taken as the larger of those calculated using Table 4.6.2.2.2d-1, or the pile cap analogy as outlined in C4.6.2.2.2d

Applicability

$$-1.0 \leq d_e \leq 5.5$$

Beam I
$$d_e =$$
-0.017 ftOKAYBeam 4 $d_e =$ 0.818 ftOKAYConcrete Deck or Filled
Grid, Partially Filled Grid,
or Unfilled Gcid Deck
Concrete Slab on Steel or
Concrete Beams; Concrete
T-Beams, T- and Double T-
Sectionsa, e, k and
also i, j
if sufficiently
connected to act as a
unitLever Rule $g = e g_{interior}$
 $e = 0.77 + \frac{d_v}{9.1}$ Use lesser of the
values obtained
from the
equation above
with $N_b = 3$ or
the lever rule $N_b = 3$

	Beam	Х	A	x*A
E	Beam I	1.625	0.139	0.226
E	Beam 2	4.625	0.139	0.642
E	Beam 3	7.625	0.139	1.059
E	3eam 4	10.575	0.139	1.47
E	Beam 5	13.525	0.139	1.88
E	Beam G	16.475	0.139	2.29
E	3eam 7	19.425	0.139	2.70
E	3eam 8	22.375	0.139	3.11
		Σ=	1.111	13.368
	CG =	12.03 ft	*from the left edg	e of bridge deck

PAGE 27 of 68 CALC BY TRS CHECK BY DCH DATE OCT 2024

Load Rating - Live Load Distribution Factors

			1		$X_{ext} \sum e$
$N_b =$	number of beams		N_h	-+	$\sum x^2$
<i>e</i> =	eccentricity of load	from C.G.	D		-
x =	horizontal distance	from C.G. of pattern of beams to each b	>eam		
$X_{ext} =$	horizontal dist from	C.G. of pattern of beams to exterior be	am		
CG =	12.03 ft	*from the left edge of bridge deck			
Beam I Overhang =	1.63 ft				
Beam 8 Overhang =	2.46 ft				
Out to Out Dist.	24.83 ft				
x _{Beaml} =	10.41 ft	(CL Beam I to CG Beam Group)			
$x_{Beam2} =$	7.4 ft	(CL Beam 2 to CG Beam Group)			
x _{Beam3} =	4.4 ft	(CL Beam 3 to CG Beam Group)			
x _{Beam4} =	1.46 ft	(CL Beam 4 to CG Beam Group)			
x _{Beam5} =	-1.49 ft	(CL Beam 5 to CG Beam Group)			
x _{BeamG} =	-4.44 ft	(CL Beam 6 to CG Beam Group)			
x _{Beam7} =	-7.39 ft	(CL Beam 7 to CG Beam Group)			
$x_{Beam B} =$	-10.34 ft	(CL Beam 8 to CG Beam Group)			
x ² _{Beaml} =	108.29	x _{Beam1} = 10.41			
$x^2_{Beam2} =$	54.85	x _{Beam2} = 7.4			
x ² _{Beam3} =	19.42	x _{Beam3} = 4.41			
x ² _{Beam4} =	2.12	x _{Beam4} = 1.46			
x ² _{Beam5} =	2.23	x _{Beam5} = -1.49			
x ² _{BeamG} =	19.75	$x_{\text{BeamG}} = -4.44$			
x ² _{Beam7} =	54.67	x _{Beam7} = -7.39			
$x^2_{Beam B} =$	106.99	$x_{\text{Beam8}} = -10.34$			
$\Sigma x^2 =$	368.32				

CLIENT TOWN OF CHARLEMONT SOUTH RIVER ROAD PROJECT _____ bridge no. <u>C-05-027</u> SUBJECT STRUCTURAL CALCS.

page_28_0f_68
calc by TRS
CHECK BY DCH
DATE_OCT_2024

C-05-027

Load Rating - Live Load Distribution Factors

$$x_{\text{Beam}} / \sum x^2 = 0.0283$$

 $x_{\text{Beam}} / \sum x^2 = 0.0281$

$$R = \frac{N_L}{N_b} + \frac{X_{ext} \sum^{N_L} e}{\sum^{N_b} x^2}$$

e = Eccentricity of a design truck or a design lane N_L = Number of loaded lanes under consideration load from the C.O.G. of the pattern of girders (ft)

x = Horizontal distance from the C.O.G. of the $X_{ext} =$ Horizontal distance from the C.O.G. of pattern of girders to each girder (ft)

the pattern of girders to the exterior girder (ft)

$e_{\perp} =$	5.4 ft =	10.41 ft -	2.00 ft -	3.00 ft
$e_2 =$	-5.39 ft =	10.41 ft -	2.00 ft -	13.79 ft

P -	0.278 -	+	(0.0283 x	5.4 ft)
K ₁ - 0.276 =	8			

$$R_2 = 0.25I = \frac{2+}{8}$$
 (0.0283 x (5.41 ft +

One Lane Loa	ded (Lever Rule)		
DF _{Mom.Beam1} =	0.200 =	0.167 x	1.20
One Lane Lo	oaded (Pile Cap)		
DF _{Mom.Beam1} =	0.333 =	0.278 x	1.20
Two or More Lanes L	oaded (Formula).		

DF _{Mom.Beam1} =	0.266	0.266	
Two or More Lanes L	.oaded (Pile Cap)		
DF _{Mom.Beam1} =	0.251 =	0.251 x	1.00

Critical Factor

 $\mathsf{DF}_{\mathsf{Mom},\mathsf{Beam}\,\mathsf{I}} \,=\,$ 0.333

page <u>30</u> of <u>68</u> calc by <u>TRS</u> check by <u>DCH</u> date <u>OCT</u> 2024

C-05-027

Load Rating - Live Load Distribution Factors

"Rigid Superstructure" Pile Cap Analogy

$$CG = \frac{\Sigma xA}{\Sigma A}$$

x = horizontal distance from left edge of bridge deck A = Area of girder section

Beam	×	A	x*A
Beam I	1.625	0.139	0.226
Beam 2	4.625	0.139	0.642
Beam 3	7.625	0.108	0.826
Beam 4	10.575	0.108	1.15
Beam 5	13.525	0.108	1.47
Beam G	16.475	0.108	1.78
Beam 7	19.425	0.108	2.10
Beam 8	22.375	0.108	2.42
	Σ =	0.928	10.618

CG = | |.44 ft *from the left edge of bridge deck

e = eccentricity of load from C.G.

x = horizontal distance from C.G. of pattern of beams to each beam

 X_{ext} = horizontal dist from C.G. of pattern of beams to exterior beam

CG =	11.44 ft	*from the left edge of bridge deck
Beam I Overhang =	1.63 ft	
Beam 8 Overhang =	0.00 ft	
Out to Out Dist.	24.83 ft	
x _{Beaml} =	9.82 ft	(CL Beam I to CG Beam Group)
x _{Beam2} =	7.41 ft	(CL Beam 2 to CG Beam Group)
x _{Beam3} =	4.41 ft	(CL Beam 3 to CG Beam Group)
x _{Beam4} =	1.46 ft	(CL Beam 4 to CG Beam Group)
x _{Beam5} =	-1.49 ft	(CL Beam 5 to CG Beam Group)
x _{Beam6} =	-4.44 ft	(CL Beam 6 to CG Beam Group)
x _{Beam7} =	-7.39 ft	(CL Beam 7 to CG Beam Group)
x _{Beam8} =	-10.34 ft	(CL Beam 8 to CG Beam Group)

CLIENT TOWN OF CHARLEMONT bridge no. <u>C-05-027</u> SUBJECT STRUCTURAL CALCS.

PAGE_3| _____0F___68 CALC BY TRS CHECK BY DCH DATE OCT 2024

ng - Live Load Distributi	on Factors			C-05-027
x ² _{Beaml} =	96.42	x _{Beam1} =	9.82	
x ² _{Beam2} =	54.85	x _{Beam2} =	7.41	
x ² _{Beam3} =	19.42	x _{Beam3} =	4.41	
x ² _{Beam4} =	2.12	x _{Beam4} =	1.46	
x ² _{Beam5} =	2.23	x _{Beam5} =	-1.49	
x ² _{Beam6} =	19.75	x _{Beam6} =	-4.44	
x ² _{Beam7} =	54.67	x _{Beam7} =	-7.39	
x ² _{Beam8} =	106.99	x _{Beam8} =	-10.34	
$\Sigma x^2 =$	356.45	_		
			$V \sum_{l=1}^{N_L} c_l$	-4.61 ft))
$x_{\text{Beam I}} / \sum x^2 =$	0.0275	_	$N_{t} \xrightarrow{\Lambda_{ext} \sum e}$	
$x_{\text{Beam8}} / \sum x^2 =$	0.0290	R	$=\frac{N_L}{N_b}+\frac{N_b}{N_b}$	
			$\sum x^2$	
			-	

load from the C.O.G. of the pattern of girders (ft) x = Horizontal distance from the C.O.G. of the $X_{ext} =$ Horizontal distance from the C.O.G. of

pattern of girders to each girder (ft)

the pattern of girders to the exterior girder (ft)

 $e_{\perp} =$ 6.18 ft = 10.34 ft -1.17 ft -3.00 ft -4.61 ft = 10.34 ft -1.17 ft -13.79 ft $e_2 =$

0.304 -	
0	

R ₂ =	0.295 =	2 +	(0.0290 x	(6.18ft+
		8		

One Lane Loa	ded (Lever Rule)			
$DF_{Mom,BeamB} =$	0.363 =	0.302 x	1.20	
One Lane Lo	oaded (Pile Cap)			
DF _{Mom.Beam8} =	0.365 =	0.304 x	1.20	
Two or More Lanes L	oaded (Formula).			
DF _{Mom.Beam8} =	0.298 =	0.298		
Two or More Lanes Loaded (Pile Cap)				
$DF_{Mom,Beam8} =$	0.295 =	0.295 x	1.00	

Critical Factor	
$DF_{Mom,Beam\mathcal{B}} =$	0.365

Load Rating - Live Load Distribution Fa	stors	C-05-027
ENGINEERING	SUBJECT _ STRUCTURAL CALCS.	DATE_OCT 2024
	bridge no. <u>C-05-027</u>	CHECK BY DCH
	project	calc by TRS
	CLIENT TOWN OF CHARLEMONT	page $\frac{32}{\text{of}}$ of $\frac{68}{32}$

Shear for Exterior Beams:

Per (2) - Section 3.5.3.10, Distribution of live load to exterior beams under safety curb or barrier shall be calculated using (4) - Section 4.6.2.2.2

Applicability

$$-1.0 \le d_e \le 5.5$$

(5) 4.6.2.2.36-1

Beam | $d_e = -0.017$ ft Beam 8 $d_e = 0.818$ ft OKAY OKAY

Concrete Deck or Filled	a, e, k and	Lever Rule	$g = e g_{interior}$	$-1.0 \le d_e \le 5.5$
Grid, Partially Filled	also i, j		d d	, c
Grid, or Unfilled Grid	if sufficiently connected		$e = 0.6 + \frac{10}{10}$	
Deck Composite with	to act as a unit		10	
Reinforced Concrete Slab			I	N 2
on Steel or Concrete			Lever Kule	$N_b = 3$
Beams; Concrete T-				
Beams, T- and Double T-				
Beams				

Beam I

One Lane Loaded

0.5

page <u>33</u> of <u>68</u> calc by <u>TRS</u> check by <u>DCH</u> date <u>OCT 2024</u>

0.05.005	
C-05-027	

	Lever Rule				
	Beam I D=	2.00 ft			
	Beam S =	3.00 ft			
	DF _{Shear,Beam1} =	0.167 =	(-	(2.00 ft/	3.00 ft)) x
Two or Ma	ore Lanes Loaded				
	Beam I d _e =	-0.017 =			
	e =	0.598 =	0.60 +	-(0.017 ft/	10.0)
	q,interior =	0.443			
	DF _{Shear Beaml} =	0.265 =	0.598 ft x	0.443	
	choar, boarn				
	One Lane Loa	aded (Lever Rule)			
	DF _{Shear,Beaml} =	0.200 =	0.167 x	1.20	
	One Lane Loaded	(Pile Cap) *See Mo	oment Calculation		
		0.333 =	0 278 x	1.20	
	o , Snear.Deam i	0.000	0.270 X	1.20	
	Two or Mo	ore Lanes Loaded			
	DF _{Shear Beaml} =	0.265 =	0.265		
Two or N	Nore Lanes Loaded	(Pile Cap) *See M	oment Calculation		
	DF -	0 25 L -			
	Di Shear.Beami —	0.231 -	U.ZJIX	1.00	
	Critical Factor				

DF_{Shear,Beaml} = 0.333

page_35_0f_68
CALC BY TRS
CHECK BY DCH
date_OCT_2024_

Load Rating - Live Load Distribution Factors C-05-027 Two or More Lanes Loaded Beam 8 $d_e =$ 0.818 = e =0.682 = 0.60 + (0.818 ft/ 10.0) g,interior = 0.439 0.299 = 0.682 ft x 0.439 $\mathsf{DF}_{\mathsf{Shear},\mathsf{Beam8}} =$ One Lane Loaded (Lever Rule) DF_{Shear.Beam8} = 0.363 = 0.302 x 1.20 One Lane Loaded (Pile Cap) *See Moment Calculation $DF_{Shear,Beam8} = 0.365 =$ 0.304 x 1.20 Two or More Lanes Loaded DF_{Shear,Beam8} = 0.299 = 0.299 x 1.00 Two or More Lanes Loaded (Pile Cap) *See Moment Calculation 1.00 $DF_{Shear,Beam8} =$ 0.295 = 0.295 x Critical Factor

 $DF_{Shear,Beam8} = 0.365$

	CLIENT TOWN OF CHARLEMONT	page_ <u>36</u> _0f_ <u>68</u>
	project	CALC BY TRS
	bridge no. <u>C-05-027</u>	CHECK BY DCH
ENGINEERING	SUBJECT STRUCTURAL CALCS.	date_OCT_2024

Load Rating - Live Load Distribution Factors

Deflection for All Beams

C2.5.2.6.2

These provisions permit, but do not encourage, the use of past practice for deflection control. Designers were permitted to exceed these limits at their discretion in the past. Calculated deflections of structures have often been found to be difficult to verify in the field due to numerous sources of stiffness not accounted for in calculations. Despite this, many Owners and designers have found comfort in the past requirements to limit the overall stiffness of bridges. The desire for continued availability of some guidance in this area, often stated during the development of these Specifications, has resulted in the retention of optional criteria, except for orthotropic decks, for which the criteria are required. Deflection criteria are also mandatory for lightweight decks comprised of metal and concrete, such as filled and partially filled grid decks, and unfilled grid decks composite with reinforced concrete slabs, as provided in Article 9.5.2.

Additional guidance regarding deflection of steel bridges can be found in Wright and Walker (1971).

Additional considerations and recommendations for deflection in timber bridge components are discussed in more detail in Chapters 7, 8, and 9 in Ritter (1990).

For a straight girder system bridge, this is equivalent to saying that the distribution factor for deflection is equal to the number of lanes divided by the number of beams.

$$g = 2$$

No. of Beams = 8

DF = 0.250 =

8

C-05-027

2/

	CLIENT TOWN OF CHARLEMONT	page_37_0f_68_
	PROJECT SOUTH RIVER ROAD	CALC BY TRS
	bridge no. <u>C-05-027</u>	CHECK BY DCH
ENGINEERING	SUBJECT STRUCTURAL CALCS.	date OCT 2024

Load Rating - Alternate Live Loads

C-05-027

Alternate Live Load Distribution Factors

	CLIENT TOWN OF CHARLEMONT	page0f68
	project	calc by TRS
	bridge no. <u>C-05-027</u>	CHECK BY DCH
ENGINEERING	SUBJECT STRUCTURAL CALCS.	date OCT 2024

Load Rating - Alternate Live Load Distribution Factors

C-05-027

References:

- 1) AASHTO Standard Specifications, 17th Edition, 2002
- 2) MassDOT Bridge Manual 2024
- 3) 1995 Mass Highway Bridge Manual
- 4) AISC Steel Construction Manual, 15th Edition, 2017
- 5) AASHTO LRFD Bridge Design, 9th Edition, 2020 with 2021 Errata

Narrative:

Calculate live load distribution factors per (2) and (5) Section 3.5.4.

Summary:

Beam	LLDF M	LLDF V	LLDF M FAT.	LLDF V FAT.	LLDF DEFLECTION
T	х	х	×	x	х
2	0.382	0.500	0.382	0.417	0.250
3	0.387	0.500	0.387	0.417	0.250
4	0.387	0.500	0.387	0.417	0.250
5	0.387	0.500	0.387	0.417	0.250
6	0.387	0.500	0.387	0.417	0.250
7	0.387	0.500	0.387	0.417	0.250
8	х	х	x	×	х

The existing beam spacing is below the minimum beam spacing specified in the Range of Applicability for live load distribution factors (LLDFs) for shear and moment of interior beams, as given in Tables 4.6.2.2.2b-1 and 4.6.2.2.3a-1. Consequently, an alternate analysis is performed by theoretically increasing the beam spacing to the minimum value specified in these tables. By demonstrating that the beams are adequate at this larger spacing, which falls within the range of applicability, it is shown that they will be adequate for the actual smaller spacing. This is because the distribution factors would be lower in the real conditions at the smaller spacing. The interior beams were checked to rate above statutory with the distribution factors. The results presented use the distribution factors from the actual beam spacing.

Geometry:

Spacing, S Beam =	3.50 ft
t _s =	0.67 ft
Span Length, L Beam 1 =	30.3 ft
Span Length, L Beam 2 =	24.3 ft
Span Length, L Beam 3-8 =	21.0 ft
N _b =	8

Roadway Width =	21.6 ft
Number of Lanes =	I

PAGE_3	OF_	68
CALC BY.	TRS	5
CHECK BY	DCH	
date O	CT 20)24

Load Rating - Alternate Live Load Distribution Factors

C-05-027

Beam Geometry:

Beam I-2 Type =	W14x68
Beam I-2 A =	20.0 in²
Beam I-2 Depth =	14.0 in
Beam I-2 $Y_t =$	7.00 in
Beam I-2 I _x =	722 ın 4
Beam 3-8 Type =	W14x53
Beam 3-8 A =	15.6 m²
Beam 3-8 Depth =	13.9 in
Beam 3-8 $Y_t =$	6.95 in
Beam 3-8 I _x =	541 ın⁴

Calculate K_g:

Beam I-2 $e_g =$	11.0 in	(8.00 in x	0.5) +	7.00 in
Beam 3-8 e _g =	11.0 m	(8.00 in x	0.5) +	6.95 m
n =	6.76	29000 ksı/	4291 ksi	(5) 4.6.2.2.1-2
Beam I-2 K _g =	21,234 mª			(5) 4.6.2.2.1-1
Beam 3-8 K _g =	I6,297 ın⁴			(5) 4.6.2.2.1-1

NGINEERING	CLIENT TOWN OF CHARLEMONT PROJECT SOUTH RIVER ROAD BRIDGE NO. C-05-027 SUBJECT STRUCTURAL CALCS.	
Load Rating - Alternate Live Load Dist	ribution Factors	C-05-027
Moment for Interior Beams: Per (2) - Section 3.5.3.8¢9, Dist	ribution of live load to interior beams shall be calculate 4.6.2.2.2	ed using (5) - Section
Applicability		
$3.5 \le S \le 16.0$ $4.5 \le t_s \le 12.0$ $20 \le L \le 240$ $N_b \ge 4$ $10,000 \le K_g \le$ 7,000,000	(5) Table 4.6.2.2.2b-1	
Be	am 2 Beam 2 Check	
5 = 3.5	50 ft OKAY	
$t_s = 8.0$	OO IN OKAY	
L = 24.	34 ft OKAY	
	OKAY	
$N_{g} = -21, 2$	34 in* OKAY	
Beau	n 3-7 Beam 3-7 Check	
5 = 3.5	50 ft OKAY	
t ₅ = 8.0	OO In OKAY	
L = 21	.O ft OKAY	
$N_{b} =$	8 OKAY	
$K_g = IG$	297 m ⁴ OKAY	
(4) Table 4 6 2 2 2b-1		
Concrete Deck or a, e, k and als	o i, j One Design Lane Loaded:	$3.5 \le S \le 16.0$

Concrete Deck or	a, e, k and also i, j	One Design Lane Loaded:	$3.5 \le 5 \le 16.0$
Filled Grid, Partially	if sufficiently	$(\mathbf{r})^{0.4} (\mathbf{r})^{0.3} (\mathbf{K})^{0.1}$	$4.5 \le t_s \le 12.0$
Filled Grid, or	connected to act	$0.06 + \left \frac{3}{11} \right \left \frac{3}{2} \right \left \frac{R_g}{1000} \right $	$20 \le L \le 240$
Unfilled Grid Deck	as a unit	(14) (L) $(12.0Lt_s^3)$	$N_b \ge 4$
Composite with		Two or More Design Lanes Loaded:	$10,000 \le K_g \le$
Reinforced Concrete		$(C_{\rm C})^{0.6} (C_{\rm C})^{0.2} (K_{\rm C})^{0.1}$	7,000,000
Slab on Steel or		$0.075 + \left(\frac{3}{2}\right) \left(\frac{3}{2}\right) \left(\frac{3}{2}\right) \left(\frac{1}{2}\right)$	
Concrete Beams;		(9.5) (L) $(12.0 Lt_s^3)$	
Concrete T-Beams, T-		use lesser of the values obtained from the	$N_b = 3$
and Double T-Sections		equation above with $N_b = 3$ or the lever rule	
Slab on Steel or Concrete Beams; Concrete T-Beams, T- and Double T-Sections		$\frac{0.075 + \left(\frac{-}{9.5}\right) \left(\frac{-}{L}\right) \left(\frac{-}{12.0 Lt_s^3}\right)}{\text{use lesser of the values obtained from the equation above with } N_b = 3 \text{ or the lever rule}$	<i>N_b</i> = 3

page_4	68
CALC BY	TRS
CHECK BY	<u>r DCH</u>
DATE_O	CT 2024

Load Kating - Alternate Live Load	Distribution	120015		0 00 02/
Beam 2				
One Lane Loaded			0.4 0.3	
DF _{Mom.Beam2} =	0.324	0.06 + x	$ \begin{array}{c} \begin{array}{c} 3.50 \text{ ft} \\ \hline 14 \end{array} \end{array} \begin{array}{c} 3.50 \text{ ft} \\ 21,234 \text{ ft} \end{array} \\ \hline 12.0 \text{ x} \end{array} \begin{array}{c} 24.34 \text{ ft} \text{ x} \end{array} $	0.1 <u>(8.00 m</u>) ³
-			C	
I wo or More Lanes Loaded			(1000000000000000000000000000000000000	
DF _{Mom.Beam2} =	0.382	0.075 + x	$ \begin{array}{c c} 3.50 \text{ ft} \\ 9.5 \\ \hline 12.0 \text{ x} \\ \end{array} $ $ \begin{array}{c} 3.50 \text{ ft} \\ 24.34 \text{ ft} \\ 21,234 \text{ in}^4 \\ \hline 24.34 \text{ ft x} \\ \end{array} $	0.1 (8.00 in) ³
One Lane Loaded				
DF _{Mom.Beam2} =	0.324			
Two or More Lanes Loaded				
DF _{Mom.Beam2} =	0.382			
Critical Factor				
DF _{Mom.Beam2} =	0.382			
Beam 3-7				
One Lane Loaded			0.4 0.3	
DF _{Mom.Beam3-7} =	0.333	0.06 + x	$ \left(\begin{array}{c} 3.50 \text{ ft} \\ 14 \end{array} \right)^{0.1} \left(\begin{array}{c} 3.50 \text{ ft} \\ 1.00 \text{ ft} \end{array} \right)^{0.1} \\ \hline 16,297 \text{ in}^4 \\ \hline 12.0 \text{ x} \qquad 21.00 \text{ ft x} \end{array} \right)^{0.1} $	0.1 (8.00 in) ³
Two or More Lanes Loaded				
DF _{Mom.Beam3-7} =	0.387	0.075 + x	$ \left(\begin{array}{c} 3.50 \text{ ft} \\ \hline 9.5 \end{array} \right)^{0.6} \left(\begin{array}{c} 3.50 \text{ ft} \\ 1.00 \text{ ft} \end{array} \right)^{0.2} \\ \hline 16,297 \text{ in}^4 \\ \hline 12.0 \text{ x} \\ 21.00 \text{ ft x} \end{array} \right)^{-1} $	0.1 [8.00 in] ³]
One Lane Loaded				
DF _{Mom.Beam3-7} =	0.333			
Two or More Lanes Loaded				
DF _{Mom.Beam3-7} =	0.387			
Critical Factor				

	CLIENT TOWN OF CHARLEMONT	page0f68
	PROJECT	calc by TRS
	BRIDGE NO. <u>C-05-027</u>	CHECK BY DCH
ENGINEERING	SUBJECT STRUCTURAL CALCS.	date <u>OCT 2024</u>

Load Rating - Alternate Live Load Distribution Factors

C-05-027

Shear for Interior Beams:

Per (2) - Section 3.5.3.8\$9, Distribution of live load to interior beams shall be calculated using (5) - Section 4.6.2.2.2

Applicability

(5) Table 4.6.2.2.3a-1

$3.5 \leq S$	≤16.0
$20 \le L$	≤ 240
$4.5 \leq t_s$	≤12.0
$N_b \ge 4$	

	Beam 2	Beam 2 Check
5 =	3.50 ft	OKAY
t _s =	8.00 ft	OKAY
L =	24.34 ft	OKAY
$N_{\flat} =$	8.00 ft	OKAY
	Beam 3-7	Beam 3-7 Check
5 =	3.50 ft	OKAY
t _s =	8.00 ft	OKAY
L =	21.00 ft	OKAY
$N_{\flat} =$	8.00 ft	OKAY

(5) Table 4.6.2.2.3a-1

a, e, k and also	$0.36 + \frac{S}{1}$	$0.2 + \frac{S}{S} - \left(\frac{S}{S}\right)^{2.0}$	$3.5 \le S \le 16.0$
1, 1 11	25.0	$0.2 + \frac{12}{12} - (\frac{35}{35})$	$20 \le L \le 240$
sufficiently		()	15 12 0
connected to			$4.5 \le t_s \le 12.0$
act as a unit			$N_b \ge 4$
	Lever Rule	Lever Rule	$N_b = 3$
	a, e, k and also i, j if sufficiently connected to act as a unit	a, e, k and also i, j if sufficiently connected to act as a unit Lever Rule	a, e, k and also i, j if sufficiently connected to act as a unit $0.36 + \frac{S}{25.0}$ $0.2 + \frac{S}{12} - \left(\frac{S}{35}\right)^{2.0}$ Lever Rule Lever Rule Lever Rule

page $\frac{43}{\text{of}}$ of $\frac{68}{3}$
calc by TRS
CHECK BY DCH
DATE OCT 2024

Beam 2					
One Lane Loaded					
$DF_{Shear,Beam2} =$	0.500	0.36 +	3.50 ft		
			L 25 J		
Two or More Lanes Loaded				2.0	
$DF_{Shear,Beam2} =$	0.482	0.2 +	(3.50 ft -	3.50 ft	
				35	
Or	ie Lane Loaded				
DF _{Shear,Beam2} =	0.500				
Two or More	e Lanes Loaded				
DF _{Shear,Beam2} =	0.482				
Critical Factor					
$DF_{Shear,Beam2} =$	0.500				
Beam 3-7					
One Lane Loaded					
DF _{Shear,Beam3-7} =	0.500	0.36 +	(3.50 ft)		
			25		
Two or More Lanes Loaded				2.0	
DF _{Shear,Beam3-7} =	0.482	0.2 +	(3.50 ft)	(3.50 ft) 2.0	
				35	
	e lane loaded				
DF _{Shear Beam3-7} =	0.500				
Undar, Joanno- /					
Two or More	e Lanes Loaded				
DF _{Shear,Beam3-7} =	0.482				
Critical Factor					

	CLIENT TOWN OF CHARLEMONT	page0f68
	project	CALC BY TRS
	bridge no. <u>C-05-027</u>	CHECK BY DCH
ENGINEERING	SUBJECT STRUCTURAL CALCS.	date OCT 2024

Load Rating - Deterioration

C-05-027

Deterioration

G	
EN	IGINEERING

page 45 of 68 calc by TRS check by DCH date OCT 2024

Load Rating - Deterioration

C-05-027

References:

1) AASHTO Standard Specifications, 17th Edition, 2002

2) MassDOT Bridge Manual 2024

3) 1995 Mass Highway Bridge Manual

4) AISC Steel Construction Manual, 15th Edition, 2017

5) AASHTO LRFD Bridge Design, 9th Edition, 2020 with 2021 Errata

6) AASHTO Manual for Bridge Evaluation, 3rd Edition, 2018 thru 2022 Interim

Bottom Flange Deterioration

Top flange deterioration was estimated to be a 1/4" loss of thickness to the top flange along the entire span of each beam.

BM #	Shape	Top Flange Thickness	Remaining Thickness	Percent Loss
BM 1-2	W14x68	0.72	0.47	34.72
BM 3-8	W14x53	0.66	0.41	37.88

page <u>46</u> of <u>68</u> calc by <u>TRS</u> check by <u>DCH</u> date <u>OCT</u> 2024

SECTION PROPERTIES

C-05-027

Section Properties

PROJECT ______ SOUTH RIVER ROAD

bridge no. <u>C-05-027</u>

SUBJECT STRUCTURAL CALCS.

page 47 of 68 calc by TRS check by DCH date OCT 2024

C-05-027

SECTION PROPERTIES

COMPOSITE SECTION PROPERTIES

GIRDER DESCRIPTION Beam I GIRDER NUMBER BM I GIRDER LOCATION EXTERIOR

WELDED PLATE GIRDER GROSS SECTION PROPERTIES

		ELEMENTS						PROPERTIES		
COMPOSITE	n value	width	У	WIDTH	DEPTH	A	Y	AY	AY ²	Ιo
DECK	n= 6.76	37.50	4.00	5.55	8.00	44.38	18.00	798.8	14378.7	236.7
Cover Plate			0.000	0	0	0.00	14.00	0.0	0.0	0.0
Flange Plate			0.360	10.00	0.72	7.20	13.64	98.2	1339.6	0.3
Web Plate			6.280	0.42	12.56	5.21	7.00	36.5	255.4	68.5
Flange Plate			0.360	10.00	0.72	7.20	0.36	2.6	0.9	0.3
Cover Plate			0.000	0	0	0.00	0.00	0.0	0.0	0.0
		SUMS			22.00	64.0	-	936.1	15974.6	305.8

 $I_{Z} = \Sigma I_{O} + \Sigma AY^{2}$

$$Y = \Sigma A Y$$

$I_{GROSS} = I_{Z} - (\Sigma A)(Y')^{2}$	2586.499	in ⁴	
DEPTH (Incl Deck)	22.00	ın	

<) 22.00 in C_{TOP DECK} 7.37 in

S_{DECK TRANS} 2372.0 In³

MEMBER AREA	19.6 m²	MEME	ER DEPTH (Less Deck)	14.00	in
WEB AREA	5.8 in ²	CTOP ST	-0.63 in	Своттом	14.63 m
		STOP ST	-4114.4 m ³	SBOTTOM	176.8 in ³

STATICAL MOMENT OF INERTIA OF TOP AND BOTTOM FLANGES - Q = ΣAd

16280

14.63

ın⁴

ın

where: A is the area of each flange component \$ d is the distance from the N.A. of the section the C.G. of the area

Q - DECK	Α =	44.38 in ²	d = Y-Y	3.37 in	Q DECK =	149.6 m ³
Q - TOP FLANGE	cover plates +	deck				
deck	A =	44.38 in ²	d = Y-Y	3.37 in	Q=	149.6 in ³
cover plate	A =	0.00 in ²	d = Y-Y	-0.63 in	Q=	0.0 in ³
flange plate	A =	7.20 ^{in²}	d = Y-Y	-0.99 in	Q=	-7.1 ^{in³}
					Q TOP FLANGE = Σ	142.5 in ³
Q - BOTTOM FLANGE	cover plates					
flange plate	Α =	7.20 in ²	d = Y - Y	14.27 m	Q=	102.7 m ³
cover plate	A =	0.00 in ²	d = Y - Y	14.63 m	Q=	0.0 in ³
				QE	BOTTOM FLANGE = Σ^{-1}	102.7 in ³

PROJECT ______ SOUTH RIVER ROAD

bridge no. <u>C-05-027</u>

SUBJECT STRUCTURAL CALCS.

page <u>48</u> of <u>68</u> calc by <u>TRS</u> check by <u>DCH</u> date <u>OCT</u> 2024

C-05-027

SECTION PROPERTIES

COMPOSITE SECTION PROPERTIES

GIRDER DESCRIPTION Beam 2 GIRDER NUMBER BM2 GIRDER LOCATION INTERIOR

WELDED PLATE GIRDER GROSS SECTION PROPERTIES

	LIKIILO									
		ELEMENTS						PROPERTIES		
COMPOSITE	n value	width	У	WIDTH	DEPTH	A	Y	AY	AY ²	I _o
DECK	n= 6.76	36.00	4.00	5.33	8.00	42.60	18.00	766.9	13803.6	227.2
Cover Plate			0.000	0	0	0.00	14.00	0.0	0.0	0.0
Flange Plate			0.360	10.00	0.72	7.20	13.64	98.2	1339.6	0.3
Web Plate			6.280	0.42	12.56	5.21	7.00	36.5	255.4	68.5
Flange Plate			0.360	10.00	0.72	7.20	0.36	2.6	0.9	0.3
Cover Plate			0.000	0	0	0.00	0.00	0.0	0.0	0.0
		SUMS			22.00	62.2	-	904.2	15399.4	296.4

 $I_{Z} = \Sigma I_{O} + \Sigma AY^{2}$

ΣΑΥ $\Upsilon =$ ΣΑ

 $I_{GROSS} = I_Z - (\Sigma A)(\Upsilon)^2$ 2556.280 in⁴

DEPTH (Incl Deck)

C _{TOP DECK}	7.47	In
CTOP DECK	7.47	Ir

ın

22.00

SDECK TRANS 2314.1 IN3

MEMBER AREA	19.6 m²	MEM	BER DEPTH (Less Deck)14.00	n <u>in</u>
WEB AREA	5.8 m²	C _{TOP ST}	-0.53 in	Своттом	14.53 in
		S _{TOP ST}	-4800.9 in ³	S _{воттом}	175.9 in ³

STATICAL MOMENT OF INERTIA OF TOP AND BOTTOM FLANGES - Q = ΣAd

15696

14.53

ın⁴

ın

where: A is the area of each flange component \$ d is the distance from the N.A. of the section the C.G. of the area

Q - DECK	A =	42.60 m ²	d = Y - Y	3.47 in	Q DECK =	147.7 m ³
Q - TOP FLANGE	cover plates +	deck				
deck	A =	42.60 in ²	d = Y-Y	3.47 in	Q=	147.7 in ³
cover plate	A =	0.00 in ²	d = Y-Y	-0.53 in	Q=	0.0 in ³
flange plate	A =	7.20 ^{In²}	d = Y-Y	-0.89 in	Q=	-6.4 ^{IN³}
					Q TOP FLANGE = Σ	4 .3 m ³
Q - BOTTOM FLANGE	cover plates					
flange plate	Α =	7.20 m ²	d = Y-Y	14.17 in	Q=	102.0 m ³
cover plate	A =	0.00 in ²	d = Y-Y	14.53 m	Q=	0.0 in ³
				QI	BOTTOM FLANGE = Σ	102.0 in ³

PROJECT SOUTH RIVER ROAD

bridge no. <u>C-05-027</u>

SUBJECT STRUCTURAL CALCS.

PAGE <u>49</u> of <u>68</u> calc by <u>TRS</u> check by <u>DCH</u> date <u>OCT</u> 2024

C-05-027

SECTION PROPERTIES

COMPOSITE SECTION PROPERTIES

GIRDER DESCRIPTION Beam 3-7 GIRDER NUMBER BM3-7 GIRDER LOCATION INTERIOR

WELDED PLATE GIRDER GROSS SECTION PROPERTIES

		ELEMENTS						PROPERTIES		
COMPOSITE	n value	width	У	WIDTH	DEPTH	A	Y	AY	AY ²	Ιo
DECK	n= 6.76	35.38	4.00	5.23	8.00	41.86	17.90	749.4	34 3.6	223.3
Cover Plate			0.000	0	0	0.00	13.90	0.0	0.0	0.0
Flange Plate			0.330	8.06	0.66	5.32	13.57	72.2	979.6	0.2
Web Plate			6.290	0.37	12.58	4.65	6.95	32.3	224.8	61.4
Flange Plate			0.330	8.06	0.66	5.32	0.33	1.8	0.6	0.2
Cover Plate			0.000	0	0	0.00	0.00	0.0	0.0	0.0
		SUMS			21.90	57.2	-	855.7	14618.6	285.0

 $I_{Z} = \Sigma I_{O} + \Sigma AY^{2}$

$$\Upsilon = \Sigma A \Upsilon$$

 $I_{GROSS} = I_{Z} - (\Sigma A)(Y)^{2}$ 2094.403 m⁴

21.90 in C_{TOP DECK} 6.93 in

S_{DECK TRANS} 2043.1 In³

MEMBER AREA	15.3 m ²	MEM	BER DEPTH (Less Deck)	13.9	0 in
WEB AREA	5.1 m ²	C _{TOP ST}	-1.07 in	Своттом	14.97 in
		STOP ST	-1957.2 in ³	SBOTTOM	139.9 m ³

STATICAL MOMENT OF INERTIA OF TOP AND BOTTOM FLANGES - Q = ΣAd

14904

14.97

ın⁴

ın

where: A is the area of each flange component \$ d is the distance from the N.A. of the section the C.G. of the area

Q - DECK	Α =	41.86 m²	d = Y-Y	2.93 in	Q DECK =	122.7 m ³
Q - TOP FLANGE	cover plates +	deck				
deck	A =	41.86 m²	d = Y - Y	2.93 in	Q=	122.7 m ³
cover plate	A =	0.00 in ²	d = Y - Y	-1.07 in	Q=	0.0 in ³
flange plate	A =	5.32 ^{m²}	d = Y - Y	-1.40 in	Q=	-7.4 ^{in³}
					Q TOP FLANGE = Σ	115.2 m ³
Q - BOTTOM FLANGE	cover plates					
flange plate	Α =	5.32 m²	d = Y-Y	14.64 m	Q=	77.9 m ³
cover plate	A =	0.00 in ²	d = Y - Y	14.97 in	Q=	0.0 in ³
				QI	BOTTOM FLANGE = Σ	77.9 in ³

PROJECT _____ SOUTH RIVER ROAD

BRIDGE NO. <u>C-05-027</u>

SUBJECT STRUCTURAL CALCS.

page <u>50</u> of <u>68</u> calc by TRS CHECK BY DCH DATE OCT 2024

C-05-027

SECTION PROPERTIES

COMPOSITE SECTION PROPERTIES

GIRDER DESCRIPTION Beam 8 GIRDER NUMBER BM8 GIRDER LOCATION EXTERIOR

WELDED PLATE GIRDER DOCC CECTION DOC

		0000			21.00	/1.1	-	1105.5	10007.7	555.6
		SUMS			21.90	711	_	1105.9	19097 7	359 C
Cover Plate			0.000	0	0	0.00	0.00	0.0	0.0	0.0
Flange Plate			0.330	8.06	0.66	5.32	0.33	8. ا	0.6	0.2
Web Plate			6.290	0.37	12.58	4.65	6.95	32.3	224.8	61.4
Flange Plate			0.330	8.06	0.66	5.32	13.57	72.2	979.6	0.2
Cover Plate			0.000	0	0	0.00	13.90	0.0	0.0	0.0
DECK	n= 6.76	47.19	4.00	6.98	8.00	55.84	17.90	999.6	17892.7	297.8
COMPOSITE	n value	width	У	WIDTH	DEPTH	A	Y	AY	AY ²	I _o
		ELEMENTS						PROPERTIES		
GRUSS SLUTION FRO	IT LATLO	ELEMENTS						PROPERTIES		

$$\Upsilon = \Sigma A \Upsilon$$

DEPTH (Incl Deck)	21.	90	IN
	C _{TOP DECK}	6.35	ın
	S _{DECK, TRANS}	2410.1	ın ³

TOP DECK	6.35	ın
CK TRANS	2410.1	ın ³

MEMBER AREA	15.3 m ²	MEMBER DEPTH (Less Dec	k) 13.90	in
WEB AREA	5.1 in ²	С _{тор эт} 1.65_ іп	С _{воттом} 15.5	5 m
		S _{TOP ST} 1376.4 in ³	S _{воттом} 145.	.7 in ³

STATICAL MOMENT OF INERTIA OF TOP AND BOTTOM FLANGES - Q = Σ Ad

15.55

ın

where: A is the area of each flange component \notin d is the distance from the N.A. of the section the C.G. of the area

Q - DECK	Α =	55.84 m ²	d = Y-Y	2.35 in	Q DECK =	3 .5 m ³
Q - TOP FLANGE	cover plates +	deck				
deck	A =	55.84 in²	d = Y - Y	2.35 in	Q=	131.5 m ³
cover plate	A =	0.00 in ²	d = Y - Y	-1.65 in	Q=	0.0 in ³
flange plate	A =	5.32 m²	d = Y - Y	-1.98 in	Q=	-10.5 m ³
					Q TOP FLANGE = Σ	121.0 m ³
Q - BOTTOM FLANGE	cover plates					
flange plate	A =	5.32 m²	d = Y-Y	15.22 m	Q=	80.9 m ³
cover plate	A =	0.00 in ²	d = Y-Y	15.55 m	Q=	0.0 in ³
				QI	BOTTOM FLANGE = Σ	80.9 in ³

page 51 of 68 calc by TRS check by DCH date OCT 2024

SHEAR CONNECTORS

PAGE_52	268
CALC BY	TRS
CHECK BY	r DCH
date O	<u>CT 2024</u>

SHEAR STUDS

C-05-027

References:

I. MassDOT LRFD Bridge Manual, 2024 Part II

2. AASHTO LRFD Bridge Design Specifications, 9th Edition, 2020 with 2021 Errata

Per Ref (2) 6.3.7 Shear studs shall be designed for the controlling fatigue limit state, then checked with the controlling strength limit state.

Material Properties:

Shear Connector Diameter, d =	0.750 in	(Ref - Dwg. 8.4.2)
Shear Connector Area, A_{sc} =	0.44 in	
Shear Connector Height, h =	6.00 in	
Number of Studs in a Line, n =	2	
Minimum Edge Clear Distance, $e =$	1.00 m	(Ref 2 - 6.10.10.1.3)
Deck f'c =	5 ksi	
Deck Ec =	4287 ksi	
Shear Connector Fu =	60 ksi	(Ref 2 - 6.4.4)
Gırder Web F_y =	33 ksi	
Girder Flange $F_y =$	33 ksi	
Beam 1-2 Top Flange Width, bf =	10.00 in	
Beam 3-8 Top Flange Width, bf =	8.06 in	
Deck Thickness, $t_d =$	8.00 in	
Haunch Thickness, $t_h =$	1.00 in	
Load Factor Fatigue =	1.75	(Ref 2 - Table 3.4.1-1)
Load Factor Fatique II =	0.80	(Ref 2 - Table 3.4.1-1)

	CLIENT TOWN OF CHARLEMONT	page_53_0f_68_
	PROJECT SOUTH RIVER ROAD	calc by TRS
	bridge no. <u>C-05-027</u>	CHECK BY DCH
ENGINEERING	SUBJECT STRUCTURAL CALCS.	date_OCT 2024

SHEAR STUDS

C-05-027

OK

Geometry Checks:

Ref 2 - 6.10.10.1.1, ratio of the height to the diameter of a stud shear connector shall not be less than 4.0.

h	_	6.00 in	_	8.00	Or
d	_	0.75 in	—	0.00	UK

Ref 2 - 6.10.10.1.2, The center-to-center pitch of shear connectors shall also not be less than six stud diameters.

4.50 in

```
Min. Pitch = 10.00 in >
```

Ref 2 - 6.10.10.1.3, stud shear connectors shall not be closer than 4.0 stud diameters centerto-center transverse to the longitudinal axis of the supporting member.

S _{provided} =	7.25 in	>	3.00 in	OK
Edge Dist. =	1.38 in	>	1.00 in	ОК
Beam 3-8:				
S _{provided} =	5.31 in	>	3.00 in	ОК
Edge Dist. =	1.38 in	>	1.00 in	ОК

Ref 2 - 6.10.10.1.4, the clear depth of concrete cover over the tops of the shear connectors should not be less than 2.0 in. Shear connectors should penetrate at least 2.0 in. into the concrete deck.

Cover Top =	9.00" -	6.00"	=	3.00"	OK
Pen. Bot =	6.00" -	1.00"	=	5.00"	OK

page 54 of 68 calc by TRS check by DCH date OCT 2024

SHEAR STUDS

C-05-027

Traffic Informat	ion:				
ADT =	154				
ADTT =	9.24				
p =	0.85	(Ref 2 - Table 3	3.6.1.4.2-1)		
$ADTT_{SL} =$	рх	ADTT	(Ref 2 - Eq. 3	3.6.1.4.2-1)	
ADTT _{SL} =	0.85 x	9	=	7.854	
n =	1.00	(Ref 2 - Table (6.6.1.2.5-2, L	> 40ft, simple	span)
N = (365)(7)	75)n(ADTT) _{SL}	(Ref 2 - Eq. 6.	6.1.2.5-3)		
N =	365 x	75 x	l x	7.85 =	215003.25
		Age and Service			
(27) Year Bu	ilt			1938	
(106) Year R	teconstructed			1960	
(42) Type of	Service: On -	Highway			
Under -	Waterway	02	Code	15	
(20) Lanes. (29) Averance	a Daily Traffic	52	onder atrocidite Of	00154	
(30) Year of	ADT 2	018 (109) Truck ADT	0	6 %	
(19) Bypass	detour length		01	6 KM	
From	Routine & Spec	cial Member Insp	ection Report d	ated November	· I, 2022
	1	1			

SHEAR STUDS

C-05-027

Shear Connector Fatigue Resistance:

Ref 2 - 6.10.10.2:

If $(ADTT)_{SL} \ge 1090$, use Fatigue I load combination and the fatigue shear resistance for infinite life shall be taken as:

 $Zr = 5.5d^2 = 3.1 k$

Otherwise, the Fatigue II load combination shall be used and the fatigue shear resistance for finite life shall be taken as:

 $Zr = \alpha d^2 = 6.6 k$

where $\alpha = 34.5 - 4.28 \log N$

α =	34.5 -	4.28 x	5.33 =	11.68
$ADTT_{SL} =$	7.854	<1090		
Therefore	Zr =	6.57 k		

page <u>56</u> of <u>68</u>	
CALC BY TRS	
CHECK BY DCH	
DATE OCT 2024	
CHECK BY DCH DATE OCT 2024	_

SHEAR STUDS

C-05-027

Required Pitch:

Ref 2 - 6.10.10.1.2, The pitch, p, of shear connectors shall satisfy:

$$p \leq \frac{n \times Z_{r}}{V_{sr}}$$
 (Ref 2 - Eq. 6.10.10.1.2-1)
Where $V_{sr} = [(V_{fat})^{2} + (F_{fat})^{2}]^{1/2}$ (Ref 2 - Eq. 6.10.10.1.2-2)

Ref 2 - 6.10.10.1.2, for straight spans or segments, the radial fatigue shear range from Eq. 6.10.10.1.2-4 may be taken equal to zero.

Ref 2 - 6.10.10.1.2, the center-to-center pitch of shear connectors shall not exceed 24.0 in. and shall not be less than six stud diameters.

Calculate V_{sr} and required p for each beam:

*Fatigue Shear Loads taken from BrR

Beam I:

Span =	30.34						
$ (10^{4}) =$	2586	(See Section P	roperties Calc)				
$Q(1n^3) =$	150	(See Section P	(See Section Properties Calc)				
Point	Distance	V _f	V _{sr} =V _{fat} =V _f Q/I	$p = nZ_r N_{sr}$			
0	0	11.59 k	0.67 k	19.59			
0.1	3.034	11.33 k	0.66 k	20.04			
0.2	6.068	11.07 k	0.64 k	20.52			
0.3	9.102	10.82 k	0.63 k	20.99			
0.4	12.136	10.56 k	0.61 k	21.51			
0.5	15.17	10.41 k	0.60 k	21.82			
0.6	18.204	10.56 k	0.61 k	21.51			
0.7	21.238	10.82 k	0.63 k	20.99			
0.8	24.272	11.07 k	0.64 k	20.52			
0.9	27.306	11.33 k	0.66 k	20.04			
1	30.34	11.59 k	0.67 k	19.59			
	Actual:		Min:				
	Spacing		Spacing				
	10.00 in	<	19.59	ok			

PAGE_57	768
CALC BY	TRS
CHECK BY	DCH
DATE_O	CT 2024

SHEAR STUDS

Beam 2:

C-05-027

Span =	24.34			
$ (n^4) =$	2556	(See Section P	roperties Calc)	
$Q(1n^3) =$	148	(See Section P	roperties Calc)	
Point	Distance	$V_{\rm f}$	$V_{sr} = V_{fat} = V_f Q / I$	$p = nZ_r/V_{sr}$
0	0	16.28 k	0.94 k	13.96
0.1	2.434	15.91 k	0.92 k	14.29
0.2	4.868	15.54 k	0.90 k	14.63
0.3	7.302	15.18 k	0.88 k	14.97
0.4	9.736	14.81 k	0.86 k	15.35
0.5	12.17	14.72 k	0.85 k	15.44
0.6	14.604	14.81 k	0.86 k	15.35
0.7	17.038	15.18 k	0.88 k	14.97
0.8	19.472	15.54 k	0.90 k	14.63
0.9	21.906	15.91 k	0.92 k	14.29
1	24.34	16.28 k	0.94 k	13.96
	Actual:		Min:	
	Spacing		Spacing	
	10.00 in	<	13.96	ok

Beam 3-7:

Span =	21	
$ (n^4) =$	2094	(See Section Properties Calc)
$Q(m^3) =$	123	(See Section Properties Calc)

*To be conservative, using the fatigue DF from Beam 3 as it is slightly higher than Beams 4-7

Point	Distance	$V_{\rm f}$	V _{sr} =V _{fat} =V _f Q/I	$p = nZ_r/V_{sr}$
0	0	15.91 k	0.93 k	14.10
0.1	2.1	15.55 k	0.91 k	14.43
0.2	4.2	15.18 k	0.89 k	14.78
0.3	6.3	14.81 k	0.87 k	15.15
0.4	8.4	14.69 k	0.86 k	15.27
0.5	10.5	14.68 k	0.86 k	15.28
0.6	12.6	14.69 k	0.86 k	15.27
0.7	4.7	14.81 k	0.87 k	15.15
0.8	16.8	15.18 k	0.89 k	14.78
0.9	18.9	15.55 k	0.91 k	14.43
Ι	21	15.91 k	0.93 k	14.10
	Actual:		Mın:	
	Spacing		Spacing	
	10.00 in	<	14.10	ok

CLIENT TOWN OF CHARLEMONT SOUTH RIVER ROAD PROJECT ____ bridge no. <u>C-05-027</u> SUBJECT__STRUCTURAL CALCS.

page0f68	
calc by TRS	
CHECK BY DCH	
DATE OCT 2024	

SHEAR STUDS

Beam 8:

C-05-027

Span =	21			
$ (10^{4}) =$	2265	(See Section P	roperties Calc)	
$Q(1n^3) =$	131	(See Section P	roperties Calc)	
Point	Distance	$V_{\rm f}$	V _{sr} =V _{fat} =V _f Q/I	$p = nZ_r/V_{sr}$
0	0	12.13 k	0.71 k	18.49
0.1	2.1	11.85 k	0.69 k	18.93
0.2	4.2	11.57 k	0.68 k	19.39
0.3	6.3	11.29 k	0.66 k	19.87
0.4	8.4	11.20 k	0.66 k	20.03
0.5	10.5	11.20 k	0.66 k	20.03
0.6	12.6	11.20 k	0.66 k	20.03
0.7	14.7	11.29 k	0.66 k	19.87
0.8	16.8	11.57 k	0.68 k	19.39
0.9	18.9	11.85 k	0.69 k	18.93
1	21	12.13 k	0.71 k	18.49
	Actual:		Min:	
	Spacing		Spacing	
	10.00 in	<	18.49	ok

Shear Connector Strength Resistance:

Calculate shear resistance of single shear stud:

	$Q_r = \mathbf{\phi}_{sc} Q_n$		(Ref 2 - Eq. 6.10.10.4.1-1)
$\varphi_{\text{sc}} =$	0.85		(Ref 2 - 6.5.4.2)
$Q_n = 0.1$	$5A_{sc}\sqrt{f_c'E_c} \le A_s$	$_{c}F_{u}$	(Ref 2 - Eq. 6.10.10.4.3-1)
Q _n =	0.50 x	x 0.44 ın2	$\left[5 \text{ ksi x} 4287 \text{ ksi} \right] = 32.340 \text{ k}$
$A_{\mathrm{sc}}F_{\mathrm{u}} =$	0.44 in2	x 60.00 ksı	= 26.507 k
Q _r =	26.51 k	x 0.85 =	22.5 k

CLIENT _	TOWN OF CHARLEMONT
PROIECT	SOUTH RIVER ROAD
BRIDGEN	o. C-05-027
SUBIECT	STRUCTURAL CALCS.
····j-···	

SHEAR STUDS

C-05-027

Calculate nominal shear force:

Ref 2 - 6.10.10.4.2, for simple spans and for continuous spans that are noncomposite for negative flexure in the final condition, the total nominal shear force, P, between the point of maximum positive design live load plus impact moment and each adjacent point of zero moment shall be taken as:

 $P = [P_p^2 + F_p^2]^{1/2}$

(Ref 2 - Eq. 6.10.10.4.2-1)

In which: P_p is the lesser of

 $P_{1p} = 0.85 f'_c b_s t_s \qquad \text{or} \qquad P_{2p} = F_{yw} D t_w + F_{yt} b_{ft} t_{ft} + F_{yc} b_{fc} t_{fc}$

Per Ref 2 - 6.10.10.4.2, For straight spans or segments, Fp may be taken equal to zero.

	Beam I	Beam 2	Beam 3-7	Beam 8
bs	37.50 in	36.00 in	35.38 m	47.19 m
ts	8.00 in	8.00 in	8.00 in	8.00 in
D	12.56 m	12.56 m	12.58 in	12.58 m
tw	0.42 in	0.42 m	0.37 in	0.37 in
$b_{\rm ft}$	10.00 in	10.00 in	8.06 in	8.06 in
t_{ft}	0.72 in	0.72 in	0.66 in	0.66 in
b_{fc}	10.00 in	10.00 in	8.06 in	8.06 in
t_{fc}	0.72 in	0.72 in	0.66 in	0.66 in
PIP	1275.0 k	1224.0 k	1202.8 k	1604.4 k
P_{2p}	647.2 k	647.2 k	504.7 k	504.7 k
$P_p = P$	647.2 k	647.2 k	504.7 k	504.7 k

Calculate number of shear studs required:

Ref 2 - 6.10.10.4.1, at the strength limit state, the minimum number of shear connectors, n, over the region under consideration shall be taken as:

n = -	P Q _r				
n _{Beaml} = -	P Q _r	=	647.2 k 22.5 k	=	29
n _{Beam2} = -	P Q _r	=	647.2 k 22.5 k	=	29
n _{Beam3-7} = -	P Q _r	=	504.7 k 22.5 k	=	23
n _{Beamo} = -	P Q _r	=	504.7 k 22.5 k	=	23

The above number of shear studs need to be provided between tenth points 0 and 5 and between 5 and 10 in order to meet the strength limit state.

page0F68
calc by TRS
CHECK BY DCH
date OCT 2024

SHEAR STUDS

C-05-027

Check Strength Requirement:

Check the number of studs for the full length of the girder to the full length number of shear studs required

Beam I				
	# Provided =	74 =	37 x	2
	74	>	58	ok
Beam 2				
	# Provided =	62 =	31 x	2
	62	>	58	ok
Beam 3-7				
	# Provided =	54 =	27 x	2
	54	>	46	ok
Beam 8				
	# Provided =	54 =	27 x	2
	54	>	46	ok

Name: Charlemont Struct-Def: C-05-027

Bridge ID: C-05-027 (LRFD)
Member: Member 1

NBI: C-05-027 Member alt: Beam 1 Alt.

Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane
HL-93 (US)	Truck + Lane	LRFR	Inventory	52.26	1.452	12.14	1 - (40.0)	SERVICE-II Steel Fle	As Requested	As Requested
HL-93 (US)	Truck + Lane	LRFR	Operating	67.94	1.887	12.14	1 - (40.0)	SERVICE-II Steel Fle	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Inventory	45.03	1.251	15.17	1 - (50.0)	SERVICE-II Steel Fle	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Operating	58.54	1.626	15.17	1 - (50.0)	SERVICE-II Steel Fle	As Requested	As Requested

C-05-027 (LRFD) Charlemont - C-05-027 - Member 1 South River Road / Albee Brook 11/7/2024

Top Flange Transitions		W 14x68		
Web Transitions		13/32"x14 1/32"x30'-4 3/32"		
Stiffener Spacing				
Cross Frame Spacing	4	2 SPA.@ 10'-0"=20'-0"		
Shear Connector Spacing				
Top Flange Lat. Support		30'-4 1/8"		
Top Cover Plate Deterioration				
Top Flange Deterioration				30'-4 3/3
Ţ		0% Wd 35% Th		
	х	×	×	
Bottom Flange Deterioration				
Bottom Cover Plate Deterioration				
Bottom Flange Transitions		30'-4 3/32"		
		30' / 1/8"		

Notes: * All flange length dimensions are horiz. (length along flange may differ). * Transverse stiffener pairs shown in red. * Single transverse stiffener shown in blue. * Bearing stiffeners shown in green. * Dimensioning starts and ends at CL bearings. * X denotes cross frame locations.

AASHTO LRFR Engine Version 7.5.1.3001 Analysis preference setting: None Analysis time: 11/2/2024 12:05:26 PM Print time: 11/2/2024 12:05:42 PM

Name: Charlemont Struct-Def: C-05-027 Bridge ID: C-05-027 (LRFD) Member: Member 2

NBI: C-05-027 Member alt: Beam 2 Alt.

Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane
HL-93 (US)	Truck + Lane	LRFR	Inventory	53.56	1.488	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Truck + Lane	LRFR	Operating	69.44	1.929	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Inventory	53.26	1.479	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Operating	69.03	1.918	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested

C-05-027 (LRFD) Charlemont - C-05-027 - Member 2 South River Road / Albee Brook 11/7/2024

Top Flange Transitions		W 14x68	
Web Transitions		13/32"x14 1/32"x24'-4 3/32"	
Stiffener Spacing			
Cross Frame Spacing		2 SPA.@ 10'-0"=20'-0"	
Shear Connector Spacing			
Top Flange Lat. Support		24'-4 1/8"	,
Top Cover Plate Deterioration			
Top Flange Deterioration			24'-4 3/32
1		0% Wd 35% Th	
1	×	×	×
Bottom Flange Deterioration			
Bottom Cover Plate Deterioration			
Bottom Flange Transitions		24'-4 3/32"	
Span Lengths		24'-4 1/8"	

Notes:
 All flange length dimensions are horiz. (length along flange may differ).
 * Transverse stiffener pairs shown in red.
 * Single transverse stiffener shown in blue.
 * Bearing stiffeners shown in green.
 * Dimensioning starts and ends at CL bearings.
 * X denotes cross frame locations.

AASHTO LRFR Engine Version 7.5.1.3001 Analysis preference setting: None Analysis time: 11/2/2024 12:06:21 PM Print time: 11/2/2024 12:06:33 PM

Name: Charlemont Struct-Def: C-05-027 Bridge ID: C-05-027 (LRFD) Member: Member 3

NBI: C-05-027 Member alt: Beam 3 Alt.

Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane
HL-93 (US)	Truck + Lane	LRFR	Inventory	52.04	1.446	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Truck + Lane	LRFR	Operating	67.46	1.874	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Inventory	49.38	1.372	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Operating	64.01	1.778	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested

C-05-027 (LRFD) Charlemont - C-05-027 - Member 3 South River Road / Albee Brook 11/7/2024

Top Flange Transitions	*	W 14x53	
Web Transitions		3/8"x13 29/32"x21'-0"	
Stiffener Spacing			
Cross Frame Spacing	•	2 SPA.@ 10'-0"=20'-0"	
Shear Connector Spacing	•		
Top Flange Lat. Support	**	21'-0"	
Top Cover Plate Deterioration			
Top Flange Deterioration			21'-0"
	1	0% Wd 38% Th	
	×	×	×
Bottom Flange Deterioration			
Bottom Cover Plate Deterioration			
Bottom Flange Transitions		21'-0"	
Span Lengths	+-	21'-0"	*

Notes: * All flange length dimensions are horiz. (length along flange may differ). * Transverse stiffener pairs shown in red. * Single transverse stiffener shown in blue. * Bearing stiffeners shown in green. * Dimensioning starts and ends at CL bearings. * X denotes cross frame locations.

AASHTO LRFR Engine Version 7.5.1.3001

Analysis preference setting: None

.

Analysis time: 11/2/2024 12:07:04 PM

Print time: 11/2/2024 12:07:23 PM

Name: Charlemont Struct-Def: C-05-027 Bridge ID: C-05-027 (LRFD) Member: Member 4-7

NBI: C-05-027 Member alt: Beam 4-7 Alt.

Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane
HL-93 (US)	Truck + Lane	LRFR	Inventory	52.18	1.449	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Truck + Lane	LRFR	Operating	67.64	1.879	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Inventory	49.51	1.375	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Operating	64.18	1.783	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested

C-05-027 (LRFD) Charlemont - C-05-027 - Member 4-7 South River Road / Albee Brook 11/7/2024

Top Flange Transitions	W 14x53	-
Web Transitions	3/8"x13 29/32"x21'-0"	_
Stiffener Spacing		
Cross Frame Spacing	2 SPA.@ 10'-0"=20'-0"	
Shear Connector Spacing		
Top Flange Lat. Support	4 21'-0"	
Top Cover Plate Deterioration		
Top Flange Deterioration		21'-0"
	0% Wd 38% Th	
	x X	×
Bottom Flange Deterioration		
Bottom Cover Plate Deterioration		
Bottom Flange Transitions	21'-0"	_
Span Lengths	. 21'-0"	

Notes: * All flange length dimensions are horiz. (length along flange may differ). * Transverse stiffener pairs shown in red. * Single transverse stiffener shown in blue. * Bearing stiffeners shown in green. * Dimensioning starts and ends at CL bearings. * X denotes cross frame locations.

AASHTO LRFR Engine Version 7.5.1.3001

Analysis preference setting: None

Analysis time: 11/2/2024 12:07:49 PM

Print time: 11/2/2024 12:08:03 PM

Name: Charlemont Struct-Def: C-05-027 Bridge ID: C-05-027 (LRFD) Member: Member 8

NBI: C-05-027 Member alt: Beam 8 Alt.

Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane
HL-93 (US)	Truck + Lane	LRFR	Inventory	65.08	1.808	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Truck + Lane	LRFR	Operating	84.37	2.344	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Inventory	61.76	1.715	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Operating	80.05	2.224	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested

C-05-027 (LRFD) Charlemont - C-05-027 - Member 8 South River Road / Albee Brook 11/7/2024

Top Flange Transitions	W 14x53		
Web Transitions	3/8"x13 29/32"x21'-0"		
Stiffener Spacing	-		
Cross Frame Spacing	2 SPA.@ 10'-0"=20'-0"		
Shear Connector Spacing	-		
Top Flange Lat. Support	21'-0"		
Top Cover Plate Deterioration	•		
Top Flange Deterioration		21'-0)"
	0% Wd 38% Th		
	× ×	×	
Bottom Flange Deterioration	•		
Bottom Cover Plate Deterioration			
Bottom Flange Transitions	21'-0"		
Span Lengths	21'-0"	+	

Notes:

Notes: * All flange length dimensions are horiz. (length along flange may differ). * Transverse stiffener pairs shown in red. * Single transverse stiffener shown in blue. * Bearing stiffeners shown in green. * Dimensioning starts and ends at CL bearings. * X denotes cross frame locations.

AASHTO LRFR Engine Version 7.5.1.3001 Analysis preference setting: None Analysis time: 11/2/2024 12:08:34 PM

Print time: 11/2/2024 12:08:45 PM

Alternate Load Path Analysis

	Rating Results Sun
Name: Charlemont	Bridge ID: C-05-027 (L
Struct-Def: C-05-027	Member: Member

Poting Results Su Immary Report

LRFD) Member: Member 2

NBI: C-05-027 Member alt: Beam 2 Alt. S=3.5 LLDF

Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane
HL-93 (US)	Truck + Lane	LRFR	Inventory	51.42	1.428	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Truck + Lane	LRFR	Operating	66.66	1.852	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Inventory	51.12	1.420	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Operating	66.27	1.841	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested

AASHTO LRFR Engine Version 7.5.1.3001 Analysis preference setting: None Analysis time: 11/2/2024 12:09:13 PM Print time: 11/2/2024 12:09:27 PM

Alternate Load Path Analysis

	Rating Results Summary				
Name: Charlemont	Bridge ID: C-05-027 (LRFD)				
Struct-Def: C-05-027	Member: Member 3				

Rating Results Summary Report

NBI: C-05-027 Member alt: Beam 3 Alt. S=3.5 LLDF

Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane
HL-93 (US)	Truck + Lane	LRFR	Inventory	49.86	1.385	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Truck + Lane	LRFR	Operating	64.63	1.795	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Inventory	47.31	1.314	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Operating	61.33	1.704	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested

AASHTO LRFR Engine Version 7.5.1.3001 Analysis preference setting: None Analysis time: 11/2/2024 12:09:57 PM Print time: 11/2/2024 12:10:09 PM

Alternate Load Path Analysis

	Rating Results Summary Report
Name: Charlemont	Bridge ID: C-05-027 (LRFD)
Struct-Def: C-05-027	Member: Member 4-7

NBI: C-05-027 Member alt: Beam 4-7 Alt. S=3.5 LLDF

Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane
HL-93 (US)	Truck + Lane	LRFR	Inventory	49.88	1.386	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Truck + Lane	LRFR	Operating	64.66	1.796	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Inventory	47.33	1.315	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested
HL-93 (US)	Tandem + Lane	LRFR	Operating	61.35	1.704	0.00	1 - (0.0)	STRENGTH-I Steel S	As Requested	As Requested

AASHTO LRFR Engine Version 7.5.1.3001 Analysis preference setting: None Analysis time: 11/2/2024 12:10:34 PM Print time: 11/2/2024 12:10:46 PM