PROJECT: Old Duck Pond Dam Breach 444 Green Street Gardner, MA 01440 Project No. MWC2450I FT1

## ADDENDUM NO. 1 07/02/2025

Posted: 07/02/2025 at 1:37PM EDT

Awarding Authority/Owner: Mount Wachusett Community College 444 Green Street Gardner, MA 01440

Reference Contract Documents (drawings and specifications) dated 05/30/2025

The attention of Bidders submitting proposals for the above subject project is called to the following addendum to the specifications and drawings. The items set forth herein, whether of omission, addition, substitution, or clarifications are all to be included in and form a part of the proposal submitted.

THE NUMBER OF THIS ADDENDUM (1) MUST BE ENTERED IN THE APPROPRIATE SPACE "B" PROVIDED AFTER THE WORD "NUMBERS" OF THE CONTRACT FORM ENTITLED "FORM FOR GENERAL BID," AND IN SPACE "B" OF THE "FORM FOR SUB-BID."

BID DOCUMENT MODIFICATIONS ARE AS FOLLOWS.

#### **Specifications:**

Add the following new technical sections. (See attached)
 99 03 Soil Grain Size Testing Results
 99 04 Soil Chemical Testing Data
 99 05 Hydraulic & Hydrologic Analysis

#### Drawings:

■ Replace the following drawings in their entirety. (See attached)

C-7 Demolition Plan

#### **Clarifications:**

GENERAL RFI #1 - Type: General Drawing ref: -Section ref: -Other ref: -Question: For the temporary water control and cofferdam, is steel sheeting allowed? Response: (Prime Designer) Yes.

# **RFI #3 - Type: General** *Drawing ref:* -

Section ref: -Section ref: -Other ref: -Question: Are large sand bags (greater than 100 lbs. each) allowed to be used for the cofferdam? *Response: (Prime Designer)* No.

#### RFI #4 - Type: General

Drawing ref: -Section ref: -Other ref: -Question: The drawings reference electric lines. Does the Contractor need to put the electric lines back? Response: (Prime Designer) The College previously removed buried electric lines from the dam area which powered lights on the walking path. The College plans to re-install the electric lines after the project is complete.

#### RFI #5 - Type: General

Drawing ref: -Section ref: -Other ref: -

Question:

The Contractor is not allowed to use the roadway adjacent to the tennis courts. Where can the Contractor access the dewatered pond area to install plantings?

Response: (Prime Designer)

The Contractor can access the dewatered pond area from the existing dam.

#### RFI #6 - Type: General

Drawing ref: -Section ref: -Other ref: -Question: Are tracked machines allowed in the dewatered pond area to deliver and install the new plantings? Response: (Prime Designer) Yes.

#### RFI #7 - Type: General

Drawing ref: -Section ref: -Other ref: -Question: Do you have information on the watershed? Response: (Prime Designer) Yes, attached is a hydraulic and hydrologic analysis. Attachments: Hydraulic & Hydrologic Analysis.pdf,

#### RFI #8 - Type: General

Drawing ref: -Section ref: -Other ref: -Question: Is test data available for the site soils? Response: (Prime Designer) Yes, attached are results of grain size testing and soil chemical testing. Attachments: Soil Chemical Testing Data.pdf, Soil Grain Size Testing Results.pdf,

#### RFI #9 - Type: General

Drawing ref: -Section ref: -Other ref: -Question: Does the temporary dewatering bypass pipe need to be removed at the end of the project? Response: (Prime Designer) Yes, all temporary works and equipment shall be removed when no longer needed.

#### RFI #10 - Type: General

Drawing ref: -Section ref: -Other ref: -Question: Can extra crushed stone be left at the site after the project? Response: (Prime Designer) Yes.

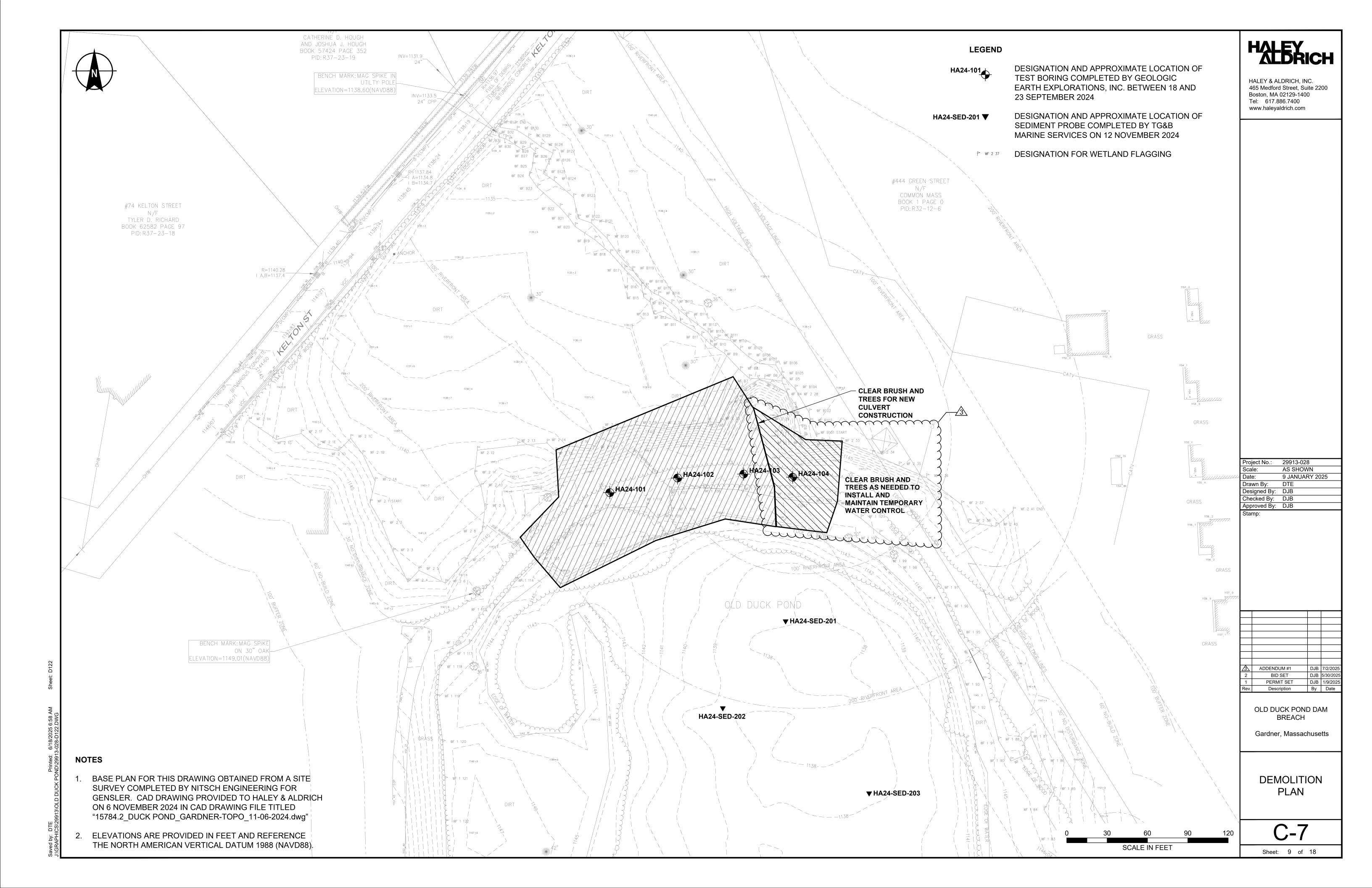
#### RFI #11 - Type: General

Drawing ref: -Section ref: -Other ref: -Question: Is the Contractor responsible for filing for the SWPPP? Response: (Prime Designer) Yes.

#### **Other Modifications / Attachments:**

The following attachment includes additional modifications, clarifications and/or provisions not included in the items above in this Addendum. See document at the end of document.

All other of the portions of the Contract Documents remain <u>unchanged</u>. Please be reminded to acknowledge this Addendum on the bid forms.


#### ATTACHMENTS

C-7 Demolition Plan 00 99 03 Soil Grain Size Testing Results 00 99 04 Soil Chemical Testing Data 00 99 05 Hydraulic & Hydrologic Analysis Walkthrough Sign-In Sheet.pdf ---- End of Addendum No. 1 ----

**Old Duck Pond Dam Breach Project Mount Wachusett Community College** Gardner, Massachusetts Meeting No. 1 July 1, 2025

Phone Company Email Name DBELL @HALEYALDRICH. COM HALEX + ALDRICH 617-886-7343 DENIS BELL agautrau C charter. 45 857-262-6183 bautreau, dan@tfod.com I tool Company 508-726-1086 Dan Galante 603 3169335 Glen FOX MWCC gton prance mass. edu Suphanie Kennelly 978 630 9147 Skennelly@mwcc. mass. edu MWCC DAVID G. ROACH ÉSONS 413-345-0524 CHUCK. SKERRYEDGRSONS, COM CHUCK SKERRY 978-897-4353 alimbertaetloorp.com El and Clarc. Andred Lambert FT and Lurg- 978-897-4363 Shills & et 1001 P. 10m Sam Hins

# **Sign-In Sheet**



#### Mount Wachusett Community College Old Duck Pond Dam Breach Project #MWC2450I FT1

**U.S. STANDARD SIEVE SIZE** 3/8 in. 1½ in. #100 #140 #200 .⊑ .⊑ ½ in. 2 in. З. З #30 #40 ¢60 #10 #20 7# 100 90 80 70 PERCENT FINER 60 50 40 30 20 10 0 100 10 0.1 0.01 0.001 GRAIN SIZE - mm. % Gravel % Sand % Fines % +3" Medium Silt Coarse Fine Coarse Fine Clay 0.0 27.9 24.8 0.0 21.9 6.3 17.3 1.8 0.0 0.0 20.3 32.3 30.3 3.0 8.4 5.7 Λ 0.0 37.3 15.2 6.5 9.5 13.0 16.9 1.6 Water Expl. Sample Depth Atterberg Limits % Content Cc USCS Cu No. No. WL (ft) WP IΡ (%)  $\square$ HA24-101 S05 8.0-10.0 17.7 30.03 0.53 SM HA24-102 S02 2.0-4.0 22.7 15.08 0.85 SM HA24-104 S05 14.0-15.4 13.0 314.98 0.13 GM **Sample Description**  $\bigcirc$  Light brown silty sand with gravel Yellow-brown silty sand  $\wedge$  Light brown silty gravel with sand **Remarks:** Old Duck Pond Gardner, Massachusetts Samples HA24-101 S05 and HA24-102 S02 contained less than 500 grams of material available for testing in GRAIN SIZE DISTRIBUTION accordance with ASTM D422. FILE NO: 029913-028 DATE: 10/7/2024

#### Mount Wachusett Community College Old Duck Pond Dam Breach TABLE Jiect #MWC24501 FT1 summary of chemical analytical results soil samples old Duck Pond Dam mount wachusett community college Gardner, massachusetts File NO. 029913-028

| Location Name                                        |               | HA24-101         | HA24-101     | HA24-102         | HA24-102     | HA24-103     | HA24-103       | HA24-104     | HA24-104      |
|------------------------------------------------------|---------------|------------------|--------------|------------------|--------------|--------------|----------------|--------------|---------------|
| Sample Name                                          | MCP           | HA24-101 0-5     | HA24-101 5-8 | HA24-102 0-5     | HA24-102 5-9 | HA24-103 0-5 | HA24-103 5-10  | HA24-104 0-5 | HA24-104 5-10 |
| Sample Date                                          | Reportable    | 09/23/2024       | 09/23/2024   | 09/20/2024       | 09/20/2024   | 09/19/2024   | 09/19/2024     | 09/18/2024   | 09/18/2024    |
| Lab Sample ID                                        | Concentration | L2454565-01      | L2454565-02  | L2454367-01      | L2454367-02  | L2454018-01  | L2454018-02    | L2453671-01  | L2453671-02   |
| Sample Depth (bgs)                                   | RCS-1         | 0 - 5 (ft)       | 5 - 8 (ft)   | 0 - 5 (ft)       | 5 - 9 (ft)   | 0 - 5 (ft)   | 5 - 10 (ft)    | 0 - 5 (ft)   | 5 - 10 (ft)   |
| Soil Description                                     | 2024          | FILL             | FILL         | FILL             | FILL         | FILL         | FILL           | FILL         | FILL          |
|                                                      |               | I                |              |                  |              |              |                |              |               |
| Volatile Organic Compounds (mg/kg)                   |               |                  | 0.040        |                  |              | ND (0.0077)  |                | ND (0.042)   | ND (0.0002)   |
| 2-Butanone (Methyl Ethyl Ketone)                     | 4             | ND (0.01)        | 0.042        | ND (0.0093)      | ND (0.0095)  | ND (0.0077)  | ND (0.011)     | ND (0.012)   | ND (0.0092)   |
| Acetone                                              | 6<br>NA       | ND (0.026)<br>ND | 0.2          | ND (0.023)<br>ND | ND (0.024)   | ND (0.019)   | ND (0.027)     | ND (0.031)   | ND (0.023)    |
| SUM of Volatile Organic Compounds                    | NA            | ND               | 0.242        | ND               | ND           | ND           | ND             | ND           | ND            |
| Semi-Volatile Organic Compounds (mg/kg)              |               |                  |              |                  |              |              |                |              |               |
| Acenaphthylene                                       | 2             | ND (0.15)        | ND (0.2)     | ND (0.14)        | ND (0.15)    | ND (0.8)     | ND (0.15)      | 0.32         | ND (0.15)     |
| Anthracene                                           | 1000          | ND (0.11)        | ND (0.15)    | ND (0.11)        | ND (0.11)    | ND (0.6)     | ND (0.11)      | 0.18         | ND (0.11)     |
| Benzo(a)anthracene                                   | 20            | ND (0.11)        | ND (0.15)    | 0.11             | ND (0.11)    | ND (0.6)     | ND (0.11)      | 0.58         | ND (0.11)     |
| Benzo(a)pyrene                                       | 2             | ND (0.15)        | ND (0.2)     | ND (0.14)        | ND (0.15)    | ND (0.8)     | ND (0.15)      | 0.76         | ND (0.15)     |
| Benzo(b)fluoranthene                                 | 20            | ND (0.11)        | ND (0.15)    | 0.13             | ND (0.11)    | ND (0.6)     | ND (0.11)      | 0.91         | ND (0.11)     |
| Benzo(g,h,i)perylene                                 | 1000          | ND (0.15)        | ND (0.2)     | ND (0.14)        | ND (0.15)    | ND (0.8)     | ND (0.15)      | 0.54         | ND (0.15)     |
| Benzo(k)fluoranthene                                 | 200           | ND (0.11)        | ND (0.15)    | ND (0.11)        | ND (0.11)    | ND (0.6)     | ND (0.11)      | 0.29         | ND (0.11)     |
| bis(2-Ethylhexyl)phthalate                           | 100           | ND (0.19)        | ND (0.24)    | ND (0.18)        | ND (0.19)    | ND (0.99)    | 0.3            | ND (0.18)    | ND (0.19)     |
| Chrysene                                             | 200           | ND (0.11)        | ND (0.15)    | 0.12             | ND (0.11)    | ND (0.6)     | ND (0.11)      | 0.63         | ND (0.11)     |
| Dibenz(a,h)anthracene                                | 2             | ND (0.08)        | ND (0.1)     | ND (0.076)       | ND (0.08)    | ND (0.42)    | ND (0.077)     | 0.1          | ND (0.078)    |
| Fluoranthene                                         | 1000          | ND (0.11)        | ND (0.15)    | 0.16             | ND (0.11)    | ND (0.6)     | ND (0.11)      | 1.2          | ND (0.11)     |
| Indeno(1,2,3-cd)pyrene                               | 20            | ND (0.15)        | ND (0.2)     | ND (0.14)        | ND (0.15)    | ND (0.8)     | ND (0.15)      | 0.44         | ND (0.15)     |
| Phenanthrene                                         | 10            | ND (0.11)        | ND (0.15)    | ND (0.11)        | ND (0.11)    | ND (0.6)     | ND (0.11)      | 0.54         | ND (0.11)     |
| Pyrene                                               | 1000          | ND (0.11)        | ND (0.15)    | 0.18             | ND (0.11)    | ND (0.6)     | ND (0.11)      | 1.1          | ND (0.11)     |
| SUM of Semi-Volatile Organic Compounds               | NA            | ND               | ND           | 0.7              | ND           | ND           | 0.3            | 7.59         | ND            |
| Tatal Batalawa Hada a da wa (wa fila)                |               |                  |              |                  |              |              |                |              |               |
| Total Petroleum Hydrocarbons (mg/kg)                 | 4000          | ND (20.2)        | 4.47         | 52.6             | 53.0         | 400          | ND (25.0)      | 402          | ND (27)       |
| Petroleum hydrocarbons                               | 1000          | ND (38.3)        | 147          | 52.6             | 53.8         | 106          | ND (35.8)      | 103          | ND (37)       |
| Inorganic Compounds (mg/kg)                          |               |                  |              |                  |              |              |                |              |               |
| Antimony                                             | 20            | ND (4.4)         | ND (5.81)    | ND (4.18)        | ND (4.5)     | ND (4.8)     | ND (4.4)       | ND (4.44)    | ND (4.33)     |
| Arsenic                                              | 20            | 8.88             | 10.8         | 11.5             | 12.5         | 12.5         | 11.9           | 15.5         | 14.5          |
| Barium                                               | 1000          | 24.6             | 37.9         | 42.7             | 102          | 61.3         | 87.4           | 36           | 38.8          |
| Beryllium                                            | 100           | ND (0.44)        | ND (0.581)   | ND (0.418)       | ND (0.45)    | ND (0.48)    | ND (0.44)      | ND (0.444)   | ND (0.433)    |
| Cadmium                                              | 80            | ND (0.88)        | ND (1.16)    | ND (0.835)       | ND (0.9)     | ND (0.961)   | ND (0.881)     | ND (0.888)   | ND (0.866)    |
| Chromium                                             | 100           | 9.12             | 14.7         | 16.2             | 25.3         | 23.3         | 37.8           | 16.2         | 14.1          |
| Lead                                                 | 200           | 7.06             | 13.5         | 7.84             | 5.97         | 8.33         | ND (4.4)       | 7.3          | 5.57          |
| Mercury                                              | 20            | ND (0.076)       | ND (0.105)   | ND (0.077)       | ND (0.082)   | ND (0.085)   | ND (0.078)     | ND (0.082)   | ND (0.073)    |
| Nickel                                               | 700           | 6.07             | 6.22         | 9.42             | 13           | 13           | 22.1           | 8.65         | 7.9           |
| Selenium                                             | 400           | ND (4.4)         | ND (5.81)    | ND (4.18)        | ND (4.5)     | ND (4.8)     | ND (4.4)       | ND (4.44)    | ND (4.33)     |
| Silver                                               | 100           | ND (0.88)        | ND (1.16)    | ND (0.835)       | ND (0.9)     | ND (0.961)   | ND (0.881)     | ND (0.888)   | ND (0.866)    |
| Thallium                                             | 8             | ND (4.4)         | ND (5.81)    | ND (4.18)        | ND (4.5)     | ND (4.8)     | ND (4.4)       | ND (4.44)    | ND (4.33)     |
| Vanadium                                             | 500           | 11.1             | 17.2         | 15.4             | 31.1         | 21.1         | 24.1           | 15.1         | 13.4          |
| Zinc                                                 | 1000          | 18.5             | 28.2         | 28               | 44.7         | 36           | 24.1           | 25.2         | 22.8          |
|                                                      |               |                  |              |                  |              |              |                |              |               |
| PCBs (mg/kg)                                         |               | ND (0            |              |                  |              |              |                | ND (0        |               |
| Aroclor-1016 (PCB-1016)                              | 1             | ND (0.0536)      | ND (0.0703)  | ND (0.0531)      | ND (0.0546)  | ND (0.0608)  | ND (0.0999)    | ND (0.0546)  | ND (0.0565)   |
| Aroclor-1221 (PCB-1221)                              | 1             | ND (0.0536)      | ND (0.0703)  | ND (0.0531)      | ND (0.0546)  | ND (0.0608)  | ND (0.0999)    | ND (0.0546)  | ND (0.0565)   |
| Aroclor-1232 (PCB-1232)                              | 1             | ND (0.0536)      | ND (0.0703)  | ND (0.0531)      | ND (0.0546)  | ND (0.0608)  | ND (0.0999)    | ND (0.0546)  | ND (0.0565)   |
| Aroclor-1242 (PCB-1242)                              | 1             | ND (0.0536)      | ND (0.0703)  | ND (0.0531)      | ND (0.0546)  | ND (0.0608)  | ND (0.0999)    | ND (0.0546)  | ND (0.0565)   |
| Aroclor-1248 (PCB-1248)                              | 1             | ND (0.0536)      | ND (0.0703)  | ND (0.0531)      | ND (0.0546)  | ND (0.0608)  | ND (0.0999)    | ND (0.0546)  | ND (0.0565)   |
| Aroclor-1254 (PCB-1254)                              | 1             | ND (0.0536)      | ND (0.0703)  | ND (0.0531)      | ND (0.0546)  | ND (0.0608)  | ND (0.0999)    | ND (0.0546)  | ND (0.0565)   |
| Aroclor-1260 (PCB-1260)                              | 1             | ND (0.0536)      | ND (0.0703)  | ND (0.0531)      | ND (0.0546)  | ND (0.0608)  | ND (0.0999)    | ND (0.0546)  | ND (0.0565)   |
| Aroclor-1262 (PCB-1262)                              | NA            | ND (0.0536)      | ND (0.0703)  | ND (0.0531)      | ND (0.0546)  | ND (0.0608)  | ND (0.0999)    | ND (0.0546)  | ND (0.0565)   |
| Aroclor-1268 (PCB-1268)                              | NA            | ND (0.0536)      | ND (0.0703)  | ND (0.0531)      | ND (0.0546)  | ND (0.0608)  | ND (0.0999)    | ND (0.0546)  | ND (0.0565)   |
| Polychlorinated biphenyls (PCBs)                     | 1             | ND (0.0536)      | ND (0.0703)  | ND (0.0531)      | ND (0.0546)  | ND (0.0608)  | ND (0.0999)    | ND (0.0546)  | ND (0.0565)   |
| Other                                                |               |                  |              |                  |              |              |                |              |               |
| Total Solids (%)                                     | NA            | 86.5             | 66.6         | 90.9             | 86           | 81.5         | 90             | 89.7         | 87.3          |
| Reactive Cyanide (mg/kg)                             | NA            | ND (130)         | ND (130)     | ND (130)         | ND (130)     | ND (130)     | 90<br>ND (130) | ND (130)     | ND (130)      |
| Reactive Cyanide (mg/kg)<br>Reactive Sulfide (mg/kg) |               |                  |              |                  |              |              |                |              |               |
|                                                      | NA            | ND (250)         | ND (250)     | ND (250)         | ND (250)     | ND (250)     | ND (250)       | ND (250)     | ND (250)      |
| lgnitability (Flashpoint)<br>pH (lab) (pH units)     | NA            | NI<br>6 90       | NI<br>6.9    | NI<br>7.7        | NI<br>7.64   | NI<br>7 11   | NI<br>6.92     | NI<br>0 1 0  | NI<br>9.21    |
|                                                      | NA            | 6.89             | 6.8          | 7.7              | 7.64         | 7.11         | 6.92           | 8.18         | 8.21          |
| Conductivity (umhos/cm)                              | NA            | 22               | 22           | 21               | 24           | 15           | 24             | 25           | 33            |

#### 07/02/2025 Addendum 1 Page 1 of 1

#### Mount Wachusett Community College Old Duck Pond Dam Breach TABLE Jiect #MWC24501 FT1 SUMMARY OF CHEMICAL ANALYTICAL RESULTS SEDIMENT SAMPLES OLD DUCK POND DAM MOUNT WACHUSETT COMMUNITY COLLEGE GARDNER, MASSACHUSETTS

| File | No. | 029913-028 |  |
|------|-----|------------|--|
|      |     |            |  |

| Precharacterization Grid                                       |                      |                      |                      |                      |                      |                      |
|----------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Location Name                                                  | HA24-SED-201         | HA24-SED-202         | HA24-SED-203         | HA24-SED-204         | HA24-SED-205         | HA24-SED-206         |
| Sample Name                                                    |                      | HA24-SED-202 0-2     | HA24-SED-203 0-2     | HA24-SED-204 0-2     | HA24-SED-205 0-2     | HA24-SED-206 0-2     |
| Sample Date                                                    | 11/12/2024           | 11/12/2024           | 11/12/2024           | 11/12/2024           | 11/12/2024           | 11/12/2024           |
|                                                                | 11, 12, 202 1        | L2466236-05          | 11, 12, 202 1        | L2466236-03          | L2466236-02          | 11, 12, 202 .        |
| Lab Sample ID                                                  | L2466236-06          | L2467789-01          | L2466236-04          | L2467789-03          | L2467789-02          | L2466236-01          |
| Sample Depth (bgs)                                             | 0 - 2 (ft)           |
| Volatile Organic Compounds (mg/kg)                             |                      |                      |                      |                      |                      |                      |
| 2-Butanone (Methyl Ethyl Ketone)                               | 0.37                 | 0.32                 | 0.22                 | 0.26                 | 0.12                 | 0.28                 |
| Acetone                                                        | 1.4                  | 1.3                  | 1.1                  | 1.1                  | 0.5                  | 1.1                  |
| SUM of Volatile Organic Compounds                              | 1.77                 | 1.62                 | 1.32                 | 1.36                 | 0.62                 | 1.38                 |
| Semi-Volatile Organic Compounds (mg/kg)                        |                      |                      | -                    |                      |                      |                      |
| Benzo(b)fluoranthene                                           | ND (3.1)             | ND (2)               | ND (1.9)             | ND (2.1)             | 3.4                  | 2.3                  |
| Chrysene                                                       | ND (3.1)             | ND (2)               | ND (1.9)             | ND (2.1)             | 2.5                  | ND (1.8)             |
| Fluoranthene                                                   | ND (3.1)             | ND (2)               | ND (1.9)             | ND (2.1)             | 5.1                  | 2.9                  |
| Pyrene                                                         | ND (3.1)<br>ND (3.1) | ND (2)               | ND (1.9)             | ND (2.1)<br>ND (2.1) | 3.6                  | 2.9                  |
| SUM of Semi-Volatile Organic Compounds                         | ND (3.1)             | ND (2)               | ND (1.5)             | ND (2.1)             | 14.6                 | 7.3                  |
|                                                                | ND                   | ND                   | ND                   |                      | 14.0                 | 7.5                  |
| Total Petroleum Hydrocarbons (mg/kg)<br>Petroleum hydrocarbons | ND (483)             | ND (336)             | ND (309)             | 409                  | ND (311)             | 325                  |
| · · ·                                                          | (405)                | נסככן שאו            | (203) שא             | 409                  | (116) (11)           | 323                  |
| PCBs (mg/kg)                                                   |                      |                      |                      |                      |                      |                      |
| Aroclor-1016 (PCB-1016)                                        | ND (0.502)           | ND (0.327)           | ND (0.322)           | ND (0.337)           | ND (0.312)           | ND (0.292)           |
| Aroclor-1221 (PCB-1221)                                        | ND (0.502)           | ND (0.327)           | ND (0.322)           | ND (0.337)           | ND (0.312)           | ND (0.292)           |
| Aroclor-1232 (PCB-1232)                                        | ND (0.502)           | ND (0.327)           | ND (0.322)           | ND (0.337)           | ND (0.312)           | ND (0.292)           |
| Aroclor-1242 (PCB-1242)                                        | ND (0.502)           | ND (0.327)           | ND (0.322)           | ND (0.337)           | ND (0.312)           | ND (0.292)           |
| Aroclor-1248 (PCB-1248)                                        | ND (0.502)           | ND (0.327)           | ND (0.322)           | ND (0.337)           | ND (0.312)           | ND (0.292)           |
| Aroclor-1254 (PCB-1254)                                        | ND (0.502)           | ND (0.327)           | ND (0.322)           | ND (0.337)           | ND (0.312)           | ND (0.292)           |
| Aroclor-1260 (PCB-1260)                                        | ND (0.502)           | ND (0.327)           | ND (0.322)           | ND (0.337)           | ND (0.312)           | ND (0.292)           |
| Aroclor-1262 (PCB-1262)                                        | ND (0.502)           | ND (0.327)           | ND (0.322)           | ND (0.337)           | ND (0.312)           | ND (0.292)           |
| Aroclor-1268 (PCB-1268)                                        | ND (0.502)           | ND (0.327)           | ND (0.322)           | ND (0.337)           | ND (0.312)           | ND (0.292)           |
| Polychlorinated biphenyls (PCBs)                               | ND (0.502)           | ND (0.327)           | ND (0.322)           | ND (0.337)           | ND (0.312)           | ND (0.292)           |
| Inorganic Compounds (mg/kg)                                    |                      |                      |                      |                      |                      |                      |
| Antimony                                                       | ND (40.2)            | ND (27.6)            | ND (25.6)            | ND (28.9)            | ND (25.7)            | ND (23.7)            |
| Arsenic                                                        | 10.4                 | 24                   | 9.65                 | 11.2                 | 25.4                 | 15.3                 |
| Barium                                                         | 89.8                 | 86.7                 | 56.1                 | 63.2                 | 80.6                 | 64.6                 |
| Beryllium                                                      | ND (4.02)            | ND (2.76)            | ND (2.56)            | ND (2.89)            | ND (2.57)            | ND (2.37)            |
| Cadmium                                                        | ND (8.05)            | ND (5.52)            | ND (5.11)            | ND (5.78)            | ND (5.14)            | ND (4.74)            |
| Chromium                                                       | 11.2                 | 23.8                 | 8.81                 | 12.6                 | 29.4                 | 21.8                 |
| Lead                                                           | 45.5                 | 105                  | ND (25.6)            | 107                  | 133                  | 75.3                 |
| Mercury                                                        | ND (0.764)           | ND (0.476)           | ND (0.429)           | ND (0.474)           | ND (0.416)           | ND (0.443)           |
| Nickel                                                         | ND (20.1)            | 20.4                 | ND (12.8)            | 15.6                 | 21.4                 | 16.9                 |
| Selenium                                                       | ND (40.2)            | ND (27.6)            | ND (25.6)            | ND (28.9)            | ND (25.7)            | ND (23.7)            |
| Silver                                                         | ND (8.05)            | ND (5.52)            | ND (5.11)            | ND (5.78)            | ND (5.14)            | ND (4.74)            |
| Thallium                                                       | ND (40.2)            | ND (27.6)            | ND (25.6)            | ND (28.9)            | ND (25.7)            | ND (23.7)            |
| Vanadium                                                       | 11.6                 | 34                   | 7.33                 | 20.3                 | 41.1                 | 21.2                 |
| Zinc                                                           | 120                  | 408                  | 38.5                 | 191                  | 479                  | 183                  |
| TCLP Inorganic Compounds (mg/L)                                |                      |                      |                      |                      |                      |                      |
| Lead                                                           | -                    | ND (0.5)             | -                    | ND (0.5)             | ND (0.5)             | -                    |
| Other                                                          |                      |                      |                      |                      |                      |                      |
| Total Solids (%)                                               | 9.64                 | 14                   | 14.8                 | 13.8                 | 15.3                 | 16.2                 |
| Reactive Cyanide (mg/kg)                                       | ND (130)             |
| Reactive Cyanide (ing/kg)<br>Reactive Sulfide (ing/kg)         | ND (130)<br>ND (250) |
| Ignitability (Flashpoint)                                      | ND (250)             | ND (250)<br>NI       | ND (250)             | ND (250)             | ND (250)<br>NI       | ND (250)             |
| pH (lab) (pH units)                                            | 6.13                 | 5.97                 | 5.77                 | 5.45                 | 5.8                  | 5.49                 |
| Conductivity (umhos/cm)                                        | 300                  | 270                  | 230                  | 270                  | 330                  | 480                  |
|                                                                | 500                  | 270                  | 230                  | 270                  | 530                  | 480                  |

ABBREVIATIONS AND NOTES:

mg/kg: milligram per kilogram

mg/L: milligram per liter

umhos/cm: micromhos per centimeter

#### 07/02/2025 Addendum 1 PAGE 1 OF 1

| Indidat |                                                                                                                                                                                 | Breach                                                                                                                                                             |                                                                                                                                                                      |                                                                                                                                                                        | File No.                                                                                              | <del>ndum 1</del><br>29913-02 |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------|
|         | #MWC24501 F                                                                                                                                                                     |                                                                                                                                                                    | CALCULAT                                                                                                                                                             | IONS                                                                                                                                                                   | Sheet                                                                                                 | 1 of                          |
| lient   | Mount Wach                                                                                                                                                                      | usett Commu                                                                                                                                                        | nity College                                                                                                                                                         |                                                                                                                                                                        | Date                                                                                                  | 31-Jan-2                      |
| roject  | Old Duck po                                                                                                                                                                     | nd Dam Bread                                                                                                                                                       | ch                                                                                                                                                                   |                                                                                                                                                                        | Computed by                                                                                           | DJB                           |
| ubject  | Hydraulic an                                                                                                                                                                    | d Hydrologic A                                                                                                                                                     | Analysis                                                                                                                                                             |                                                                                                                                                                        | Checked by                                                                                            |                               |
|         | Hydraulic a                                                                                                                                                                     | nd Hydrologi                                                                                                                                                       | c Analysis                                                                                                                                                           |                                                                                                                                                                        |                                                                                                       |                               |
|         | Dam and ins<br>rainstorms a<br>StreamStats<br>using outputs<br>hydrograph o<br>(NRCS) Unit<br><u>Watershed I</u><br>Total Draina<br>Ponds and s<br>Forested Are<br>Average Slop | talling a 6 ft w<br>nd associated<br>developed an<br>s from the app<br>developed in a<br>Hydrograph w<br><u>Data</u><br>ge Area = 0.04<br>wamp areas =<br>ea = 46% | ide by 4 ft high culve<br>peak flows were det<br>id published by the U<br>blication DSS-WISE I<br>accordance with the N<br>vebpage and UHtran<br>8 sq. mi.<br>= 7.4% | is based on a breach<br>rt with an invert at El.<br>ermined using the co<br>SGS. The developed<br>ite supported by FEN<br>latural Resources Co<br>sformerVer3, dated A | 1140. The below<br>mputer program<br>I flows were calibrated<br>IA and the unit<br>nservation Service |                               |
|         | <u>Proposed De</u><br><u>Design Stor</u><br>Annual<br>Exceedance<br>Probability<br>(%, AEP)                                                                                     | -                                                                                                                                                                  | <u>levation for Dam Bre</u><br><u>Peak Flow</u><br>(CFS)                                                                                                             | <u>ach</u><br><u>Pond EL.</u><br>(FT)                                                                                                                                  | Water Depth<br>Above El. 1140<br><u>Normal Pool.</u><br>(FT)                                          |                               |
|         | <br>50<br>20<br>10<br>4<br>2<br>1<br>0.5<br>0.2                                                                                                                                 | 0<br>2<br>5<br>10<br>25<br>50<br>100<br>200<br>500                                                                                                                 | 0<br>7.1<br>12.7<br>17.6<br>25.1<br>31.5<br>38.6 (38.4)<br>46.5<br>58.4                                                                                              | 1140.0<br>1140.5<br>1140.8<br>1141.0<br>1141.2<br>1141.5<br>1141.7<br>1141.9<br>1142.2                                                                                 | 0.0<br>0.5<br>0.8<br>1.0<br>1.2<br>1.5<br>1.7<br>1.9<br>2.2                                           |                               |

G:\29913\027-OldDuckPond\H-H\[2025-0131-HAI-DuckPondFlowes-01.xlsx]Page 1

2/2/25, 3:29 Bunt Wachusett Community College Old Duck Pond Dam Breach Project #MWC2450I FT1

# Old Duck Pond Dam Breach



Collapse All

| Parameter<br>Code | Parameter Description                                                 | Value  | Unit            |
|-------------------|-----------------------------------------------------------------------|--------|-----------------|
| DRNAREA           | Area that drains to a point on a stream                               | 0.0748 | square<br>miles |
| ELEV              | Mean Basin Elevation                                                  | 1160   | feet            |
| LC06STOR          | Percentage of water bodies and wetlands determined from the NLCD 2006 | 7.44   | percent         |

#### Peak-Flow Statistics Parameters [Peak Statewide 2016 5156]

| Parameter Code | Parameter Name                | Value  | Units        | Min Limit | Max Limit |
|----------------|-------------------------------|--------|--------------|-----------|-----------|
| DRNAREA        | Drainage Area                 | 0.0748 | square miles | 0.16      | 512       |
| ELEV           | Mean Basin Elevation          | 1160   | feet         | 80.6      | 1948      |
| LC06STOR       | Percent Storage from NLCD2006 | 7.44   | percent      | 0         | 32.3      |

#### Peak-Flow Statistics Disclaimers [Peak Statewide 2016 5156]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

#### Peak-Flow Statistics Flow Report [Peak Statewide 2016 5156]

| Statistic             | Value | Unit   |
|-----------------------|-------|--------|
| 50-percent AEP flood  | 7.12  | ft^3/s |
| 20-percent AEP flood  | 12.7  | ft^3/s |
| 10-percent AEP flood  | 17.6  | ft^3/s |
| 4-percent AEP flood   | 25.1  | ft^3/s |
| 2-percent AEP flood   | 31.5  | ft^3/s |
| 1-percent AEP flood   | 38.6  | ft^3/s |
| 0.5-percent AEP flood | 46.5  | ft^3/s |
| 0.2-percent AEP flood | 58.4  | ft^3/s |

#### Peak-Flow Statistics Citations

Zarriello, P.J.,2017, Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016-5156, 99 p. (https://dx.doi.org/10.3133/sir20165156)

#### > NHD Features of Delineated Basin

#### NHD Streams Intersecting Basin Delineation Boundary

This functionality attempts to find the stream name at the delineation point. The name of the nearest intersecting National Hydrography Dataset (NHD) stream is selected by default to appear in the report above. NHD streams do not correspond to the StreamStats stream grid and may not be accurate. If you would like a Hydraulic & Hydrologic Analysis

#### 00 99 05 - 3

StreamStats

#### No NHD streams intersect the delineated basin.

#### Watershed Boundary Dataset (WBD) HUC 8 Intersecting Basin Delineation Boundary

This functionality attempts to find the intersecting HUC 8 of the delineated watershed. HUC boundaries do not correspond to the StreamStats data and may not be accurate.

| HUC 8    | Name          |
|----------|---------------|
| 01080202 | Millers River |
| 01070004 | Nashua River  |

#### NHD Hydrologic Features Citations

U.S. Geological Survey, 2022, USGS TNM - National Hydrography Dataset, accessed July 21, 2022 at URL https://hydro.nationalmap.gov/arcgis/rest/services/nhd/MapServer/6. (https://hydro.nationalmap.gov/arcgis/rest/services/nhd/MapServer/6) U.S. Geological Survey, 2022, USGS TNM - National Hydrography Dataset, accessed July 21, 2022 at URL https://hydro.nationalmap.gov/arcgis/rest/services/wbd/MapServer/4. (https://hydro.nationalmap.gov/arcgis/rest/services/wbd/MapServer/4)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.26.0 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1

Mount Wachusett Community College Old Duck Pond Dam Breach Project #MWC2450I FT1



07/02/2025 Addendum 1

HALEY & ALDRICH, INC. 600 S Meyer Avenue Tucson, AZ 857011 520.289.8600

#### MEMORANDUM

23 February 2024 File No. 29913-027

| TO:      | Denis Bell, P.E.                                                                                                                |
|----------|---------------------------------------------------------------------------------------------------------------------------------|
|          | Haley & Aldrich, Inc.                                                                                                           |
| FROM:    | Christopher Langham, Abby Haneke<br>Haley & Aldrich, Inc.                                                                       |
| SUBJECT: | Emergency Action Plan<br>Summary of Study – Extent of Inundation<br>Old Duck Pond Dam<br>NID MA 02784<br>Gardner, Massachusetts |

#### Introduction

This memorandum summarizes the methods used by Haley & Aldrich, Inc. (Haley & Aldrich) to determine the extent of inundation in the event of a dam breach at the Old Duck Pond Dam (NID MA02784), in Gardner, Massachusetts.

Haley & Aldrich completed this inundation study to aid in the development of an Emergency Action Plan (EAP) for the Old Duck Pond Dam, as required by the Commonwealth of Massachusetts General Laws, M.G.L. 253, Section 44, Chapter 302 C.M.R. 10.00, "Dam Safety, dated February 10, 2017". The purpose of the EAP is to establish a basic plan of action if conditions at the dam indicate the potential for dam failure or if any individual observes and reports a dangerous condition developing at the dam.

#### **Elevation Datum**

Elevations referenced in this memorandum are provided in NAVD88.

#### **Old Duck Pond Dam**

In the Design Consultants Inc November 2018 "Old Duck Pond Dam Phase I Inspection/Evaluation" report, the Old Duck Pond Dam was classified as a SIGNIFICANT hazard structure. The following sections of this report summarize an inundation study for Old Duck Pond Dam, which will be used in the 2024 Old Duck Pond Dam EAP.

Mount Wachusett Community College Old Duck Pond Dam Breach Projecy # AMO 24.50¢.FT1 23 February 2024 Page 2

The Old Duck Pond Dam is an earthen embankment with the spillway blocked. The dam is approximately 400-feet long with a maximum height of approximately 12-feet. Embankment slopes are graded to between 1H to 2H:1V slope downstream with some locations vertical. The upstream embankment was flooded and couldn't be observed The maximum storage volume with the water level at the top of the Dam is approximately 61.4 acre-feet. The storage volume with the water level at the normal pool level is approximately 26.6 acre-feet.

#### **Methods to Determine Inundation Extent**

To determine the extent of inundation during a potential dike failure, Haley & Aldrich utilized the FEMA supported DSS-WISE Lite model for inundation mapping. The DSS-WISE Lite modeling program allows the user to input dam dimensions and breach parameters to run in a dam breach simulation. The model outputs a Simulation Report. The Simulation Report outlines all model inputs and assumptions, as well as the basic results of the simulation, including inundation maps overlaid on the DEM image.

Haley & Aldrich used the FEMA supported DSS-WISE Lite model to run two simulations: a "rainy-day breach" and a "sunny-day breach". The sunny-day breach model run is designed to simulate a dam breach due to a piping failure under otherwise normal conditions. The rainy-day breach model run is designed to simulate a dam failure due to overtopping under storm/high-water conditions.

#### **HYDROGRAPH GENERATION**

The DSS-WISE Lite modeling program allows the user to choose whether to input simulation parameters through a "Reservoir Type" simulation or a "Hydrograph Type" simulation. The "Reservoir Type" simulation requires the user to input specific parameters to model the impounded reservoir and breach geometry. In the "Hydrograph Type" simulation, the user provides a breach hydrograph, which the model propagates downstream. For this study, Haley & Aldrich utilized the "Hydrograph Type" simulation in DSS-WISE Lite.

#### Breach Hydrograph

To generate a breach hydrograph for the Old Duck Pond Dam, Haley & Aldrich used the "Dam Breach Hydrograph TR-60 version 3" excel spreadsheet provided on the Natural Resources Conservation Services (NRCS) website.

This spreadsheet allows the user to calculate a breach hydrograph by inputting dam dimensions. The spreadsheet references the NRCS National Engineering Manual (NEM) section 520.2 and uses the TR-60 equations from that reference to calculate a breach hydrograph.

Haley & Aldrich input the following values into this spreadsheet to calculate a breach hydrograph for the Old Duck Pond Dam. This hydrograph generation assumes a full pool with no antecedent flow.

Dam Crest Height = 12 ft



Mount Wachusett Community College Old Duck Pond Dam Breach Project/#MAMO2450CFT1 23 February 2024 Page 3

Water Surface Elevation at Time of Breach = 1145.76ft Dam Top Width = 15-20 ft Dam Side Slope (upstream) = Unknown Dam Side Slope (downstream) = 1-2 Valley Floor Elevation = Unknown Reservoir Volume at Time of Breach = 61.4 acre-feet Valley Width at Dam Axis and Water Surface Elevation = Unknown Timestep for Breach Hydrograph = 5 Minutes

These calculations and resulting breach hydrograph can be found in Attachment A of this memorandum.

#### Unit Hydrograph

To generate a unit hydrograph (to model storm/high-water conditions for the rainy-day simulation), Haley & Aldrich used the "Unit Hydrograph Transformer" excel spreadsheet provided on the NRCS website.

The spreadsheet allows the user to calculate a dimensionless SCS unit hydrograph that can be used to represent a discharge versus time hydrograph for any given watershed. This calculation uses a formula provided in the NRCS document "NEH 630 Hydrology", chapter 16, equation 16A-13. The user inputs time of concentration, drainage area, and peak rate factor to the spreadsheet, and it calculates the unit hydrograph and S-curves for the given information.

For the Old Duck Pond Dam, Haley & Aldrich input the following values into this spreadsheet:

Time of Concentration = 1.4 Hours Drainage Area = 0.07 mi<sup>2</sup> Peak Rate Factor = 484 (dimensionless)

These calculations and resulting unit hydrograph can be found in Attachment B of this memorandum.

#### **DSS-WISE LITE SIMULATIONS**

#### **Sunny-Day Breach**

To model a sunny-day breach scenario, Haley & Aldrich input the NRCS spreadsheet-generated breach hydrograph into DSS-WISE Lite. The breach hydrograph used assumes a breach scenario with a full pool and no antecedent flow at the time of the breach. This breach hydrograph showed a peak flow rate during the breach of about 1,596 cubic feet per second (cfs). The input hydrograph can be found in Attachment C of this memorandum.

In addition to the breach hydrograph, Haley & Aldrich also input the following parameters into the DSS-WISE Lite Prep Tool:



#### **Impounding Structure Characteristics**

| Structure Type:       | Embankment |
|-----------------------|------------|
| Crest Elevation (ft): | 1144.26    |
| Length (ft):          | 371        |

#### **Failure Conditions**

| Failure Mode:        | Sudden and Complete Breach |
|----------------------|----------------------------|
| Breach Location:     | 42.5978205568/             |
| (Latitude/Longitude) | -71.984286                 |

The DSS-WISE Lite simulation for a sunny-day breach estimated that the potential flood (2 ft or greater in depth) would travel about 0.9 miles downstream of the Old Duck Pond Dam, and generated inundation maps based on these inputs.

The sunny-day Simulation Report (including inundation maps) can be found in Attachment D of this memorandum.

#### **Rainy-Day Breach**

To model a rainy-day breach scenario, Haley & Aldrich used both the unit hydrograph and the breach hydrograph in tandem to simulate the overtopping of the dam. The peak flows of each hydrograph were added together to create a rainy-day peak flow rate during the breach of approximately 9,217 cfs. This input hydrograph can be found in Attachment C of this memorandum.

In addition to the rainy-day breach hydrograph, Haley & Aldrich also input the following parameters into the DSS-WISE Lite Prep Tool:

#### **Impounding Structure Characteristics**

| Structure Type:       | Embankment |
|-----------------------|------------|
| Crest Elevation (ft): | 1144.26    |
| Length (ft):          | 371        |

#### **Failure Conditions**

| Failure Mode:        | Sudden and Complete Breach |
|----------------------|----------------------------|
| Breach Location:     | 42.5977287693/             |
| (Latitude/Longitude) | -71.9841222979             |



The DSS-WISE Lite simulation for a rainy-day breach estimated that the potential flood (2 ft or greater in depth) would travel about 0.9 miles downstream of the Dow Brook Reservoir Dam, and generated inundation maps based on these inputs.

The rainy-day Simulation Report (including inundation maps) can be found in Attachment E of this memorandum.

**Enclosed Attachments:** 

Attachment A – NRCS Breach Hydrograph Calculation

Attachment B – NRCS Unit Hydrograph Calculation

Attachment C – DSS-WISE Lite Input Hydrographs

Attachment D – Sunny-Day Simulation Report

Attachment E – Rainy-Day Simulation Report



## References

FEMA supported DSS-WISE Lite web application.

Haley & Aldrich, Inc. "Dow Brook Reservoir Dam Phase 1 Inspection/Evaluation" dated August 29, 2017.

Natural Resources Conservation Service (NRCS) Dam Breach Hydrograph webpage and "DamBreachHydrographTR60ver3" excel spreadsheet dated July 3, 2018.

Natural Resources Conservation Service (NRCS) Unit Hydrograph webpage and "UHtransformerVer3" excel spreadsheet dated August 2016.

G:\29913\027-OldDuckPond\EAP\Technical Memo\2024-0223-HAI\_SummaryofInundationStudy-TechnicalMemo\_D1.docx



Attachment A

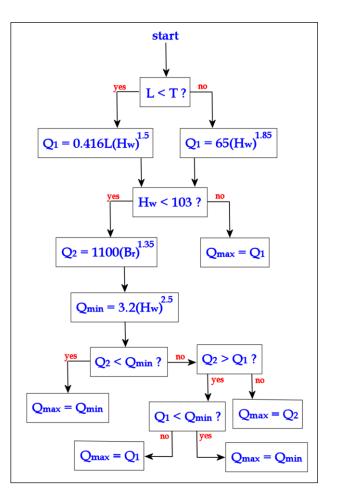
NRCS Breach Hydrograph Calculation



#### Welcome to DamBreachHydrographTR60.

This tool takes dam embankment and reservoir storage information as input and computes a dam breach peak outflow, using TR-60 equations, and an associated dam breach hydrograph, using the TR-66 AttKin curvilinear routing equations.

This button opens a web page:


go get TR-60 and / or TR-66

The flow chart at right shows the TR-60 guidance, which depends on key factors, such as whether the reservoir head at breach time is more or less than 103 feet, and the volume of water stored behind the dam.

The user must insert input on the data sheet in the gray-shaded cells. The output is automatically computed in the output section, light blue cells.

In addition, the breach outflow hydrograph is automatically generated, given the userdesired hydrograph timestep. (This timestep may be chosen based on intended use in other programs, such as HecRAS.)

A button on the data sheet gives the user the option to have the program automatically adjust the graph scale.



#### NOTE:

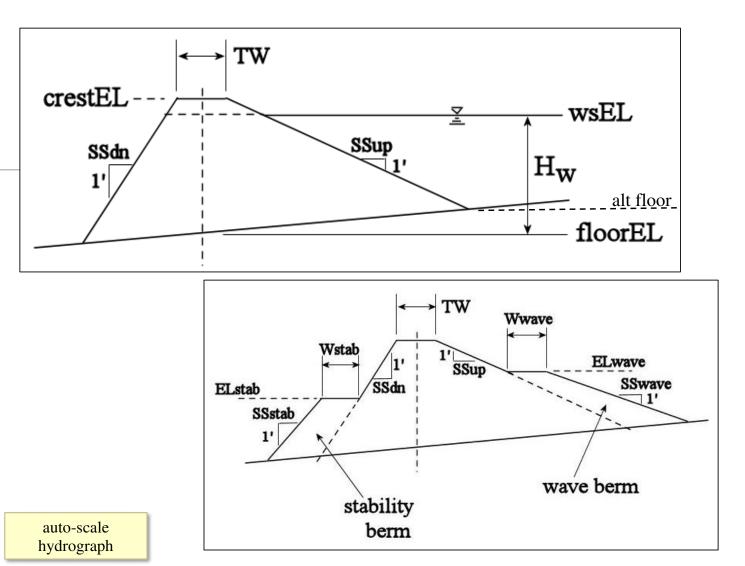
The user must decide on a reasonable "floor elevation" from which H<sub>w</sub> is determined.

For dams on steep streams the choice of floor elevation may significantly effect results.

The user may wish to select a floor elevation as high as the "alt floor" as shown in the sketch on the data sheet. For steep streams the selection of floor elevation may be guided by the engineering judgement of the reasonable maximum depth a breach may penetrate into the embankment.

See the NRCS National Engineering Manual (NEM), section 520.2 on Dams for more information.

go get NEM 520.2 on Dams


Hydraulic & Hydrologic Analysis 00 99 05 - 12

#### Dambreach Hydrographs via TRs 60 & 66 NRCS guidance

version 3, July 2018

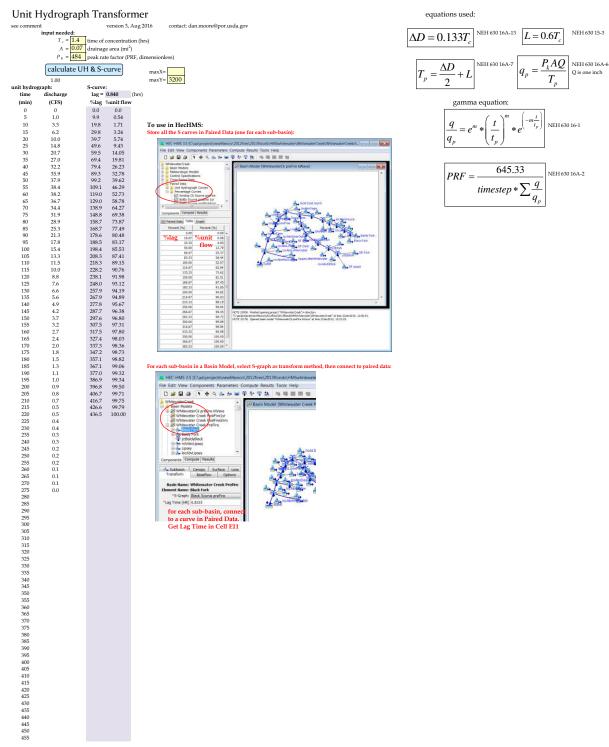
| Input data required: |          |                                             |
|----------------------|----------|---------------------------------------------|
| data                 | variable | explanation                                 |
| 1145.76              | crestEL  | dam crest elevation                         |
| 1145.76              | wsEL     | w.s. elev at time of breach                 |
| 30                   | TW       | dam top width (feet)                        |
| 1                    | SSup     | dam side slope (upstream, SSup:1)           |
| 2                    | SSdn     | dam side slope (downstream, SSdn:1)         |
| 1133.76              | floorEL  | valley floor elev (see note)                |
| 61.4                 | Vs       | resv vol at time of breach (acre-feet)      |
| 400                  | L        | valley width at dam axis & w.s. elev (feet) |
|                      | ELwave   | top of wave berm elevation                  |
|                      | Wwave    | width of top of wave berm feet              |
|                      | SSwave   | wave berm side slope (SSwave:1)             |
|                      | ELstab   | top of stability berm elevation             |
|                      | Wstab    | width of top of stability berm (feet)       |
|                      | SSstab   | stability berm side slope (SSstab:1)        |
| 5                    | ts       | timestep (minutes) for breach hydrograph    |
|                      |          |                                             |

| output                                    |         | breach hydr | ograph  |
|-------------------------------------------|---------|-------------|---------|
| variable                                  | results | time (min)  | Q (cfs) |
| Т                                         | 373     | 0           | 0       |
| (L ≤ T)?                                  | Ν       | 5           | 1596    |
| $H_w$                                     | 12      | 10          | 1116    |
| $Q_1$                                     | 6448    | 15          | 933     |
| (H <sub>w</sub> < 103)?                   | Y       | 20          | 780     |
| Awave                                     | 0       | 25          | 652     |
| Astab                                     | 0       | 30          | 545     |
| А                                         | 576     | 35          | 456     |
| Br                                        | 1       | 40          | 381     |
| Q <sub>2</sub>                            | 1534    | 45          | 319     |
| Q <sub>min</sub>                          | 1596    | 50          | 266     |
| $(Q_2 < Q_{\min})?$                       | Y       | 55          | 223     |
| $(Q_2 > Q_1)?$                            | Ν       | 60          | 186     |
| $(\mathbf{Q}_1 \leq \mathbf{Q}_{\min})$ ? | N       | 65          | 156     |
| Q <sub>max</sub>                          | 1596    | 70          | 130     |
|                                           |         | 75          | 109     |
|                                           |         | 80          | 91      |
|                                           |         | 85          | 76      |

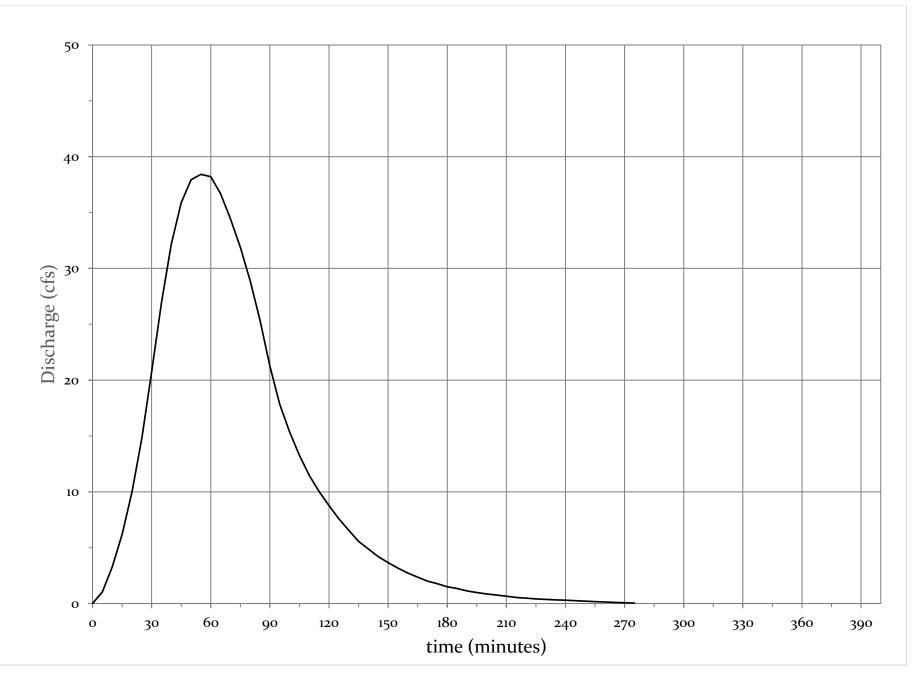


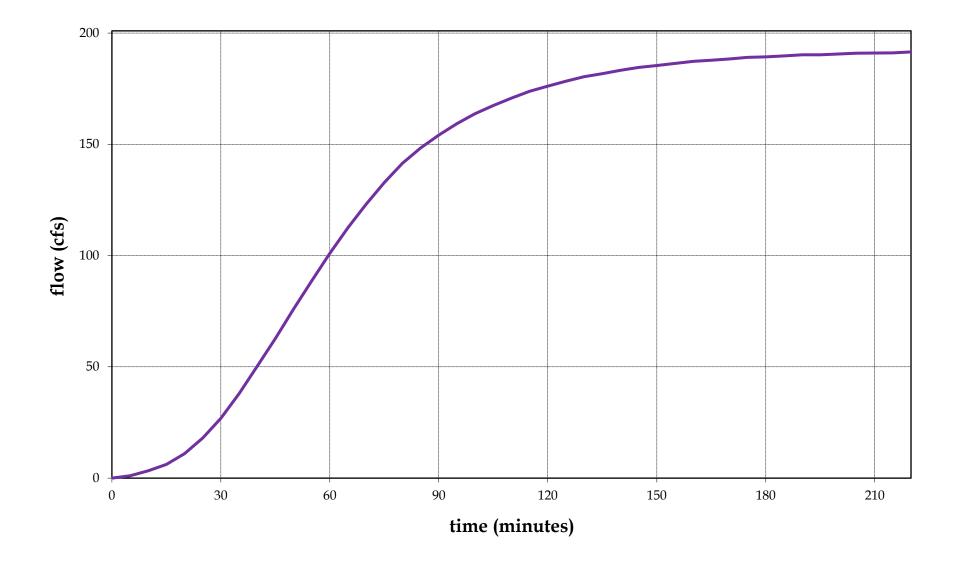
#### 07/02/2025 Addendum 1

#### Mount Wachusett Community College Old Duck Pond Dam Breach Project #MWC2450I FT1


breach hydrograph discharge (cfs) **time (minutes)**  Attachment B

NRCS Unit Hydrograph Calculation

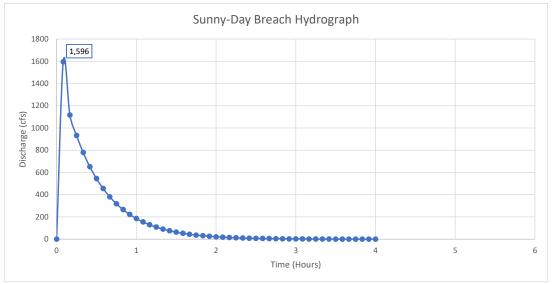




#### Mount Wachusett Community College Old Duck Pond Dam Breach Project #MWC2450I FT1

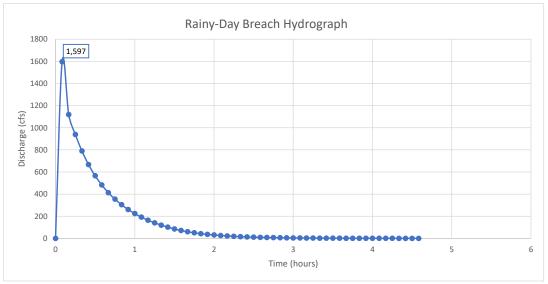
#### 07/02/2025 Addendum 1



#### Mount Wachusett Community College Old Duck Pond Dam Breach Project #MWC2450I FT1







Attachment C

**DSS-WISE Lite Input Hydrographs** 





Note: This hydrograph is just the breach hydrograph calculated by the NRCS spreadsheet.



Note: This hydrograph is the addition of the NRCS calculated unit hydrograph and breach hydrograph.

Attachment D

Sunny-Day Simulation Report



Mount Wachusett Community College Old Duck Pond Dam Breach Project #MWC2450I FT1 07/02/2025 Addendum 1



# DSS-WISE<sup>™</sup> Lite Flood Simulation Report

Hydrograph-type, sudden and complete br each

Sunny Day Breach - Old Duck Pond

NAXXXXX

February 22, 2024

Contact Information: DSS-WISE™ Lite modeling questions: admin@dsswiseweb.ncche.olemiss.edu



Computationa

ional Center for (

ence and

# FOR OFFICIAL USE ONLY

Hydraulic & Hydrologic Analysis 00 99 05 - 22

# Table of Contents

| 1.0 | 1.0 Overview                                                                                                       |                                                                                                                                                                                                                                                                                                                                   |                  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|
| 2.0 | Mod                                                                                                                | eling Parameters and Conditions                                                                                                                                                                                                                                                                                                   | 3                |  |  |
|     | <ol> <li>2.1</li> <li>2.2</li> <li>2.3</li> <li>2.4</li> <li>2.5</li> <li>2.6</li> <li>2.7</li> <li>2.8</li> </ol> | Project Information       3         Simulation Parameters       3         Impounding Structure(s) Characteristics       3         Bridge(s) to be Removed       3         User-Drawn Levees       4         User-Specified Breach Hydrograph       4         Reservoir Characteristics       4         Failure Conditions       5 | 3<br>3<br>1<br>1 |  |  |
| 3.0 | 3.0 Automated Data Preparation and Job Flow Summary                                                                |                                                                                                                                                                                                                                                                                                                                   |                  |  |  |
|     | <ol> <li>3.1</li> <li>3.2</li> <li>3.3</li> <li>3.4</li> <li>3.5</li> <li>3.6</li> <li>3.7</li> </ol>              | Job Flow Summary       6         Reservoir Bathymetry and Filling       7         Data Sources       8         Digital Elevation Model       9         Reservoir Boundary and Breaching Structure       10         Reservoir Initial Depth Profile       11         Land Use/Land Cover       12                                  | 7<br>3<br>9<br>1 |  |  |
| 4.0 | Simu                                                                                                               | Ilation Results                                                                                                                                                                                                                                                                                                                   | 3                |  |  |
|     | 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.6                                                                             | Simulation Summary       13         Land Use and Manning's Roughness Coefficient for Inundated Area       14         Coverage and Sources of DEM Raster Datasets       15         Maximum Flood Depth       17         Flood Arrival Time       18         Downloading Simulation Results       19                                | 4<br>5<br>7<br>3 |  |  |

# 1.0 Overview

The Decision Support System for Water Infrastructure Security (DSS-WISE<sup>TM</sup>) is an integrated software package combining 2D numerical flood modeling capabilities with a series of GIS-based decision support tools. It was developed by the National Center for Computational Hydroscience and Engineering (NCCHE) at the University of Mississippi and was initiated by the US Department of Homeland Security (DHS) Science and Technology Directorate through the Southeast Region Research Initiative (SERRI) Program.

A simplified, and fully automated, version of the DSS-WISE<sup>™</sup> software suite (DSS-WISE<sup>™</sup> Lite Ver 1.0) was developed on behalf of the US Army Corps of Engineers (USACE) Critical Infrastructure Protection and Resilience (CIPR) Program and the DHS Office of Infrastructure Protection. This simplified dam break flood modeling capability was available to interested parties through the Dams Sector Analysis Tool (DSAT) secure web portal until November 2014. An updated version with more features was developed on behalf of Federal Emergency Management (FEMA) and is available at dsswiseweb.ncche.olemiss.edu.

The DSS-WISE<sup>TM</sup> Lite software suite, running on NCCHE servers, automatically processes input files for dam-break modeling scenarios submitted by an user. DSS-WISE<sup>TM</sup> Lite further simplifies simulations by making several general overarching assumptions in an effort to streamline data preparation and computations.

The results produced by this simplified dam-break flood simulation tool represent a rough approximation. They are not intended to replace more detailed flood inundation modeling and mapping products or capabilities developed by hydraulic and hydrologic engineers and GIS professionals.

The user is, therefore, warned that professional engineering judgment should be used in the interpolation of the results generated by this simplified and automated dam-break flood analysis.

To learn more about DSS-WISETM and DSS-WISETM Lite visit us at: https://dsswiseweb.ncche.olemiss.edu

# Disclaimer

The National Center for Computational Hydroscience and Engineering (NCCHE), The University of Mississippi, makes no representations pertaining to the suitability of the results provided herein for any purpose whatsoever. All content contained herein is provided "as is" and is not presented with any warranty of any form. NCCHE hereby disclaims all conditions and warranties in regard to the content, including but not limited to any and all conditions of merchantability and implied warranties, suitability for a particular purpose or purposes, non-infringement and title. In no event shall NCCHE be liable for any indirect, special, consequential or exemplary damages or any damages whatsoever, including but not limited to the loss of data, use or profits, without regard to the form of any action, including but not limited to negligence or other tortious actions that arise out of or in connection with the copying, display or use of the content provided herein.

# **Elevation Datum**

All reported elevations use the North American Vertical Datum of 1988 (NAVD 88).

# 2.0 Modeling Parameters and Conditions

# 2.1 Project Information

| Project Name:         | Sunny Day Breach - Old Duck Pond        |
|-----------------------|-----------------------------------------|
| Scenario Name:        | Hydrograph-type, sudden and complete br |
|                       | each                                    |
| NIDID:                | NAXXXXX                                 |
| Scenario Description: | 1 active reservoir 1 active impounding  |
|                       | structure hydrograph-type, sudden and c |
|                       | omplete breach of Dam 1                 |
| User e-mail:          | ahaneke@haleyaldrich.com                |
| Group:                | MASSACHUSETTS                           |

## 2.2 Simulation Parameters

| Domain buffer distance (miles):       | 10   |
|---------------------------------------|------|
| Simulation cell size requested (ft):  | 15.0 |
| Simulation duration requested (days): | 5    |

## 2.3 Impounding Structure(s) Characteristics

#### Number of Structures: 1

| Structure Name:        | Dam 1         |
|------------------------|---------------|
| Structure Type:        | Embankment    |
| Hydraulic Height (ft): | 12.0          |
| Crest Elevation (ft):  | 1144.26       |
| Length (ft):           | 370.813156292 |

# 2.4 Bridge(s) to be Removed

Number of Bridges: 0

## 2.5 User-Drawn Levees

Number of User-Drawn Levees: 0

## 2.6 User-Specified Breach Hydrograph

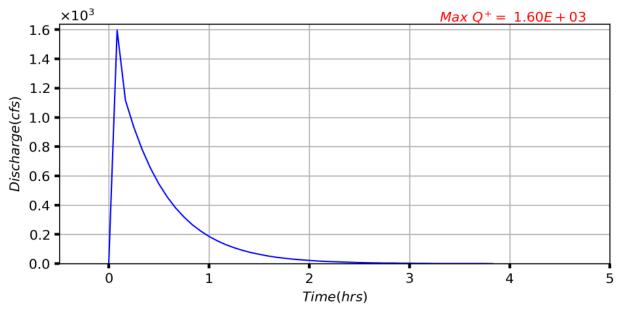
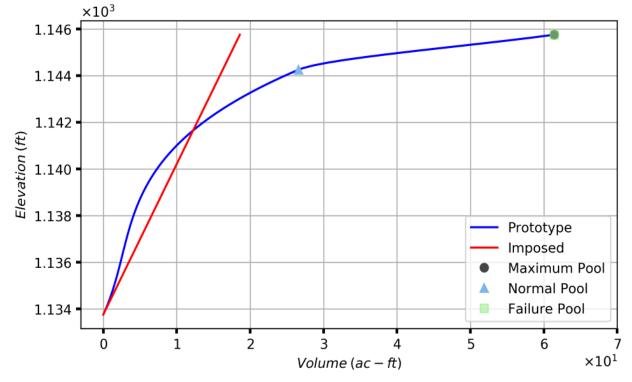



Figure 1. Breach inflow hydrograph for: Dam 1.

# 2.7 Reservoir Characteristics

Number of Reservoirs: 1

| Reservoir Name:                                     | Reservoir 1                  |
|-----------------------------------------------------|------------------------------|
| Selected Reservoir Point (Lati-<br>tude/Longitude): | 42.5977287693/-71.9841222979 |
| Pool Elevation @ Max Storage (ft):                  | 1145.76                      |
| Maximum Storage Volume (ac-ft):                     | 61.4                         |
| Pool Elevation @ Normal Storage (ft):               | 1144.26                      |
| Normal Storage Volume (ac-ft):                      | 26.6                         |
| Pool Elevation @ Failure (ft):                      | 1145.76                      |
| Failure Storage Volume (ac-ft):                     | 61.4                         |


# 2.8 Failure Conditions

| Structure Name:                       | Dam 1                    |
|---------------------------------------|--------------------------|
| Structure Type:                       | Embankment               |
| Failure Mode:                         | Total Dam Breach         |
| Breach Location (Latitude/Longitude): | 42.5978205568/-71.984286 |

## 3.0 Automated Data Preparation and Job Flow Summary

## 3.1 Job Flow Summary

- 1. Prepare Digital Elevation Model (DEM) and Land Use/Land Cover (LULC) tiles for the Area of Interest (AOI) based on requested cellsize and maximum downstream distance.
- 2. Burn U.S. Army Corps of Engineers (USACE) level lines and group-specific level lines (if any) within the AOI, as well as any user-drawn levels into the DEM.
- 3. Assign Manning's coefficients based on LULC classifications.
- 4. Validate user provided simulation input parameters.
- 5. Remove user identified bridges from the DEM.
- 6. Estimate reservoir bathymetry.
- 7. Extend impounding structures if the specified reservoir level cannot be contained.
- 8. Fill reservoir to specified failure elevation.
- 9. Prepare boundary condition and all input data for simulation.



## 3.2 Reservoir Bathymetry and Filling

Figure 2. Stage-Volume Curve for Reservoir: Reservoir 1.

**Prototype:** Theoretical cubic Hermite spline curve generated from user-provided reservoir elevation and volume information.

Imposed: Measured from reservoir bathymetry after filling to the failure elevation.

The reservoir water surface was detected to be in the DEM, so bathymetry estimation was performed using the prototype stage-volume curve shown above.

User-given Storage Volume at Failure (ac-ft): 61.4

Imposed Storage Volume at Failure (ac-ft): 18.6

After filling to the failure elevation, the imposed reservoir volume matched 30.3% of the prototype volume.

Extended Structures:

Dam 1 has been extended to contain the reservoir.

## 3.3 Data Sources

1. Digital Elevation Models

Sources: USGS 3D Elevation Program (3DEP) 2019 datasets, NOAA, and any group-specific DEM data if provided

Resolutions: 2, 1, 1/3, and 1/9th arc-second, 1 meter, and varying resolutions of group-specific DEM data (if any), based upon availability

Vertical Datum: NAVD88

Horizontal Datum: NAD83

2. National Land Use/Land Cover Data

Sources: USGS 2016 (CONUS), 2011 (Alaska), and 2001 (Hawaii and Puerto Rico) Resolution: 30 m

- 3. National Levee Database Source: USACE
- 4. Group-specific levee data

Source: Provided by individual groups

## 3.4 Digital Elevation Model

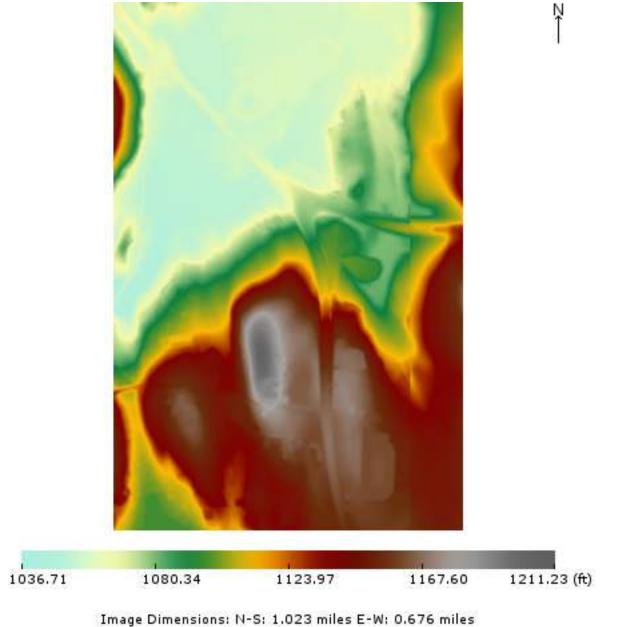



Figure 3. Map of Digital Elevation Model with Levees for AOI.

## 3.5 Reservoir Boundary and Breaching Structure

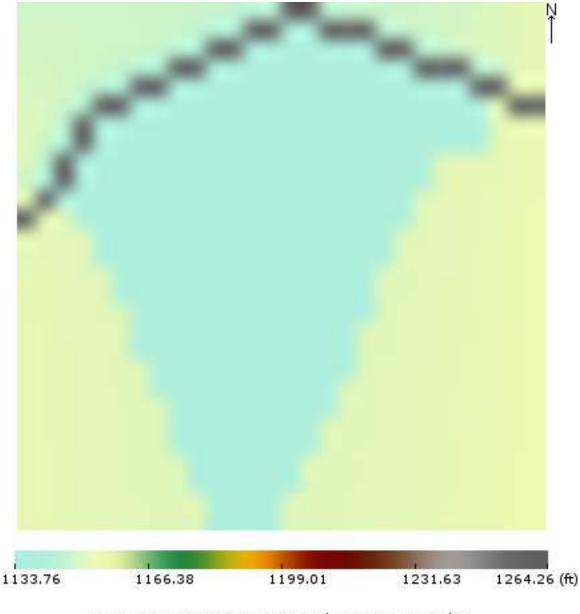



Image Dimensions: N-S: 0.080 miles E-W: 0.080 miles Figure 4. Map of Reservoir Boundary and Breached Structure.

## 3.6 Reservoir Initial Depth Profile

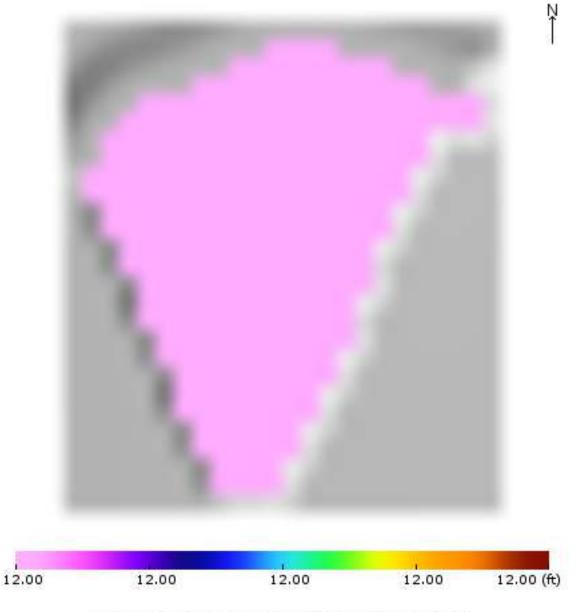



Image Dimensions: N-S: 0.082 miles E-W: 0.074 miles Figure 5. Map of Initial Depths in Reservoir at Failure Conditions.

Ņ

## 3.7 Land Use/Land Cover

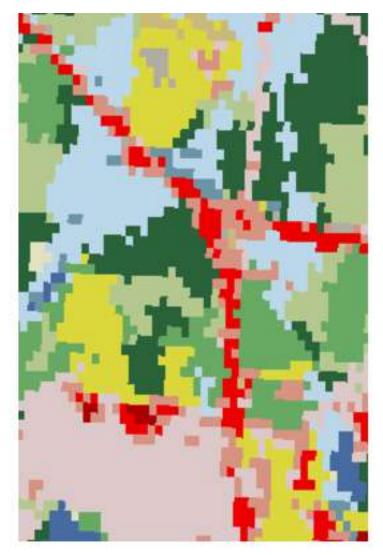



Image Dimensions: N-S: 1.023 miles E-W: 0.676 miles Figure 6. Map of Land Use for AOI.

## 4.0 Simulation Results

## 4.1 Simulation Summary

| Simulation Request Received:                           | 10:43 AM CST (02/22/2024)   |
|--------------------------------------------------------|-----------------------------|
| Simulation Start Time:                                 | 10:44 AM CST $(02/22/2024)$ |
| Simulation End Time:                                   | 10:45 AM CST $(02/22/2024)$ |
| DEM resolution used for simulation (ft):               | 15.0                        |
| DEM resolution requested (ft):                         | 15.0                        |
| Final distance reached downstream (miles):             | 0.9                         |
| Domain buffer distance (miles):                        | 10                          |
| Elapsed simulation time after breach initiation (hrs): | 11.3                        |
| Termination condition:                                 | Water stopped spreading.    |

| Land Use Description         | % of Inundated Area | n-Value $(m^{-1/3}s)$ | Code | Color |
|------------------------------|---------------------|-----------------------|------|-------|
|                              |                     |                       |      |       |
| Woody Wetlands               | 45.16               | 0.1500                | 90   |       |
| Developed, Low Density       | 9.47                | 0.0678                | 22   |       |
| Hay/Pasture                  | 8.99                | 0.0350                | 81   |       |
| Evergreen Forest $*$         | 7.56                | 0.1000                | 42   |       |
| Emergent Herbaceous Wetlands | 7.35                | 0.1825                | 95   |       |
| Developed, Open Space        | 5.69                | 0.0404                | 21   |       |
| Open Water                   | 5.04                | 0.0330                | 11   |       |
| Developed, Medium Density    | 4.67                | 0.0678                | 23   |       |
| Mixed Forest *               | 3.21                | 0.1200                | 43   |       |
| Deciduous Forest *           | 2.27                | 0.1000                | 41   |       |
| Barren Land                  | 0.28                | 0.0113                | 31   |       |
| Grassland/Herbaceous         | 0.24                | 0.0400                | 71   |       |
| Unclassified                 | 0.00                | 0.0350                | 0    |       |
| Perennial Snow/Ice           | 0.00                | 0.0100                | 12   |       |
| Developed, High Density      | 0.00                | 0.0404                | 24   |       |
| Dwarf Scrub *                | 0.00                | 0.0350                | 51   |       |
| Shrub/Scrub                  | 0.00                | 0.0400                | 52   |       |
| Sedge/Herbaceous $*$         | 0.00                | 0.0350                | 72   |       |
| Lichens *                    | 0.00                | 0.0350                | 73   |       |
| Moss *                       | 0.00                | 0.0350                | 74   |       |
| Cultivated Crops             | 0.00                | 0.0700                | 82   |       |

## 4.2 Land Use and Manning's Roughness Coefficient for Inundated Area

Note:  $\ast$  indicates an n-value estimated by NCCHE.  $\ast\ast$  indicates an n-value given by the user. Other values are taken from literature.

Ň

### 4.3 Coverage and Sources of DEM Raster Datasets

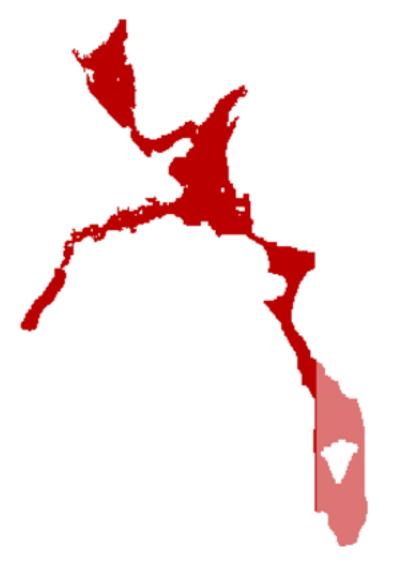



Figure 7. Coverage of DEM Raster Datasets in the Inundation Area.

| DEM Source | Source Resolution | Source Dataset       | Color |
|------------|-------------------|----------------------|-------|
|            |                   |                      |       |
| USGS       | 1 arc-second      | $usgs\_1as$          |       |
| USGS       | 1/3 arc-seconds   | $usgs_13as$          |       |
| USGS       | 1 meter           | $usgs\_utm\_z18\_1m$ |       |
| USGS       | 1 meter           | $usgs\_utm\_z19\_1m$ |       |

Note: The DEM for this job was created from the source DEM raster datasets listed above. These DEM raster datasets were resampled and reprojected to the user defined cell size and UTM zone, respectively. Resampled and projected DEM raster datasets were then stacked in the order specific to the group under which this simulation was submitted.

## 4.4 Maximum Flood Depth

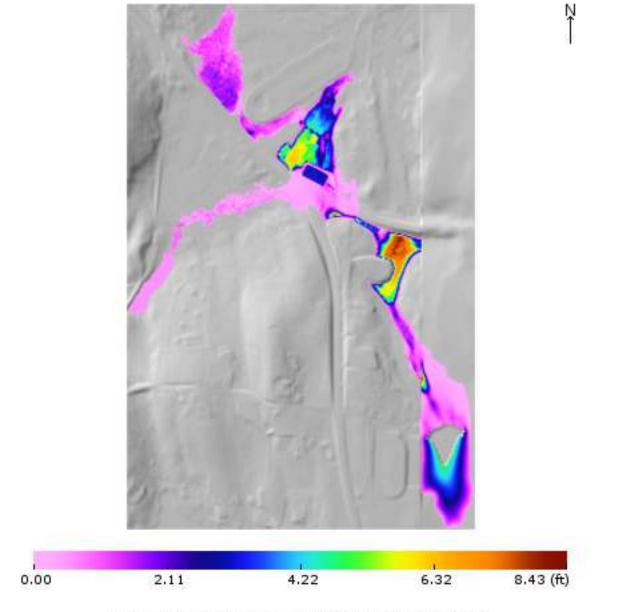
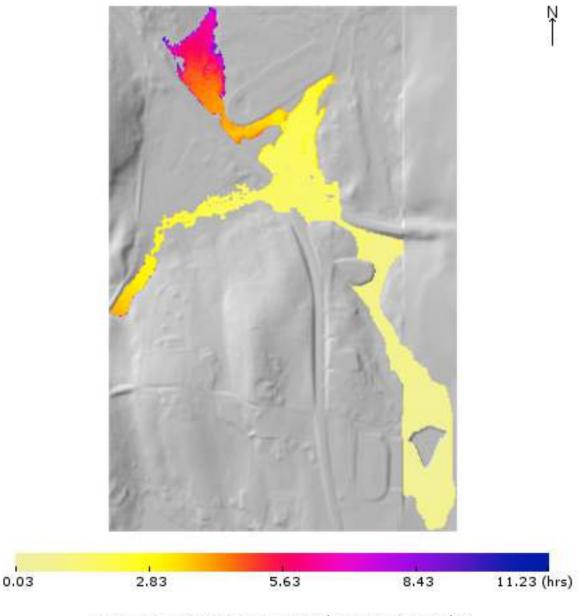
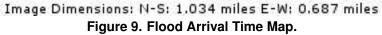





Image Dimensions: N-S: 1.034 miles E-W: 0.687 miles Figure 8. Maximum Flood Depth Map.

## 4.5 Flood Arrival Time

Flood arrival time is measured from the beginning of the simulation.





## 4.6 Downloading Simulation Results

The simulation results can be accessed at the following web address:

https://dsswiseweb.ncche.olemiss.edu/download

Job ID: 74035

Attachment E

**Rainy-Day Simulation Report** 



Mount Wachusett Community College Old Duck Pond Dam Breach Project #MWC2450I FT1 07/02/2025 Addendum 1



# DSS-WISE<sup>™</sup> Lite Flood Simulation Report

Hydrograph-type, sudden and complete br each

Rainy Day Breach - Old Duck Pond

NAXXXXX

February 22, 2024

Contact Information: DSS-WISE™ Lite modeling questions: admin@dsswiseweb.ncche.olemiss.edu



Computationa

ional Center for (

ence and

## FOR OFFICIAL USE ONLY

Hydraulic & Hydrologic Analysis 00 99 05 - 44

## Table of Contents

| 1.0 | Over                                                                                                               | rview                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                     |
|-----|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 2.0 | Mod                                                                                                                | eling Parameters and Conditions                                                                                                                                                                                                                                                                                                                                                                                                 | 3                     |
|     | <ol> <li>2.1</li> <li>2.2</li> <li>2.3</li> <li>2.4</li> <li>2.5</li> <li>2.6</li> <li>2.7</li> <li>2.8</li> </ol> | Project Information       Simulation Parameters         Simulation Parameters       Simulation Parameters         Impounding Structure(s) Characteristics       Simulation         Bridge(s) to be Removed       Simulation         User-Drawn Levees       Simulation         User-Specified Breach Hydrograph       Simulation         Reservoir Characteristics       Simulation         Failure Conditions       Simulation | 3<br>3<br>4<br>4      |
| 3.0 | Auto                                                                                                               | mated Data Preparation and Job Flow Summary                                                                                                                                                                                                                                                                                                                                                                                     | 6                     |
|     | <ol> <li>3.1</li> <li>3.2</li> <li>3.3</li> <li>3.4</li> <li>3.5</li> <li>3.6</li> <li>3.7</li> </ol>              | Job Flow Summary                                                                                                                                                                                                                                                                                                                                                                                                                | 7<br>8<br>9<br>0<br>1 |
| 4.0 | Simu                                                                                                               | Ilation Results                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                     |
|     | 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.6                                                                             | Simulation Summary       13         Land Use and Manning's Roughness Coefficient for Inundated Area       14         Coverage and Sources of DEM Raster Datasets       14         Maximum Flood Depth       17         Flood Arrival Time       14         Downloading Simulation Results       14                                                                                                                              | 4<br>5<br>7<br>8      |

## 1.0 Overview

The Decision Support System for Water Infrastructure Security (DSS-WISE<sup>TM</sup>) is an integrated software package combining 2D numerical flood modeling capabilities with a series of GIS-based decision support tools. It was developed by the National Center for Computational Hydroscience and Engineering (NCCHE) at the University of Mississippi and was initiated by the US Department of Homeland Security (DHS) Science and Technology Directorate through the Southeast Region Research Initiative (SERRI) Program.

A simplified, and fully automated, version of the DSS-WISE<sup>™</sup> software suite (DSS-WISE<sup>™</sup> Lite Ver 1.0) was developed on behalf of the US Army Corps of Engineers (USACE) Critical Infrastructure Protection and Resilience (CIPR) Program and the DHS Office of Infrastructure Protection. This simplified dam break flood modeling capability was available to interested parties through the Dams Sector Analysis Tool (DSAT) secure web portal until November 2014. An updated version with more features was developed on behalf of Federal Emergency Management (FEMA) and is available at dsswiseweb.ncche.olemiss.edu.

The DSS-WISE<sup>TM</sup> Lite software suite, running on NCCHE servers, automatically processes input files for dam-break modeling scenarios submitted by an user. DSS-WISE<sup>TM</sup> Lite further simplifies simulations by making several general overarching assumptions in an effort to streamline data preparation and computations.

The results produced by this simplified dam-break flood simulation tool represent a rough approximation. They are not intended to replace more detailed flood inundation modeling and mapping products or capabilities developed by hydraulic and hydrologic engineers and GIS professionals.

The user is, therefore, warned that professional engineering judgment should be used in the interpolation of the results generated by this simplified and automated dam-break flood analysis.

To learn more about DSS-WISETM and DSS-WISETM Lite visit us at: https://dsswiseweb.ncche.olemiss.edu

## Disclaimer

The National Center for Computational Hydroscience and Engineering (NCCHE), The University of Mississippi, makes no representations pertaining to the suitability of the results provided herein for any purpose whatsoever. All content contained herein is provided "as is" and is not presented with any warranty of any form. NCCHE hereby disclaims all conditions and warranties in regard to the content, including but not limited to any and all conditions of merchantability and implied warranties, suitability for a particular purpose or purposes, non-infringement and title. In no event shall NCCHE be liable for any indirect, special, consequential or exemplary damages or any damages whatsoever, including but not limited to the loss of data, use or profits, without regard to the form of any action, including but not limited to negligence or other tortious actions that arise out of or in connection with the copying, display or use of the content provided herein.

## **Elevation Datum**

All reported elevations use the North American Vertical Datum of 1988 (NAVD 88).

## 2.0 Modeling Parameters and Conditions

### 2.1 Project Information

| Project Name:         | Rainy Day Breach - Old Duck Pond        |  |
|-----------------------|-----------------------------------------|--|
| Scenario Name:        | Hydrograph-type, sudden and complete br |  |
|                       | each                                    |  |
| NIDID:                | NAXXXXX                                 |  |
| Scenario Description: | 1 active reservoir 1 active impounding  |  |
|                       | structure hydrograph-type, sudden and c |  |
|                       | omplete breach of Dam 1                 |  |
| User e-mail:          | ahaneke@haleyaldrich.com                |  |
| Group:                | MASSACHUSETTS                           |  |

### 2.2 Simulation Parameters

| Domain buffer distance (miles):       | 10   |
|---------------------------------------|------|
| Simulation cell size requested (ft):  | 15.0 |
| Simulation duration requested (days): | 5    |

## 2.3 Impounding Structure(s) Characteristics

#### Number of Structures: 1

| Structure Name:        | Dam 1         |
|------------------------|---------------|
| Structure Type:        | Embankment    |
|                        |               |
| Hydraulic Height (ft): | 12.0          |
| Crest Elevation (ft):  | 1144.26       |
| Length (ft):           | 370.813156292 |

## 2.4 Bridge(s) to be Removed

Number of Bridges: 0

## 2.5 User-Drawn Levees

Number of User-Drawn Levees: 0

### 2.6 User-Specified Breach Hydrograph

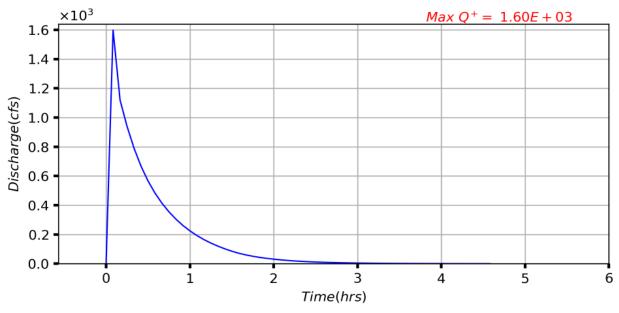
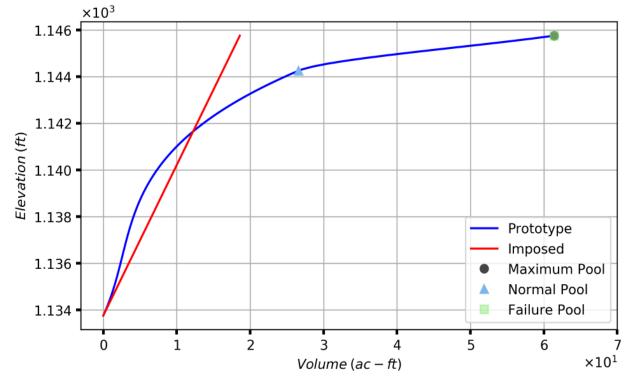



Figure 1. Breach inflow hydrograph for: Dam 1.

## 2.7 Reservoir Characteristics

Number of Reservoirs: 1

| Reservoir Name:                                     | Reservoir 1                  |
|-----------------------------------------------------|------------------------------|
| Selected Reservoir Point (Lati-<br>tude/Longitude): | 42.5977287693/-71.9841222979 |
| Pool Elevation @ Max Storage (ft):                  | 1145.76                      |
| Maximum Storage Volume (ac-ft):                     | 61.4                         |
| Pool Elevation @ Normal Storage (ft):               | 1144.26                      |
| Normal Storage Volume (ac-ft):                      | 26.6                         |
| Pool Elevation @ Failure (ft):                      | 1145.76                      |
| Failure Storage Volume (ac-ft):                     | 61.4                         |


## 2.8 Failure Conditions

| Structure Name:                       | Dam 1                    |
|---------------------------------------|--------------------------|
| Structure Type:                       | Embankment               |
| Failure Mode:                         | Total Dam Breach         |
| Breach Location (Latitude/Longitude): | 42.5978205568/-71.984286 |

## 3.0 Automated Data Preparation and Job Flow Summary

## 3.1 Job Flow Summary

- 1. Prepare Digital Elevation Model (DEM) and Land Use/Land Cover (LULC) tiles for the Area of Interest (AOI) based on requested cellsize and maximum downstream distance.
- 2. Burn U.S. Army Corps of Engineers (USACE) level lines and group-specific level lines (if any) within the AOI, as well as any user-drawn levels into the DEM.
- 3. Assign Manning's coefficients based on LULC classifications.
- 4. Validate user provided simulation input parameters.
- 5. Remove user identified bridges from the DEM.
- 6. Estimate reservoir bathymetry.
- 7. Extend impounding structures if the specified reservoir level cannot be contained.
- 8. Fill reservoir to specified failure elevation.
- 9. Prepare boundary condition and all input data for simulation.



## 3.2 Reservoir Bathymetry and Filling

Figure 2. Stage-Volume Curve for Reservoir: Reservoir 1.

**Prototype:** Theoretical cubic Hermite spline curve generated from user-provided reservoir elevation and volume information.

Imposed: Measured from reservoir bathymetry after filling to the failure elevation.

The reservoir water surface was detected to be in the DEM, so bathymetry estimation was performed using the prototype stage-volume curve shown above.

User-given Storage Volume at Failure (ac-ft): 61.4

Imposed Storage Volume at Failure (ac-ft): 18.6

After filling to the failure elevation, the imposed reservoir volume matched 30.3% of the prototype volume.

Extended Structures:

Dam 1 has been extended to contain the reservoir.

## 3.3 Data Sources

1. Digital Elevation Models

Sources: USGS 3D Elevation Program (3DEP) 2019 datasets, NOAA, and any group-specific DEM data if provided

Resolutions: 2, 1, 1/3, and 1/9th arc-second, 1 meter, and varying resolutions of group-specific DEM data (if any), based upon availability

Vertical Datum: NAVD88

Horizontal Datum: NAD83

2. National Land Use/Land Cover Data

Sources: USGS 2016 (CONUS), 2011 (Alaska), and 2001 (Hawaii and Puerto Rico) Resolution: 30 m

- 3. National Levee Database Source: USACE
- 4. Group-specific levee data

Source: Provided by individual groups

## 3.4 Digital Elevation Model

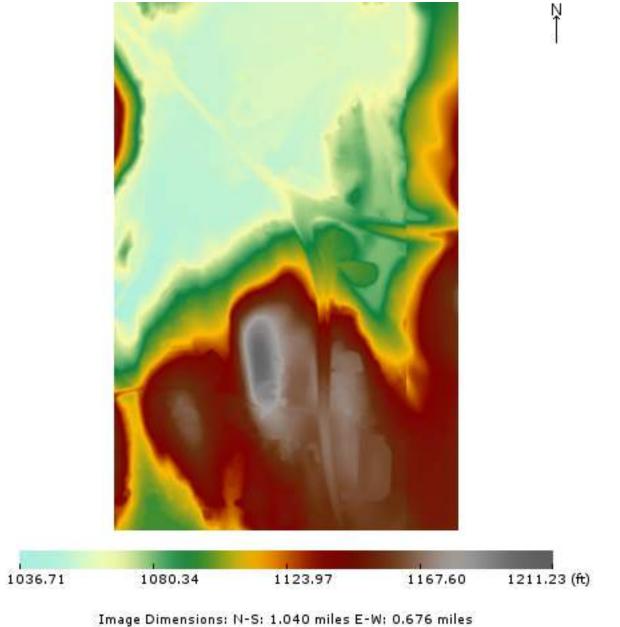



Figure 3. Map of Digital Elevation Model with Levees for AOI.

## 3.5 Reservoir Boundary and Breaching Structure

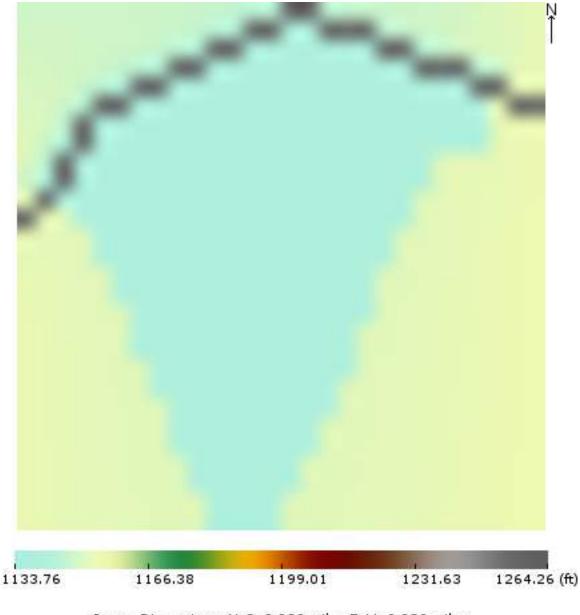



Image Dimensions: N-S: 0.080 miles E-W: 0.080 miles Figure 4. Map of Reservoir Boundary and Breached Structure.

## 3.6 Reservoir Initial Depth Profile

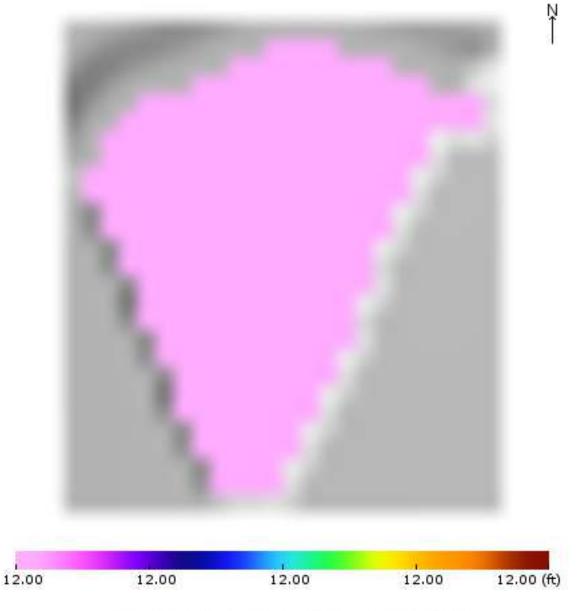



Image Dimensions: N-S: 0.082 miles E-W: 0.074 miles Figure 5. Map of Initial Depths in Reservoir at Failure Conditions.

Ņ

## 3.7 Land Use/Land Cover

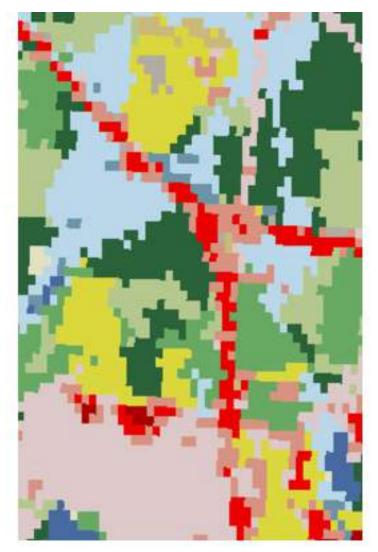



Image Dimensions: N-S: 1.040 miles E-W: 0.676 miles Figure 6. Map of Land Use for AOI.

## 4.0 Simulation Results

## 4.1 Simulation Summary

| Simulation Request Received:                           | 11:08 AM CST (02/22/2024)   |
|--------------------------------------------------------|-----------------------------|
| Simulation Start Time:                                 | 11:09 AM CST $(02/22/2024)$ |
| Simulation End Time:                                   | 11:11 AM CST $(02/22/2024)$ |
| DEM resolution used for simulation (ft):               | 15.0                        |
| DEM resolution requested (ft):                         | 15.0                        |
| Final distance reached downstream (miles):             | 0.9                         |
| Domain buffer distance (miles):                        | 10                          |
| Elapsed simulation time after breach initiation (hrs): | 11.4                        |
| Termination condition:                                 | Water stopped spreading.    |

| Land Use Description         | % of Inundated Area | $n-Value(m^{-1/3}s)$ | Code | Color |
|------------------------------|---------------------|----------------------|------|-------|
|                              |                     |                      |      |       |
| Woody Wetlands               | 45.42               | 0.1500               | 90   |       |
| Developed, Low Density       | 9.26                | 0.0678               | 22   |       |
| Hay/Pasture                  | 9.22                | 0.0350               | 81   |       |
| Evergreen Forest $^*$        | 7.48                | 0.1000               | 42   |       |
| Emergent Herbaceous Wetlands | 7.20                | 0.1825               | 95   |       |
| Developed, Open Space        | 5.59                | 0.0404               | 21   |       |
| Open Water                   | 4.89                | 0.0330               | 11   |       |
| Developed, Medium Density    | 4.60                | 0.0678               | 23   |       |
| Mixed Forest *               | 3.52                | 0.1200               | 43   |       |
| Deciduous Forest *           | 2.24                | 0.1000               | 41   |       |
| Barren Land                  | 0.27                | 0.0113               | 31   |       |
| Grassland/Herbaceous         | 0.23                | 0.0400               | 71   |       |
| Unclassified                 | 0.00                | 0.0350               | 0    |       |
| Perennial Snow/Ice           | 0.00                | 0.0100               | 12   |       |
| Developed, High Density      | 0.00                | 0.0404               | 24   |       |
| Dwarf Scrub *                | 0.00                | 0.0350               | 51   |       |
| Shrub/Scrub                  | 0.00                | 0.0400               | 52   |       |
| Sedge/Herbaceous *           | 0.00                | 0.0350               | 72   |       |
| Lichens *                    | 0.00                | 0.0350               | 73   |       |
| Moss *                       | 0.00                | 0.0350               | 74   |       |
| Cultivated Crops             | 0.00                | 0.0700               | 82   |       |

### 4.2 Land Use and Manning's Roughness Coefficient for Inundated Area

Note:  $\ast$  indicates an n-value estimated by NCCHE.  $\ast\ast$  indicates an n-value given by the user. Other values are taken from literature.

Ň

### 4.3 Coverage and Sources of DEM Raster Datasets

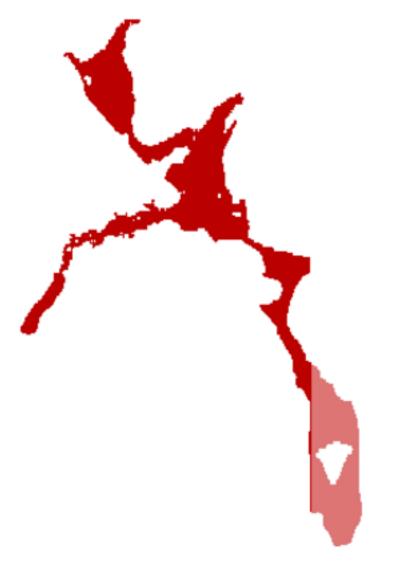



Figure 7. Coverage of DEM Raster Datasets in the Inundation Area.

| DEM Source | Source Resolution | Source Dataset       | Color |
|------------|-------------------|----------------------|-------|
| Hada       |                   |                      | _     |
| USGS       | 1 arc-second      | $usgs\_1as$          |       |
| USGS       | 1/3 arc-seconds   | usgs_13as            |       |
| USGS       | 1 meter           | $usgs\_utm\_z18\_1m$ |       |
| USGS       | 1 meter           | $usgs\_utm\_z19\_1m$ |       |

Note: The DEM for this job was created from the source DEM raster datasets listed above. These DEM raster datasets were resampled and reprojected to the user defined cell size and UTM zone, respectively. Resampled and projected DEM raster datasets were then stacked in the order specific to the group under which this simulation was submitted.

## 4.4 Maximum Flood Depth

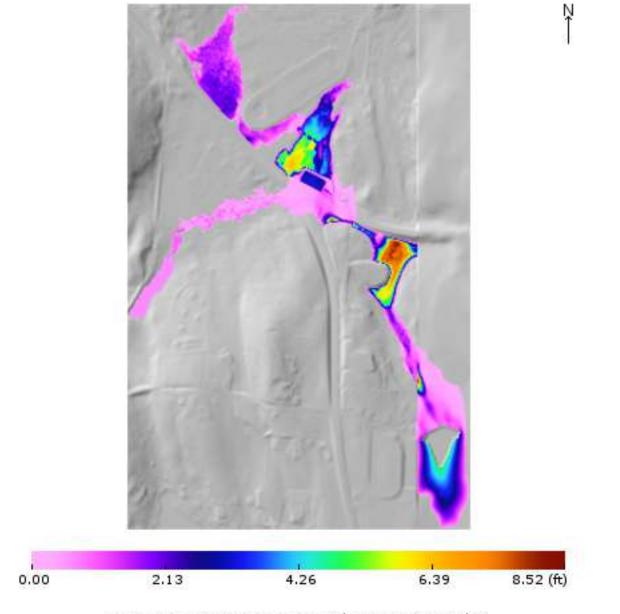
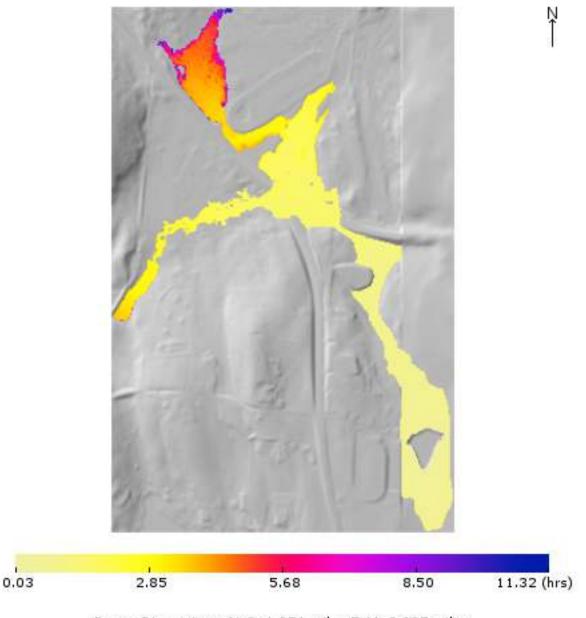




Image Dimensions: N-S: 1.051 miles E-W: 0.687 miles Figure 8. Maximum Flood Depth Map.

## 4.5 Flood Arrival Time

Flood arrival time is measured from the beginning of the simulation.

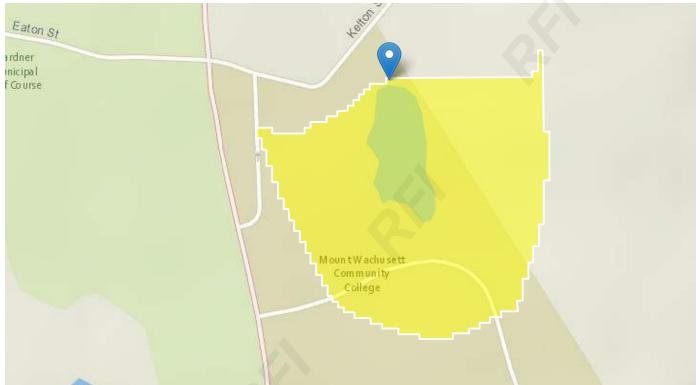




## 4.6 Downloading Simulation Results

The simulation results can be accessed at the following web address:

https://dsswiseweb.ncche.olemiss.edu/download


Job ID: 74036

|         |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CALCULAT                                                                                                                                                             | IONS                                                                  | File No.                                                                                              | <u>29913-0</u> |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------|
|         |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | with College                                                                                                                                                         |                                                                       | Sheet                                                                                                 | 1 of           |
| Client  |                                                                                                                                                                                            | nusett Commu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                      |                                                                       | Date                                                                                                  | <u>31-Jan</u>  |
| Project |                                                                                                                                                                                            | ond Dam Bread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                      |                                                                       | Computed by                                                                                           | DJB            |
| Subject | Hydraulic ar                                                                                                                                                                               | nd Hydrologic A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analysis                                                                                                                                                             |                                                                       | Checked by                                                                                            |                |
|         | Hydraulic a                                                                                                                                                                                | nd Hydrologi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c Analysis                                                                                                                                                           |                                                                       |                                                                                                       |                |
|         | Dam and ins<br>rainstorms a<br>StreamStats<br>using output<br>hydrograph<br>(NRCS) Unit<br><u>Watershed I</u><br>Total Draina<br>Ponds and s<br>Forested Are<br>Average Slo<br>Drainage Le | stalling a 6 ft wand associated<br>a developed and associated<br>be developed and associated<br>developed in a developed in a<br>t Hydrograph was a developed in a<br>developed in a developed in a<br>developed in a developed in a<br>developed in a developed in a<br>t Hydrograph was a developed in a<br>t Hydrograph was a developed in a<br>developed in a developed in a | ide by 4 ft high culve<br>peak flows were det<br>id published by the U<br>blication DSS-WISE L<br>accordance with the N<br>vebpage and UHtran<br>8 sq. mi.<br>= 7.4% | Lite supported by FEM<br>Vatural Resources Co<br>sformerVer3, dated A | 1140. The below<br>mputer program<br>I flows were calibrated<br>IA and the unit<br>nservation Service |                |
|         | Design Sto                                                                                                                                                                                 | rm Event                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                      |                                                                       |                                                                                                       |                |
|         | Annual                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                      |                                                                       | Water Depth                                                                                           |                |
|         | Exceedance                                                                                                                                                                                 | Return                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Deels Flow                                                                                                                                                           | Dand El                                                               | Above El. 1140                                                                                        |                |
|         | Probability<br>(%, AEP)                                                                                                                                                                    | Period<br>(YR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>Peak Flow</u><br>(CFS)                                                                                                                                            | Pond EL.<br>(FT)                                                      | <u>Normal Pool.</u><br>(FT)                                                                           |                |
|         | (70, ALI)                                                                                                                                                                                  | (111)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (010)                                                                                                                                                                | (1 1)                                                                 | (1 1)                                                                                                 |                |
|         |                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                    | 1140.0                                                                | 0.0                                                                                                   |                |
|         | 50                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.1                                                                                                                                                                  | 1140.5                                                                | 0.5                                                                                                   |                |
|         | 20                                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.7                                                                                                                                                                 | 1140.8                                                                | 0.8                                                                                                   |                |
|         | 10                                                                                                                                                                                         | 10<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17.6<br>25.1                                                                                                                                                         | 1141.0<br>1141.2                                                      | 1.0<br>1.2                                                                                            |                |
|         | 4                                                                                                                                                                                          | 25<br>50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31.5                                                                                                                                                                 | 1141.5                                                                | 1.2                                                                                                   |                |
|         | 1                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38.6 (38.4)                                                                                                                                                          | 1141.7                                                                | 1.7                                                                                                   |                |
|         |                                                                                                                                                                                            | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46.5                                                                                                                                                                 | 1141.9                                                                | 1.9                                                                                                   |                |
|         | 0.5                                                                                                                                                                                        | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                      |                                                                       |                                                                                                       |                |

## Old Duck Pond Dam Breach



Region ID:MAWorkspace ID:MA20250202209989000Clicked Point (Latitude, Longitude):42.59797, -71.98414NHD Stream GNIS Name of Click Point:Stream name not foundTime:2025-02-02 15:22:33 -0500



Collapse All

| Parameter<br>Code | Parameter Description                                                 | Value  | Unit            |
|-------------------|-----------------------------------------------------------------------|--------|-----------------|
| DRNAREA           | Area that drains to a point on a stream                               | 0.0748 | square<br>miles |
| ELEV              | Mean Basin Elevation                                                  | 1160   | feet            |
| LC06STOR          | Percentage of water bodies and wetlands determined from the NLCD 2006 | 7.44   | percent         |

## Peak-Flow Statistics

### Peak-Flow Statistics Parameters [Peak Statewide 2016 5156]

| Parameter Code | Parameter Name                | Value  | Units        | Min Limit | Max Limit |
|----------------|-------------------------------|--------|--------------|-----------|-----------|
| DRNAREA        | Drainage Area                 | 0.0748 | square miles | 0.16      | 512       |
| ELEV           | Mean Basin Elevation          | 1160   | feet         | 80.6      | 1948      |
| LC06STOR       | Percent Storage from NLCD2006 | 7.44   | percent      | 0         | 32.3      |

### Peak-Flow Statistics Disclaimers [Peak Statewide 2016 5156]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors.

#### Peak-Flow Statistics Flow Report [Peak Statewide 2016 5156]

| Statistic             | Value | Unit   |
|-----------------------|-------|--------|
| 50-percent AEP flood  | 7.12  | ft^3/s |
| 20-percent AEP flood  | 12.7  | ft^3/s |
| 10-percent AEP flood  | 17.6  | ft^3/s |
| 4-percent AEP flood   | 25.1  | ft^3/s |
| 2-percent AEP flood   | 31.5  | ft^3/s |
| 1-percent AEP flood   | 38.6  | ft^3/s |
| 0.5-percent AEP flood | 46.5  | ft^3/s |
| 0.2-percent AEP flood | 58.4  | ft^3/s |

#### Peak-Flow Statistics Citations

Zarriello, P.J.,2017, Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016-5156, 99 p. (https://dx.doi.org/10.3133/sir20165156)

## NHD Features of Delineated Basin

#### NHD Streams Intersecting Basin Delineation Boundary

This functionality attempts to find the stream name at the delineation point. The name of the nearest intersecting National Hydrography Dataset (NHD) stream is selected by default to appear in the report above. NHD streams do not correspond to the StreamStats stream grid and may not be accurate. If you would like a

#### StreamStats

different stream to appear in the above section, please make a selection below.

#### No NHD streams intersect the delineated basin.

#### Watershed Boundary Dataset (WBD) HUC 8 Intersecting Basin Delineation Boundary

This functionality attempts to find the intersecting HUC 8 of the delineated watershed. HUC boundaries do not correspond to the StreamStats data and may not be accurate.

| HUC 8    | Name          |
|----------|---------------|
| 01080202 | Millers River |
| 01070004 | Nashua River  |

#### NHD Hydrologic Features Citations

U.S. Geological Survey, 2022, USGS TNM - National Hydrography Dataset, accessed July 21, 2022 at URL https://hydro.nationalmap.gov/arcgis/rest/services/nhd/MapServer/6. (https://hydro.nationalmap.gov/arcgis/rest/services/nhd/MapServer/6) U.S. Geological Survey, 2022, USGS TNM - National Hydrography Dataset, accessed July 21, 2022 at URL https://hydro.nationalmap.gov/arcgis/rest/services/wbd/MapServer/4. (https://hydro.nationalmap.gov/arcgis/rest/services/wbd/MapServer/4)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.26.0 StreamStats Services Version: 1.2.22 NSS Services Version: 2.2.1



HALEY & ALDRICH, INC. 600 S Meyer Avenue Tucson, AZ 857011 520,289,8600



#### MEMORANDUM

23 February 2024 File No. 29913-027

| TO:      | Denis Bell, P.E.<br>Haley & Aldrich, Inc.                 |
|----------|-----------------------------------------------------------|
| FROM:    | Christopher Langham, Abby Haneke<br>Haley & Aldrich, Inc. |
| SUBJECT: | Emergency Action Plan                                     |

SUBJECT: Emergency Action Plan Summary of Study – Extent of Inundation Old Duck Pond Dam NID MA 02784 Gardner, Massachusetts

## Introduction

This memorandum summarizes the methods used by Haley & Aldrich, Inc. (Haley & Aldrich) to determine the extent of inundation in the event of a dam breach at the Old Duck Pond Dam (NID MA02784), in Gardner, Massachusetts.

Haley & Aldrich completed this inundation study to aid in the development of an Emergency Action Plan (EAP) for the Old Duck Pond Dam, as required by the Commonwealth of Massachusetts General Laws, M.G.L. 253, Section 44, Chapter 302 C.M.R. 10.00, "Dam Safety, dated February 10, 2017". The purpose of the EAP is to establish a basic plan of action if conditions at the dam indicate the potential for dam failure or if any individual observes and reports a dangerous condition developing at the dam.

## **Elevation Datum**

Elevations referenced in this memorandum are provided in NAVD88.

## **Old Duck Pond Dam**

In the Design Consultants Inc November 2018 "Old Duck Pond Dam Phase I Inspection/Evaluation" report, the Old Duck Pond Dam was classified as a SIGNIFICANT hazard structure. The following sections of this report summarize an inundation study for Old Duck Pond Dam, which will be used in the 2024 Old Duck Pond Dam EAP.

Haley & Aldrich, Inc. 23 February 2024 Page 2



The Old Duck Pond Dam is an earthen embankment with the spillway blocked. The dam is approximately 400-feet long with a maximum height of approximately 12-feet. Embankment slopes are graded to between 1H to 2H:1V slope downstream with some locations vertical. The upstream embankment was flooded and couldn't be observed The maximum storage volume with the water level at the top of the Dam is approximately 61.4 acre-feet. The storage volume with the water level at the normal pool level is approximately 26.6 acre-feet.

## **Methods to Determine Inundation Extent**

To determine the extent of inundation during a potential dike failure, Haley & Aldrich utilized the FEMA supported DSS-WISE Lite model for inundation mapping. The DSS-WISE Lite modeling program allows the user to input dam dimensions and breach parameters to run in a dam breach simulation. The model outputs a Simulation Report. The Simulation Report outlines all model inputs and assumptions, as well as the basic results of the simulation, including inundation maps overlaid on the DEM image.

Haley & Aldrich used the FEMA supported DSS-WISE Lite model to run two simulations: a "rainy-day breach" and a "sunny-day breach". The sunny-day breach model run is designed to simulate a dam breach due to a piping failure under otherwise normal conditions. The rainy-day breach model run is designed to simulate a dam failure due to overtopping under storm/high-water conditions.

#### **HYDROGRAPH GENERATION**

The DSS-WISE Lite modeling program allows the user to choose whether to input simulation parameters through a "Reservoir Type" simulation or a "Hydrograph Type" simulation. The "Reservoir Type" simulation requires the user to input specific parameters to model the impounded reservoir and breach geometry. In the "Hydrograph Type" simulation, the user provides a breach hydrograph, which the model propagates downstream. For this study, Haley & Aldrich utilized the "Hydrograph Type" simulation in DSS-WISE Lite.

#### **Breach Hydrograph**

To generate a breach hydrograph for the Old Duck Pond Dam, Haley & Aldrich used the "Dam Breach Hydrograph TR-60 version 3" excel spreadsheet provided on the Natural Resources Conservation Services (NRCS) website.

This spreadsheet allows the user to calculate a breach hydrograph by inputting dam dimensions. The spreadsheet references the NRCS National Engineering Manual (NEM) section 520.2 and uses the TR-60 equations from that reference to calculate a breach hydrograph.

Haley & Aldrich input the following values into this spreadsheet to calculate a breach hydrograph for the Old Duck Pond Dam. This hydrograph generation assumes a full pool with no antecedent flow.

Dam Crest Height = 12 ft



Haley & Aldrich, Inc. 23 February 2024 Page 3



Water Surface Elevation at Time of Breach = 1145.76ft Dam Top Width = 15-20 ft Dam Side Slope (upstream) = Unknown Dam Side Slope (downstream) = 1-2 Valley Floor Elevation = Unknown Reservoir Volume at Time of Breach = 61.4 acre-feet Valley Width at Dam Axis and Water Surface Elevation = Unknown Timestep for Breach Hydrograph = 5 Minutes

These calculations and resulting breach hydrograph can be found in Attachment A of this memorandum.

#### Unit Hydrograph

To generate a unit hydrograph (to model storm/high-water conditions for the rainy-day simulation), Haley & Aldrich used the "Unit Hydrograph Transformer" excel spreadsheet provided on the NRCS website.

The spreadsheet allows the user to calculate a dimensionless SCS unit hydrograph that can be used to represent a discharge versus time hydrograph for any given watershed. This calculation uses a formula provided in the NRCS document "NEH 630 Hydrology", chapter 16, equation 16A-13. The user inputs time of concentration, drainage area, and peak rate factor to the spreadsheet, and it calculates the unit hydrograph and S-curves for the given information.

For the Old Duck Pond Dam, Haley & Aldrich input the following values into this spreadsheet:

Time of Concentration = 1.4 Hours Drainage Area = 0.07 mi<sup>2</sup> Peak Rate Factor = 484 (dimensionless)

These calculations and resulting unit hydrograph can be found in Attachment B of this memorandum.

#### **DSS-WISE LITE SIMULATIONS**

#### **Sunny-Day Breach**

To model a sunny-day breach scenario, Haley & Aldrich input the NRCS spreadsheet-generated breach hydrograph into DSS-WISE Lite. The breach hydrograph used assumes a breach scenario with a full pool and no antecedent flow at the time of the breach. This breach hydrograph showed a peak flow rate during the breach of about 1,596 cubic feet per second (cfs). The input hydrograph can be found in Attachment C of this memorandum.

In addition to the breach hydrograph, Haley & Aldrich also input the following parameters into the DSS-WISE Lite Prep Tool:



Haley & Aldrich, Inc. 23 February 2024 Page 4



#### **Impounding Structure Characteristics**

| Structure Type:       | Embankment |
|-----------------------|------------|
| Crest Elevation (ft): | 1144.26    |
| Length (ft):          | 371        |

#### **Failure Conditions**

| Failure Mode:        | Sudden and Complete Breach |
|----------------------|----------------------------|
| Breach Location:     | 42.5978205568/             |
| (Latitude/Longitude) | -71.984286                 |

The DSS-WISE Lite simulation for a sunny-day breach estimated that the potential flood (2 ft or greater in depth) would travel about 0.9 miles downstream of the Old Duck Pond Dam, and generated inundation maps based on these inputs.

The sunny-day Simulation Report (including inundation maps) can be found in Attachment D of this memorandum.

#### **Rainy-Day Breach**

To model a rainy-day breach scenario, Haley & Aldrich used both the unit hydrograph and the breach hydrograph in tandem to simulate the overtopping of the dam. The peak flows of each hydrograph were added together to create a rainy-day peak flow rate during the breach of approximately 9,217 cfs. This input hydrograph can be found in Attachment C of this memorandum.

In addition to the rainy-day breach hydrograph, Haley & Aldrich also input the following parameters into the DSS-WISE Lite Prep Tool:

#### **Impounding Structure Characteristics**

| Structure Type:       | Embankment |
|-----------------------|------------|
| Crest Elevation (ft): | 1144.26    |
| Length (ft):          | 371        |

#### Failure Conditions

| Failure Mode:        | Sudden and Complete Breach |
|----------------------|----------------------------|
| Breach Location:     | 42.5977287693/             |
| (Latitude/Longitude) | -71.9841222979             |



The DSS-WISE Lite simulation for a rainy-day breach estimated that the potential flood (2 ft or greater in depth) would travel about 0.9 miles downstream of the Dow Brook Reservoir Dam, and generated inundation maps based on these inputs.

The rainy-day Simulation Report (including inundation maps) can be found in Attachment E of this memorandum.

**Enclosed Attachments:** 

Attachment A – NRCS Breach Hydrograph Calculation Attachment B – NRCS Unit Hydrograph Calculation Attachment C – DSS-WISE Lite Input Hydrographs Attachment D – Sunny-Day Simulation Report

Attachment E – Rainy-Day Simulation Report



## References



FEMA supported DSS-WISE Lite web application.

Haley & Aldrich, Inc. "Dow Brook Reservoir Dam Phase 1 Inspection/Evaluation" dated August 29, 2017.

Natural Resources Conservation Service (NRCS) Dam Breach Hydrograph webpage and "DamBreachHydrographTR60ver3" excel spreadsheet dated July 3, 2018.

Natural Resources Conservation Service (NRCS) Unit Hydrograph webpage and "UHtransformerVer3" excel spreadsheet dated August 2016.

 $G:\label{eq:constraint} G:\label{eq:constraint} G:\label{eq:constraint} G:\label{eq:constraint} G:\label{eq:constraint} G:\label{eq:constraint} G:\label{eq:constraint} O:\label{eq:constraint} O:\l$ 







Attachment A

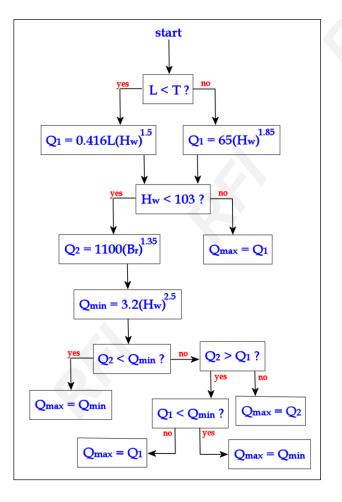
NRCS Breach Hydrograph Calculation



### Welcome to DamBreachHydrographTR60.

This tool takes dam embankment and reservoir storage information as input and computes a dam breach peak outflow, using TR-60 equations, and an associated dam breach hydrograph, using the TR-66 AttKin curvilinear routing equations.

This button opens a web page:


go get TR-60 and / or TR-66

The flow chart at right shows the TR-60 guidance, which depends on key factors, such as whether the reservoir head at breach time is more or less than 103 feet, and the volume of water stored behind the dam.

The user must insert input on the data sheet in the gray-shaded cells. The output is automatically computed in the output section, light blue cells.

In addition, the breach outflow hydrograph is automatically generated, given the userdesired hydrograph timestep. (This timestep may be chosen based on intended use in other programs, such as HecRAS.)

A button on the data sheet gives the user the option to have the program automatically adjust the graph scale.



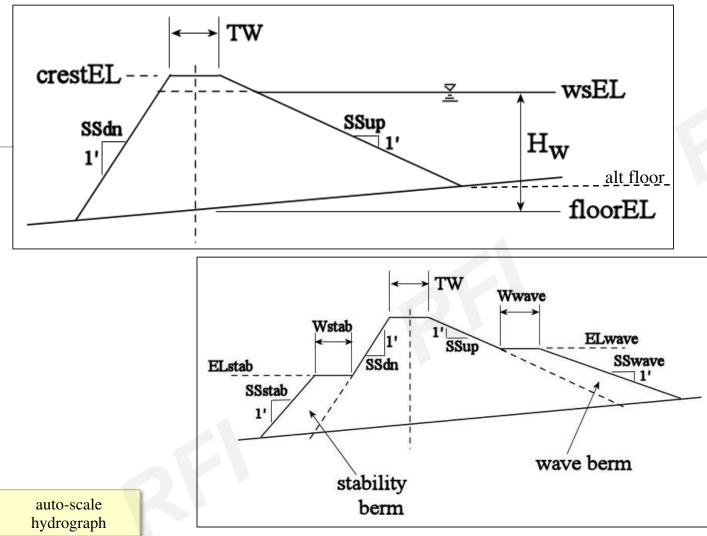
#### NOTE:

The user must decide on a reasonable "floor elevation" from which H<sub>w</sub> is determined.

For dams on steep streams the choice of floor elevation may significantly effect results.

The user may wish to select a floor elevation as high as the "alt floor" as shown in the sketch on the data sheet. For steep streams the selection of floor elevation may be guided by the engineering judgement of the reasonable maximum depth a breach may penetrate into the embankment.

See the NRCS National Engineering Manual (NEM), section 520.2 on Dams for more information.


go get NEM 520.2 on Dams

## Dambreach Hydrographs via TRs 60 & 66 NRCS guidance

version 3, July 2018

| Input data required: |         |                                             |  |
|----------------------|---------|---------------------------------------------|--|
| data variable        |         | explanation                                 |  |
| 1145.76              | crestEL | dam crest elevation                         |  |
| 1145.76              | wsEL    | w.s. elev at time of breach                 |  |
| 30                   | TW      | dam top width (feet)                        |  |
| 1                    | SSup    | dam side slope (upstream, SSup:1)           |  |
| 2                    | SSdn    | dam side slope (downstream, SSdn:1)         |  |
| 1133.76              | floorEL | valley floor elev (see note)                |  |
| 61.4                 | Vs      | resv vol at time of breach (acre-feet)      |  |
| 400                  | L       | valley width at dam axis & w.s. elev (feet) |  |
|                      | ELwave  | top of wave berm elevation                  |  |
|                      | Wwave   | width of top of wave berm feet              |  |
|                      | SSwave  | wave berm side slope (SSwave:1)             |  |
|                      | ELstab  | top of stability berm elevation             |  |
|                      | Wstab   | width of top of stability berm (feet)       |  |
|                      | SSstab  | stability berm side slope (SSstab:1)        |  |
| 5                    | ts      | timestep (minutes) for breach hydrograph    |  |

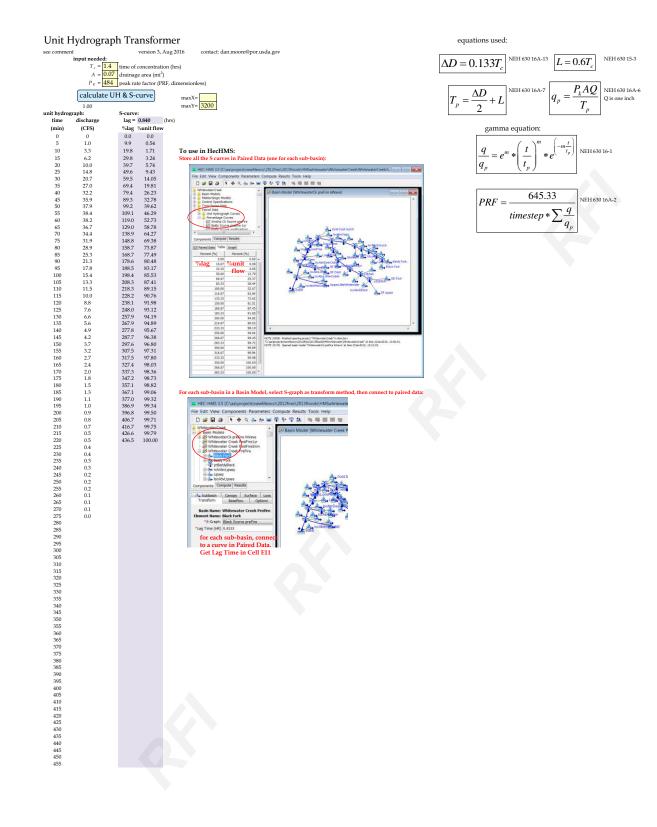
| output                                    |         | breach hydr |         |  |
|-------------------------------------------|---------|-------------|---------|--|
| variable                                  | results | time (min)  | Q (cfs) |  |
| Т                                         | 373     | 0           | 0       |  |
| (L ≤ T)?                                  | Ν       | 5           | 1596    |  |
| $H_{w}$                                   | 12      | 10          | 1116    |  |
| $Q_1$                                     | 6448    | 15          | 933     |  |
| $(H_w \le 103)?$                          | Y       | 20          | 780     |  |
| Awave                                     | 0       | 25          | 652     |  |
| Astab                                     | 0       | 30          | 545     |  |
| А                                         | 576     | 35          | 456     |  |
| Br                                        | 1       | 40          | 381     |  |
| Q <sub>2</sub>                            | 1534    | 45          | 319     |  |
| Q <sub>min</sub>                          | 1596    | 50          | 266     |  |
| $(Q_2 \leq Q_{\min})$ ?                   | Y       | 55          | 223     |  |
| $(Q_2 > Q_1)?$                            | Ν       | 60          | 186     |  |
| $(\mathbf{Q}_1 \leq \mathbf{Q}_{\min})$ ? | Ν       | 65          | 156     |  |
| Q <sub>max</sub>                          | 1596    | 70          | 130     |  |
|                                           |         | 75          | 109     |  |
|                                           |         | 80          | 91      |  |
|                                           | 85      | 76          |         |  |





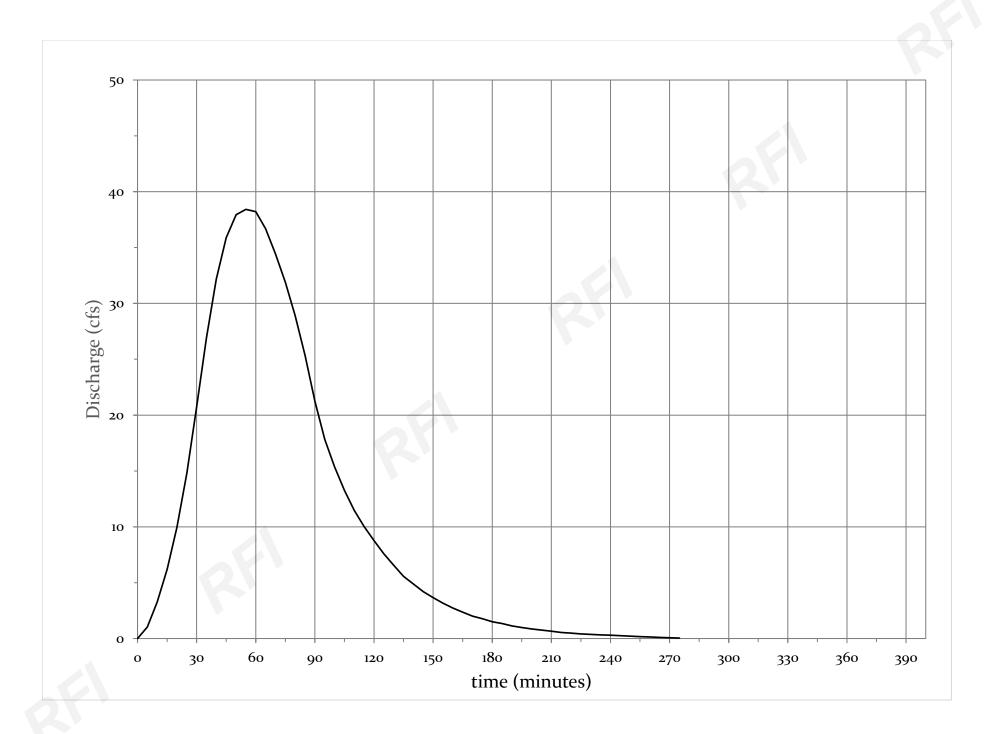
discharge (cfs) **time (minutes)** 

breach hydrograph

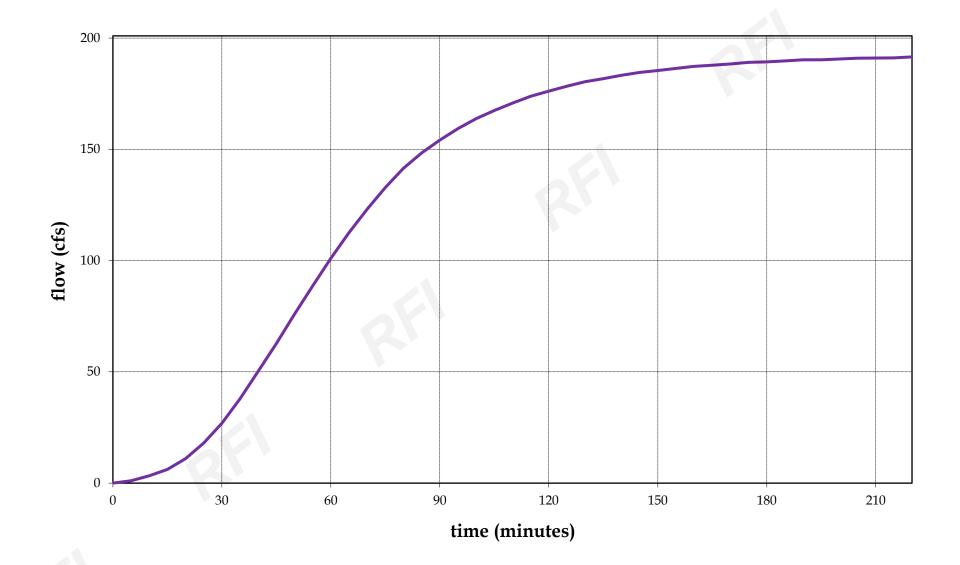





Attachment B


NRCS Unit Hydrograph Calculation







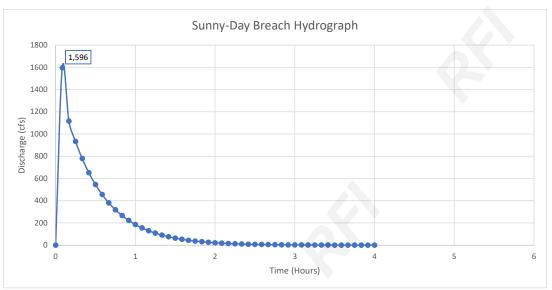




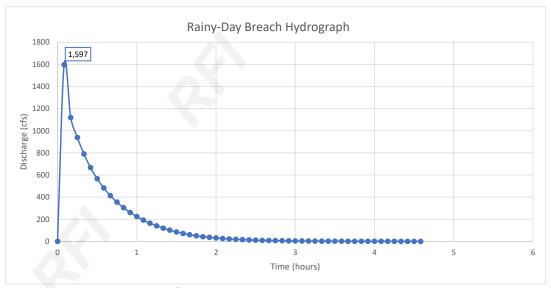







Attachment C


DSS-WISE Lite Input Hydrographs







Note: This hydrograph is just the breach hydrograph calculated by the NRCS spreadsheet.



Note: This hydrograph is the addition of the NRCS calculated unit hydrograph and breach hydrograph.







Attachment D

Sunny-Day Simulation Report



National Center for Computational Hydroscience and Engineering (NCCF

> The Universit of Mississipp



# DSS-WISE<sup>™</sup> Lite Flood Simulation Report

Hydrograph-type, sudden and complete br each

Sunny Day Breach - Old Duck Pond

NAXXXXX

February 22, 2024

Contact Information: DSS-WISE™ Lite modeling questions: admin@dsswiseweb.ncche.olemiss.edu



FOR OFFICIAL USE ONLY

## Table of Contents

| 1.0 | Over                 | view 1                                                            | 1 |
|-----|----------------------|-------------------------------------------------------------------|---|
| 2.0 | Mode                 | eling Parameters and Conditions                                   | 3 |
|     | 2.1                  | Project Information                                               | 3 |
|     | 2.2                  | Simulation Parameters                                             |   |
|     | 2.3                  | Impounding Structure(s) Characteristics                           | 3 |
|     | 2.4                  | Bridge(s) to be Removed                                           |   |
|     | 2.5                  | User-Drawn Levees                                                 | 1 |
|     | 2.6                  | User-Specified Breach Hydrograph                                  | 1 |
|     | 2.7                  | Reservoir Characteristics                                         | 1 |
|     | 2.8                  | Failure Conditions                                                | 5 |
| 3.0 | Auto                 | mated Data Preparation and Job Flow Summary                       |   |
|     | 3.1                  | Job Flow Summary                                                  | 3 |
|     | 3.2                  | Reservoir Bathymetry and Filling                                  |   |
|     | 3.3                  | Data Sources                                                      | 3 |
|     | 3.4                  | Digital Elevation Model                                           | 9 |
|     | 3.5                  | Reservoir Boundary and Breaching Structure                        | ) |
|     | 3.6                  | Reservoir Initial Depth Profile11                                 | 1 |
|     | 3.7                  | Land Use/Land Cover                                               | 2 |
| 4.0 | 0 Simulation Results |                                                                   |   |
|     | 4.1                  | Simulation Summary                                                | 3 |
|     | 4.2                  | Land Use and Manning's Roughness Coefficient for Inundated Area14 | 1 |
|     | 4.3                  | Coverage and Sources of DEM Raster Datasets 15                    | 5 |
|     | 4.4                  | Maximum Flood Depth                                               | 7 |
|     | 4.5                  | Flood Arrival Time                                                | 3 |
|     | 4.6                  | Downloading Simulation Results                                    | Э |

## 1.0 Overview

The Decision Support System for Water Infrastructure Security (DSS-WISE<sup>TM</sup>) is an integrated software package combining 2D numerical flood modeling capabilities with a series of GIS-based decision support tools. It was developed by the National Center for Computational Hydroscience and Engineering (NCCHE) at the University of Mississippi and was initiated by the US Department of Homeland Security (DHS) Science and Technology Directorate through the Southeast Region Research Initiative (SERRI) Program.

A simplified, and fully automated, version of the DSS-WISE<sup>™</sup> software suite (DSS-WISE<sup>™</sup> Lite Ver 1.0) was developed on behalf of the US Army Corps of Engineers (USACE) Critical Infrastructure Protection and Resilience (CIPR) Program and the DHS Office of Infrastructure Protection. This simplified dam break flood modeling capability was available to interested parties through the Dams Sector Analysis Tool (DSAT) secure web portal until November 2014. An updated version with more features was developed on behalf of Federal Emergency Management (FEMA) and is available at dsswiseweb.ncche.olemiss.edu.

The DSS-WISE<sup>TM</sup> Lite software suite, running on NCCHE servers, automatically processes input files for dam-break modeling scenarios submitted by an user. DSS-WISE<sup>TM</sup> Lite further simplifies simulations by making several general overarching assumptions in an effort to streamline data preparation and computations.

The results produced by this simplified dam-break flood simulation tool represent a rough approximation. They are not intended to replace more detailed flood inundation modeling and mapping products or capabilities developed by hydraulic and hydrologic engineers and GIS professionals.

The user is, therefore, warned that professional engineering judgment should be used in the interpolation of the results generated by this simplified and automated dam-break flood analysis.

To learn more about DSS-WISE<sup>TM</sup> and DSS-WISE<sup>TM</sup> Lite visit us at: https://dsswiseweb.ncche.olemiss.edu

## Disclaimer

The National Center for Computational Hydroscience and Engineering (NCCHE), The University of Mississippi, makes no representations pertaining to the suitability of the results provided herein for any purpose whatsoever. All content contained herein is provided "as is" and is not presented with any warranty of any form. NCCHE hereby disclaims all conditions and warranties in regard to the content, including but not limited to any and all conditions of merchantability and implied warranties, suitability for a particular purpose or purposes, non-infringement and title. In no event shall NCCHE be liable for any indirect, special, consequential or exemplary damages or any damages whatsoever, including but not limited to the loss of data, use or profits, without regard to the form of any action, including but not limited to negligence or other tortious actions that arise out of or in connection with the copying, display or use of the content provided herein.

## **Elevation Datum**

All reported elevations use the North American Vertical Datum of 1988 (NAVD 88).

## 2.0 Modeling Parameters and Conditions

## 2.1 Project Information

| Project Name:         | Sunny Day Breach - Old Duck Pond        |  |
|-----------------------|-----------------------------------------|--|
| Scenario Name:        | Hydrograph-type, sudden and complete br |  |
|                       | each                                    |  |
| NIDID:                | NAXXXXX                                 |  |
| Scenario Description: | 1 active reservoir 1 active impounding  |  |
|                       | structure hydrograph-type, sudden and c |  |
|                       | omplete breach of Dam 1                 |  |
| User e-mail:          | ahaneke@haleyaldrich.com                |  |
| Group:                | MASSACHUSETTS                           |  |

## 2.2 Simulation Parameters

| Domain buffer distance (miles):       | 10   |
|---------------------------------------|------|
| Simulation cell size requested (ft):  | 15.0 |
| Simulation duration requested (days): | 5    |

## 2.3 Impounding Structure(s) Characteristics

### Number of Structures: 1

| Structure Name:        | Dam 1         |
|------------------------|---------------|
| Structure Type:        | Embankment    |
| Hydraulic Height (ft): | 12.0          |
| Crest Elevation (ft):  | 1144.26       |
| Length (ft):           | 370.813156292 |

## 2.4 Bridge(s) to be Removed

Number of Bridges: 0

## 2.5 User-Drawn Levees

Number of User-Drawn Levees: 0

## 2.6 User-Specified Breach Hydrograph

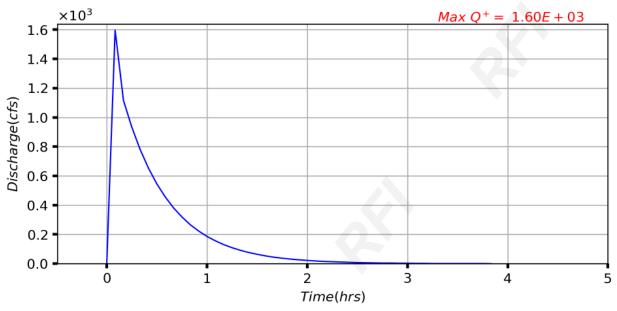
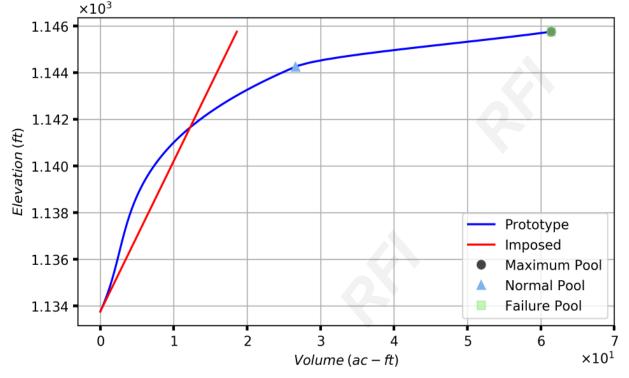



Figure 1. Breach inflow hydrograph for: Dam 1.

## 2.7 Reservoir Characteristics

Number of Reservoirs: 1

| Reservoir Name:                                     | Reservoir 1                  |
|-----------------------------------------------------|------------------------------|
| Selected Reservoir Point (Lati-<br>tude/Longitude): | 42.5977287693/-71.9841222979 |
| Pool Elevation @ Max Storage (ft):                  | 1145.76                      |
| Maximum Storage Volume (ac-ft):                     | 61.4                         |
| Pool Elevation @ Normal Storage (ft):               | 1144.26                      |
| Normal Storage Volume (ac-ft):                      | 26.6                         |
| Pool Elevation @ Failure (ft):                      | 1145.76                      |
| Failure Storage Volume (ac-ft):                     | 61.4                         |


## 2.8 Failure Conditions

| Structure Name:                       | Dam 1                    |  |
|---------------------------------------|--------------------------|--|
| Structure Type:                       | Embankment               |  |
| Failure Mode:                         | Total Dam Breach         |  |
| Breach Location (Latitude/Longitude): | 42.5978205568/-71.984286 |  |

## 3.0 Automated Data Preparation and Job Flow Summary

## 3.1 Job Flow Summary

- 1. Prepare Digital Elevation Model (DEM) and Land Use/Land Cover (LULC) tiles for the Area of Interest (AOI) based on requested cellsize and maximum downstream distance.
- 2. Burn U.S. Army Corps of Engineers (USACE) level lines and group-specific level lines (if any) within the AOI, as well as any user-drawn levels into the DEM.
- 3. Assign Manning's coefficients based on LULC classifications.
- 4. Validate user provided simulation input parameters.
- 5. Remove user identified bridges from the DEM.
- 6. Estimate reservoir bathymetry.
- 7. Extend impounding structures if the specified reservoir level cannot be contained.
- 8. Fill reservoir to specified failure elevation.
- 9. Prepare boundary condition and all input data for simulation.



## 3.2 Reservoir Bathymetry and Filling

Figure 2. Stage-Volume Curve for Reservoir: Reservoir 1.

**Prototype:** Theoretical cubic Hermite spline curve generated from user-provided reservoir elevation and volume information.

**Imposed**: Measured from reservoir bathymetry after filling to the failure elevation.

The reservoir water surface was detected to be in the DEM, so bathymetry estimation was performed using the prototype stage-volume curve shown above.

User-given Storage Volume at Failure (ac-ft): 61.4

Imposed Storage Volume at Failure (ac-ft): 18.6

After filling to the failure elevation, the imposed reservoir volume matched 30.3% of the prototype volume.

Extended Structures:

Dam 1 has been extended to contain the reservoir.

## 3.3 Data Sources

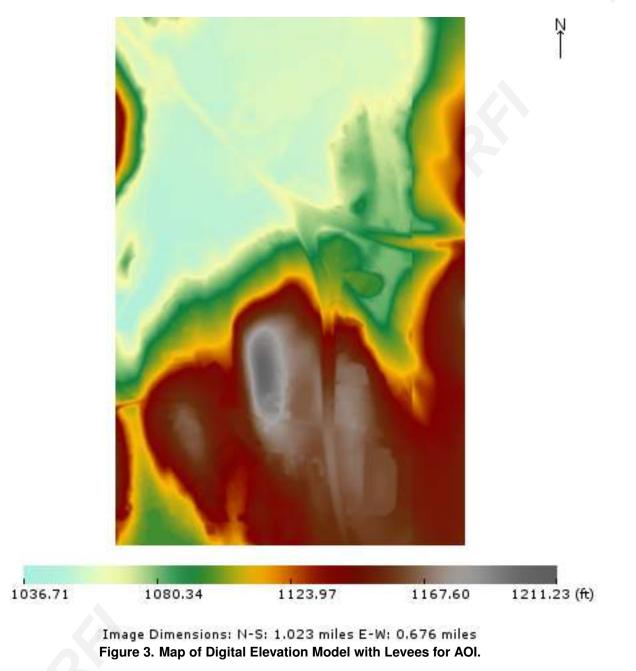
1. Digital Elevation Models

Sources: USGS 3D Elevation Program (3DEP) 2019 datasets, NOAA, and any group-specific DEM data if provided

Resolutions: 2, 1, 1/3, and 1/9th arc-second, 1 meter, and varying resolutions of group-specific DEM data (if any), based upon availability

Vertical Datum: NAVD88

Horizontal Datum: NAD83


2. National Land Use/Land Cover Data

Sources: USGS 2016 (CONUS), 2011 (Alaska), and 2001 (Hawaii and Puerto Rico) Resolution: 30 m

- 3. National Levee Database Source: USACE
- 4. Group-specific levee data

Source: Provided by individual groups

## 3.4 Digital Elevation Model



## 3.5 Reservoir Boundary and Breaching Structure

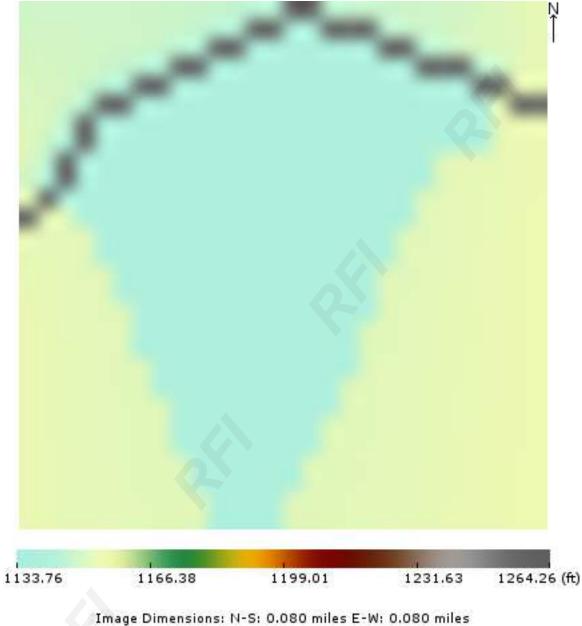



Figure 4. Map of Reservoir Boundary and Breached Structure.

## 3.6 Reservoir Initial Depth Profile

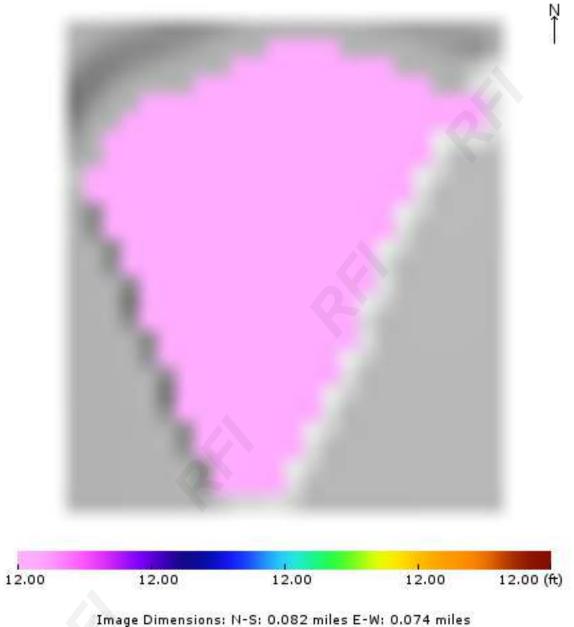



Figure 5. Map of Initial Depths in Reservoir at Failure Conditions.

## 3.7 Land Use/Land Cover

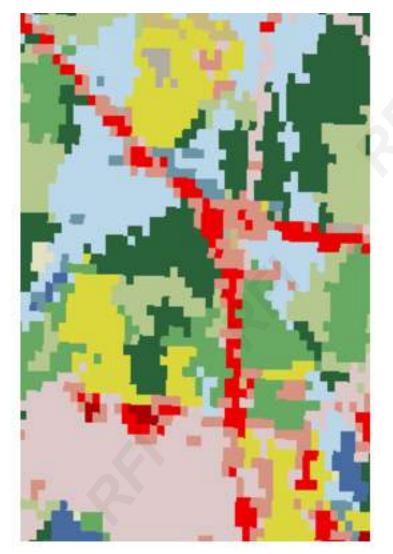



Image Dimensions: N-S: 1.023 miles E-W: 0.676 miles Figure 6. Map of Land Use for AOI. Ņ

## 4.0 Simulation Results

## 4.1 Simulation Summary

| Simulation Request Received:                           | 10:43 AM CST (02/22/2024)   |
|--------------------------------------------------------|-----------------------------|
| Simulation Start Time:                                 | 10:44 AM CST $(02/22/2024)$ |
| Simulation End Time:                                   | 10:45 AM CST $(02/22/2024)$ |
| DEM resolution used for simulation (ft):               | 15.0                        |
| DEM resolution requested (ft):                         | 15.0                        |
| Final distance reached downstream (miles):             | 0.9                         |
| Domain buffer distance (miles):                        | 10                          |
| Elapsed simulation time after breach initiation (hrs): | 11.3                        |
| Termination condition:                                 | Water stopped spreading.    |

| Land Use Description         | % of Inundated Area | n-Value $(m^{-1/3}s)$ | Code | Color |
|------------------------------|---------------------|-----------------------|------|-------|
|                              |                     |                       |      |       |
| Woody Wetlands               | 45.16               | 0.1500                | 90   |       |
| Developed, Low Density       | 9.47                | 0.0678                | 22   |       |
| Hay/Pasture                  | 8.99                | 0.0350                | 81   |       |
| Evergreen Forest *           | 7.56                | 0.1000                | 42   |       |
| Emergent Herbaceous Wetlands | 7.35                | 0.1825                | 95   |       |
| Developed, Open Space        | 5.69                | 0.0404                | 21   |       |
| Open Water                   | 5.04                | 0.0330                | 11   |       |
| Developed, Medium Density    | 4.67                | 0.0678                | 23   |       |
| Mixed Forest *               | 3.21                | 0.1200                | 43   |       |
| Deciduous Forest *           | 2.27                | 0.1000                | 41   |       |
| Barren Land                  | 0.28                | 0.0113                | 31   |       |
| Grassland/Herbaceous         | 0.24                | 0.0400                | 71   |       |
| Unclassified                 | 0.00                | 0.0350                | 0    |       |
| Perennial Snow/Ice           | 0.00                | 0.0100                | 12   |       |
| Developed, High Density      | 0.00                | 0.0404                | 24   |       |
| Dwarf Scrub *                | 0.00                | 0.0350                | 51   |       |
| Shrub/Scrub                  | 0.00                | 0.0400                | 52   |       |
| Sedge/Herbaceous $*$         | 0.00                | 0.0350                | 72   |       |
| Lichens *                    | 0.00                | 0.0350                | 73   |       |
| Moss *                       | 0.00                | 0.0350                | 74   |       |
| Cultivated Crops             | 0.00                | 0.0700                | 82   |       |

### 4.2 Land Use and Manning's Roughness Coefficient for Inundated Area

Note: \* indicates an n-value estimated by NCCHE. \*\* indicates an n-value given by the user. Other values are taken from literature.

### 4.3 Coverage and Sources of DEM Raster Datasets



Figure 7. Coverage of DEM Raster Datasets in the Inundation Area.

Ņ

| DEM Source | Source Resolution | Source Dataset  | Color |
|------------|-------------------|-----------------|-------|
| USGS       | 1 arc-second      | usgs_1as        |       |
| USGS       | 1/3 arc-seconds   | usgs_13as       |       |
| USGS       | 1 meter           | usgs_utm_z18_1m |       |
| USGS       | 1 meter           | usgs_utm_z19_1m |       |

Note: The DEM for this job was created from the source DEM raster datasets listed above. These DEM raster datasets were resampled and reprojected to the user defined cell size and UTM zone, respectively. Resampled and projected DEM raster datasets were then stacked in the order specific to the group under which this simulation was submitted.

### 4.4 Maximum Flood Depth

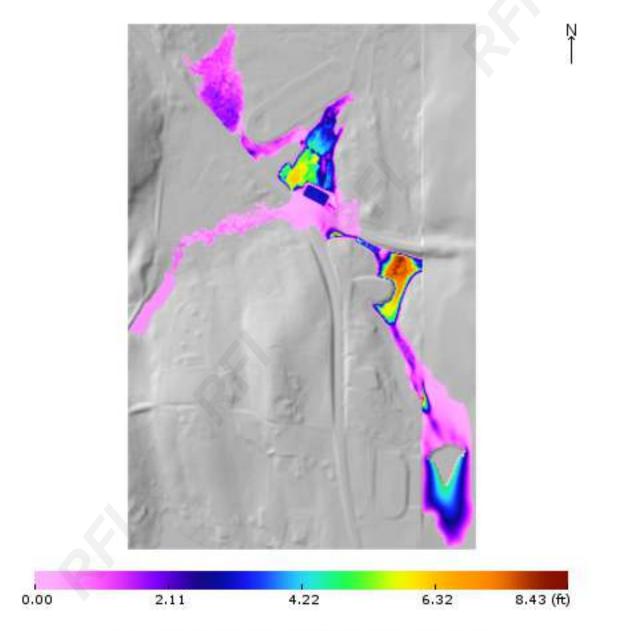
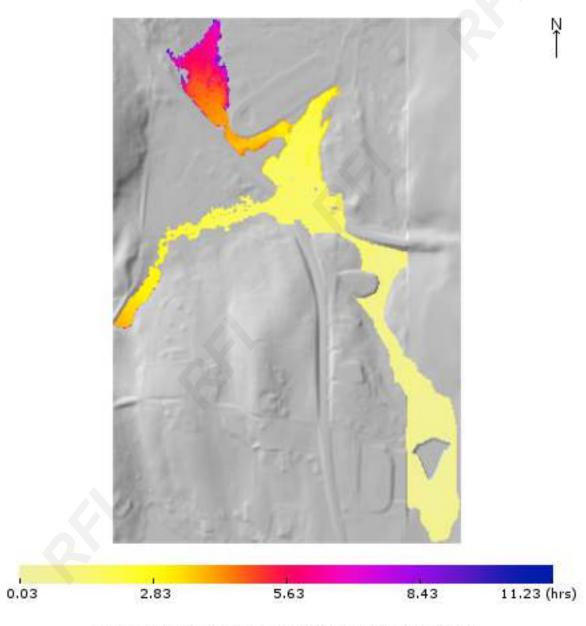
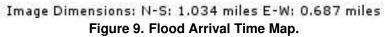





Image Dimensions: N-S: 1.034 miles E-W: 0.687 miles Figure 8. Maximum Flood Depth Map.

### 4.5 Flood Arrival Time

Flood arrival time is measured from the beginning of the simulation.





### 4.6 Downloading Simulation Results

The simulation results can be accessed at the following web address:

https://dsswiseweb.ncche.olemiss.edu/download

Job ID: 74035







Attachment E

**Rainy-Day Simulation Report** 



National Center for Computational Hydroscience and Engineering (NCCF

> The Universit of Mississipp



# DSS-WISE<sup>™</sup> Lite Flood Simulation Report

Hydrograph-type, sudden and complete br each

Rainy Day Breach - Old Duck Pond

NAXXXXX

February 22, 2024

Contact Information: DSS-WISE™ Lite modeling questions: admin@dsswiseweb.ncche.olemiss.edu



## Table of Contents

| 1.0 | Over                                                                                                  | view 1                                                                                                                                                                                                                                             |
|-----|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.0 | Mode                                                                                                  | eling Parameters and Conditions 3                                                                                                                                                                                                                  |
|     | 2.1<br>2.2                                                                                            | Project Information                                                                                                                                                                                                                                |
|     | 2.3<br>2.4                                                                                            | Impounding Structure(s) Characteristics       3         Bridge(s) to be Removed       3                                                                                                                                                            |
|     | 2.5                                                                                                   | User-Drawn Levees                                                                                                                                                                                                                                  |
|     | 2.6<br>2.7<br>2.8                                                                                     | User-Specified Breach Hydrograph       4         Reservoir Characteristics       4         Failure Conditions       5                                                                                                                              |
| 3.0 | Auto                                                                                                  | mated Data Preparation and Job Flow Summary 6                                                                                                                                                                                                      |
|     | <ol> <li>3.1</li> <li>3.2</li> <li>3.3</li> <li>3.4</li> <li>3.5</li> <li>3.6</li> <li>3.7</li> </ol> | Job Flow Summary6Reservoir Bathymetry and Filling7Data Sources8Digital Elevation Model9Reservoir Boundary and Breaching Structure10Reservoir Initial Depth Profile11Land Use/Land Cover12                                                          |
| 4.0 | Simu                                                                                                  | Ilation Results                                                                                                                                                                                                                                    |
|     | 4.1<br>4.2<br>4.3<br>4.4<br>4.5                                                                       | Simulation Summary       13         Land Use and Manning's Roughness Coefficient for Inundated Area       14         Coverage and Sources of DEM Raster Datasets       15         Maximum Flood Depth       17         Flood Arrival Time       18 |
|     | 4.6                                                                                                   | Downloading Simulation Results                                                                                                                                                                                                                     |

### 1.0 Overview

The Decision Support System for Water Infrastructure Security (DSS-WISE<sup>TM</sup>) is an integrated software package combining 2D numerical flood modeling capabilities with a series of GIS-based decision support tools. It was developed by the National Center for Computational Hydroscience and Engineering (NCCHE) at the University of Mississippi and was initiated by the US Department of Homeland Security (DHS) Science and Technology Directorate through the Southeast Region Research Initiative (SERRI) Program.

A simplified, and fully automated, version of the DSS-WISE<sup>™</sup> software suite (DSS-WISE<sup>™</sup> Lite Ver 1.0) was developed on behalf of the US Army Corps of Engineers (USACE) Critical Infrastructure Protection and Resilience (CIPR) Program and the DHS Office of Infrastructure Protection. This simplified dam break flood modeling capability was available to interested parties through the Dams Sector Analysis Tool (DSAT) secure web portal until November 2014. An updated version with more features was developed on behalf of Federal Emergency Management (FEMA) and is available at dsswiseweb.ncche.olemiss.edu.

The DSS-WISE<sup>TM</sup> Lite software suite, running on NCCHE servers, automatically processes input files for dam-break modeling scenarios submitted by an user. DSS-WISE<sup>TM</sup> Lite further simplifies simulations by making several general overarching assumptions in an effort to streamline data preparation and computations.

The results produced by this simplified dam-break flood simulation tool represent a rough approximation. They are not intended to replace more detailed flood inundation modeling and mapping products or capabilities developed by hydraulic and hydrologic engineers and GIS professionals.

The user is, therefore, warned that professional engineering judgment should be used in the interpolation of the results generated by this simplified and automated dam-break flood analysis.

To learn more about DSS-WISE<sup>TM</sup> and DSS-WISE<sup>TM</sup> Lite visit us at: https://dsswiseweb.ncche.olemiss.edu

### Disclaimer

The National Center for Computational Hydroscience and Engineering (NCCHE), The University of Mississippi, makes no representations pertaining to the suitability of the results provided herein for any purpose whatsoever. All content contained herein is provided "as is" and is not presented with any warranty of any form. NCCHE hereby disclaims all conditions and warranties in regard to the content, including but not limited to any and all conditions of merchantability and implied warranties, suitability for a particular purpose or purposes, non-infringement and title. In no event shall NCCHE be liable for any indirect, special, consequential or exemplary damages or any damages whatsoever, including but not limited to the loss of data, use or profits, without regard to the form of any action, including but not limited to negligence or other tortious actions that arise out of or in connection with the copying, display or use of the content provided herein.

### **Elevation Datum**

All reported elevations use the North American Vertical Datum of 1988 (NAVD 88).

### 2.0 Modeling Parameters and Conditions

### 2.1 Project Information

| Project Name:         | Rainy Day Breach - Old Duck Pond        |  |
|-----------------------|-----------------------------------------|--|
| Scenario Name:        | Hydrograph-type, sudden and complete br |  |
|                       | each                                    |  |
| NIDID:                | NAXXXXX                                 |  |
| Scenario Description: | 1 active reservoir 1 active impounding  |  |
|                       | structure hydrograph-type, sudden and c |  |
|                       | omplete breach of Dam 1                 |  |
| User e-mail:          | ahaneke@haleyaldrich.com                |  |
| Group:                | MASSACHUSETTS                           |  |

#### 2.2 Simulation Parameters

| Domain buffer distance (miles):       | 10   |
|---------------------------------------|------|
| Simulation cell size requested (ft):  | 15.0 |
| Simulation duration requested (days): | 5    |

### 2.3 Impounding Structure(s) Characteristics

#### Number of Structures: 1

| Structure Name:        | Dam 1         |
|------------------------|---------------|
| Structure Type:        | Embankment    |
| Hydraulic Height (ft): | 12.0          |
| Crest Elevation (ft):  | 1144.26       |
| Length (ft):           | 370.813156292 |

### 2.4 Bridge(s) to be Removed

Number of Bridges: 0

### 2.5 User-Drawn Levees

Number of User-Drawn Levees: 0

### 2.6 User-Specified Breach Hydrograph

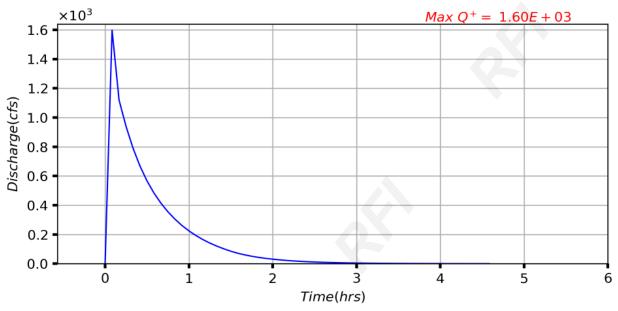
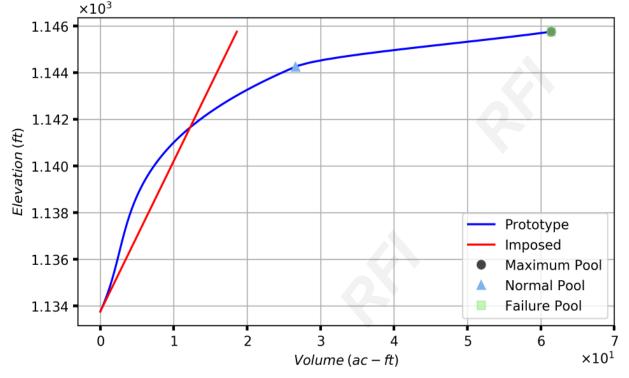



Figure 1. Breach inflow hydrograph for: Dam 1.

### 2.7 Reservoir Characteristics

Number of Reservoirs: 1

| Reservoir Name:                                     | Reservoir 1                  |
|-----------------------------------------------------|------------------------------|
| Selected Reservoir Point (Lati-<br>tude/Longitude): | 42.5977287693/-71.9841222979 |
| Pool Elevation @ Max Storage (ft):                  | 1145.76                      |
| Maximum Storage Volume (ac-ft):                     | 61.4                         |
| Pool Elevation @ Normal Storage (ft):               | 1144.26                      |
| Normal Storage Volume (ac-ft):                      | 26.6                         |
| Pool Elevation @ Failure (ft):                      | 1145.76                      |
| Failure Storage Volume (ac-ft):                     | 61.4                         |


### 2.8 Failure Conditions

| Structure Name:                       | Dam 1                    |
|---------------------------------------|--------------------------|
| Structure Type:                       | Embankment               |
| Failure Mode:                         | Total Dam Breach         |
| Breach Location (Latitude/Longitude): | 42.5978205568/-71.984286 |

## 3.0 Automated Data Preparation and Job Flow Summary

### 3.1 Job Flow Summary

- 1. Prepare Digital Elevation Model (DEM) and Land Use/Land Cover (LULC) tiles for the Area of Interest (AOI) based on requested cellsize and maximum downstream distance.
- 2. Burn U.S. Army Corps of Engineers (USACE) level lines and group-specific level lines (if any) within the AOI, as well as any user-drawn levels into the DEM.
- 3. Assign Manning's coefficients based on LULC classifications.
- 4. Validate user provided simulation input parameters.
- 5. Remove user identified bridges from the DEM.
- 6. Estimate reservoir bathymetry.
- 7. Extend impounding structures if the specified reservoir level cannot be contained.
- 8. Fill reservoir to specified failure elevation.
- 9. Prepare boundary condition and all input data for simulation.



### 3.2 Reservoir Bathymetry and Filling

Figure 2. Stage-Volume Curve for Reservoir: Reservoir 1.

**Prototype:** Theoretical cubic Hermite spline curve generated from user-provided reservoir elevation and volume information.

**Imposed**: Measured from reservoir bathymetry after filling to the failure elevation.

The reservoir water surface was detected to be in the DEM, so bathymetry estimation was performed using the prototype stage-volume curve shown above.

User-given Storage Volume at Failure (ac-ft): 61.4

Imposed Storage Volume at Failure (ac-ft): 18.6

After filling to the failure elevation, the imposed reservoir volume matched 30.3% of the prototype volume.

Extended Structures:

Dam 1 has been extended to contain the reservoir.

#### 3.3 Data Sources

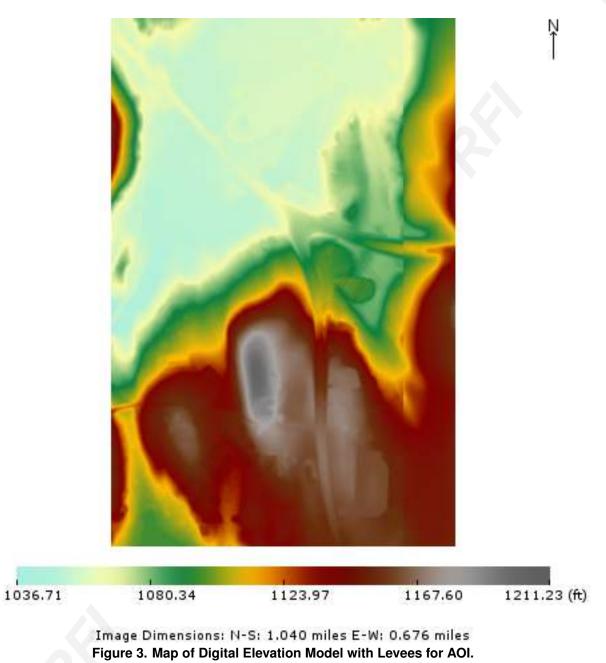
1. Digital Elevation Models

Sources: USGS 3D Elevation Program (3DEP) 2019 datasets, NOAA, and any group-specific DEM data if provided

Resolutions: 2, 1, 1/3, and 1/9th arc-second, 1 meter, and varying resolutions of group-specific DEM data (if any), based upon availability

Vertical Datum: NAVD88

Horizontal Datum: NAD83


2. National Land Use/Land Cover Data

Sources: USGS 2016 (CONUS), 2011 (Alaska), and 2001 (Hawaii and Puerto Rico) Resolution: 30 m

- 3. National Levee Database Source: USACE
- 4. Group-specific levee data

Source: Provided by individual groups

### 3.4 Digital Elevation Model



### 3.5 Reservoir Boundary and Breaching Structure

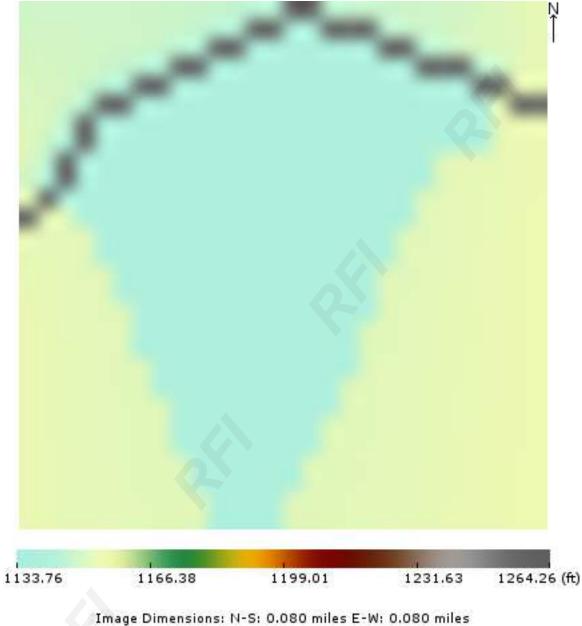



Figure 4. Map of Reservoir Boundary and Breached Structure.

### 3.6 Reservoir Initial Depth Profile

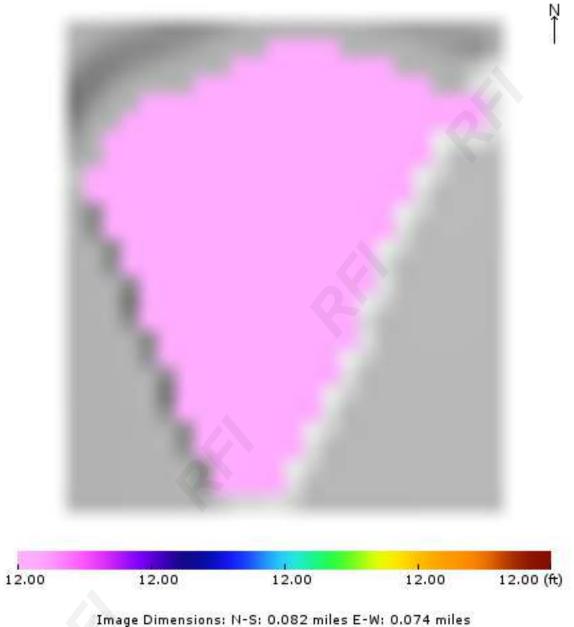



Figure 5. Map of Initial Depths in Reservoir at Failure Conditions.

### 3.7 Land Use/Land Cover

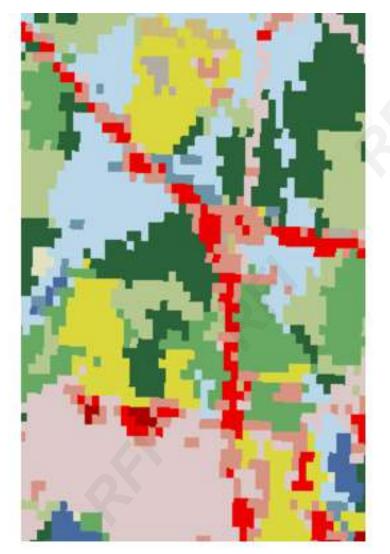



Image Dimensions: N-S: 1.040 miles E-W: 0.676 miles Figure 6. Map of Land Use for AOI. Ň

## 4.0 Simulation Results

### 4.1 Simulation Summary

| Simulation Request Received:                           | 11:08 AM CST (02/22/2024)   |
|--------------------------------------------------------|-----------------------------|
| Simulation Start Time:                                 | 11:09 AM CST $(02/22/2024)$ |
| Simulation End Time:                                   | 11:11 AM CST (02/22/2024)   |
| DEM resolution used for simulation (ft):               | 15.0                        |
| DEM resolution requested (ft):                         | 15.0                        |
| Final distance reached downstream (miles):             | 0.9                         |
| Domain buffer distance (miles):                        | 10                          |
| Elapsed simulation time after breach initiation (hrs): | 11.4                        |
| Termination condition:                                 | Water stopped spreading.    |

| Land Use Description         | % of Inundated Area | n-Value $(m^{-1/3}s)$ | Code | Color |
|------------------------------|---------------------|-----------------------|------|-------|
|                              |                     |                       |      | _     |
| Woody Wetlands               | 45.42               | 0.1500                | 90   |       |
| Developed, Low Density       | 9.26                | 0.0678                | 22   |       |
| Hay/Pasture                  | 9.22                | 0.0350                | 81   |       |
| Evergreen Forest *           | 7.48                | 0.1000                | 42   |       |
| Emergent Herbaceous Wetlands | 7.20                | 0.1825                | 95   |       |
| Developed, Open Space        | 5.59                | 0.0404                | 21   |       |
| Open Water                   | 4.89                | 0.0330                | 11   |       |
| Developed, Medium Density    | 4.60                | 0.0678                | 23   |       |
| Mixed Forest *               | 3.52                | 0.1200                | 43   |       |
| Deciduous Forest *           | 2.24                | 0.1000                | 41   |       |
| Barren Land                  | 0.27                | 0.0113                | 31   |       |
| Grassland/Herbaceous         | 0.23                | 0.0400                | 71   |       |
| Unclassified                 | 0.00                | 0.0350                | 0    |       |
| Perennial Snow/Ice           | 0.00                | 0.0100                | 12   |       |
| Developed, High Density      | 0.00                | 0.0404                | 24   |       |
| Dwarf Scrub *                | 0.00                | 0.0350                | 51   |       |
| Shrub/Scrub                  | 0.00                | 0.0400                | 52   |       |
| Sedge/Herbaceous $*$         | 0.00                | 0.0350                | 72   |       |
| Lichens *                    | 0.00                | 0.0350                | 73   |       |
| Moss *                       | 0.00                | 0.0350                | 74   |       |
| Cultivated Crops             | 0.00                | 0.0700                | 82   |       |

### 4.2 Land Use and Manning's Roughness Coefficient for Inundated Area

Note: \* indicates an n-value estimated by NCCHE. \*\* indicates an n-value given by the user. Other values are taken from literature.

### 4.3 Coverage and Sources of DEM Raster Datasets



Figure 7. Coverage of DEM Raster Datasets in the Inundation Area.

Ņ

| DEM Source | Source Resolution | Source Dataset  | Color |
|------------|-------------------|-----------------|-------|
| USGS       | 1 arc-second      | usgs_1as        |       |
| USGS       | 1/3 arc-seconds   | usgs_13as       |       |
| USGS       | 1 meter           | usgs_utm_z18_1m |       |
| USGS       | 1 meter           | usgs_utm_z19_1m |       |

Note: The DEM for this job was created from the source DEM raster datasets listed above. These DEM raster datasets were resampled and reprojected to the user defined cell size and UTM zone, respectively. Resampled and projected DEM raster datasets were then stacked in the order specific to the group under which this simulation was submitted.

### 4.4 Maximum Flood Depth

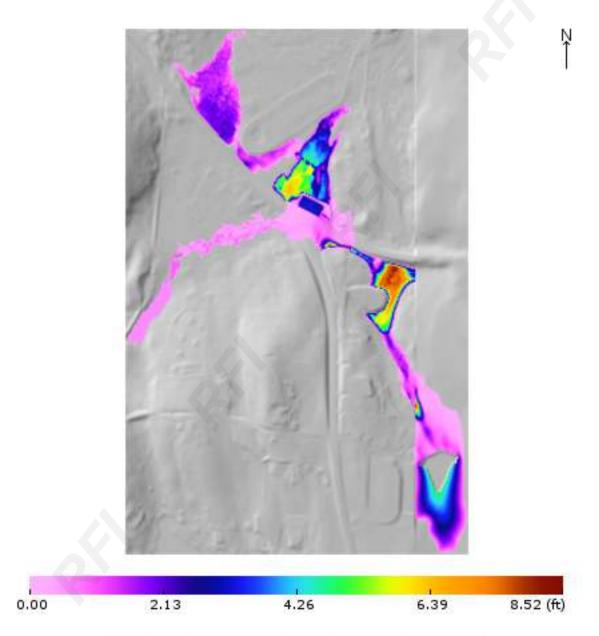
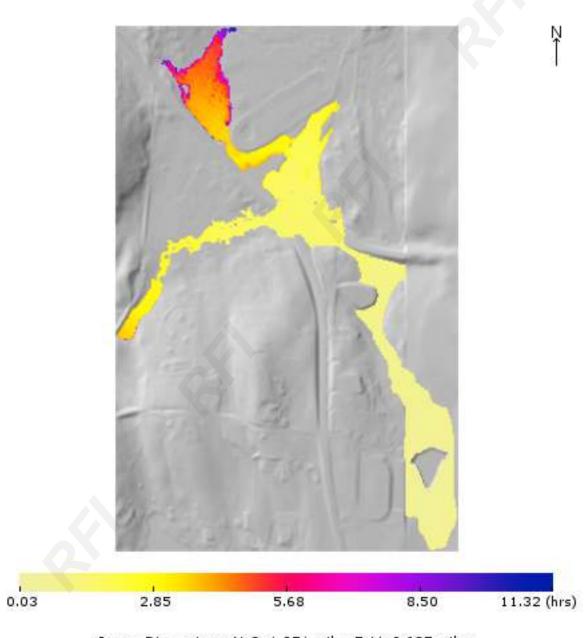
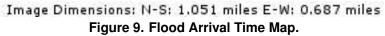





Image Dimensions: N-S: 1.051 miles E-W: 0.687 miles Figure 8. Maximum Flood Depth Map.

### 4.5 Flood Arrival Time

Flood arrival time is measured from the beginning of the simulation.





### 4.6 Downloading Simulation Results

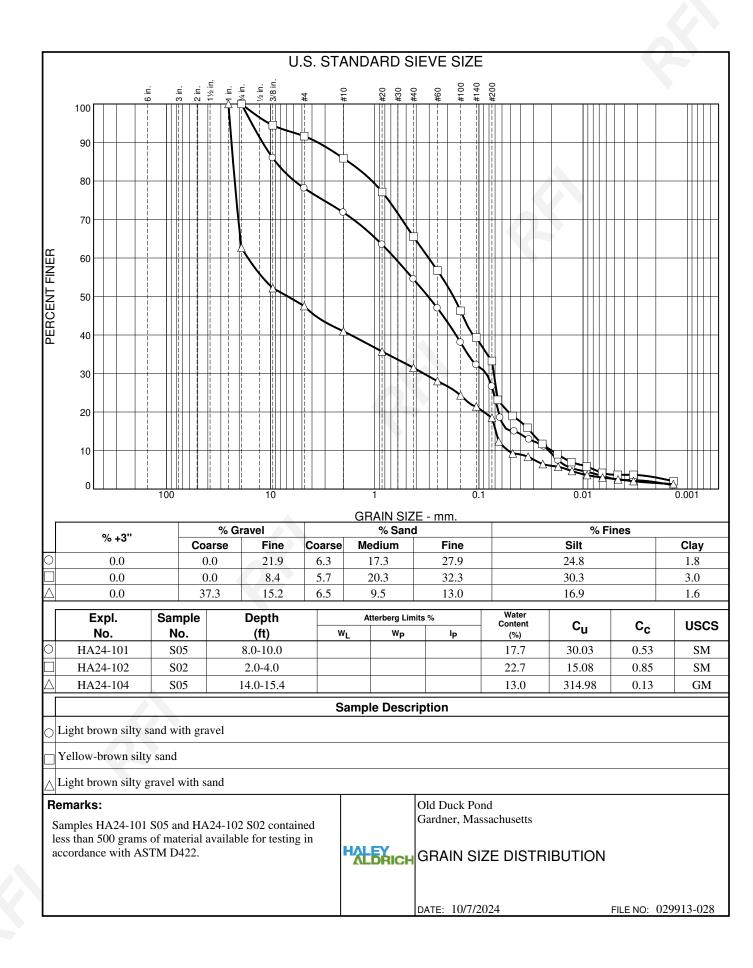
The simulation results can be accessed at the following web address:

https://dsswiseweb.ncche.olemiss.edu/download

Job ID: 74036



#### TABLE I SUMMARY OF CHEMICAL ANALYTICAL RESULTS SOIL SAMPLES OLD DUCK POND DAM MOUNT WACHUSETT COMMUNITY COLLEGE GARDNER, MASSACHUSETTS FILE NO. 029913-028


| FILE NO. 029913-028                     | 1                      | 1            |              |              |              |              |               |              |               |
|-----------------------------------------|------------------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|---------------|
| Location Name                           |                        | HA24-101     | HA24-101     | HA24-102     | HA24-102     | HA24-103     | HA24-103      | HA24-104     | HA24-104      |
| Sample Name                             | МСР                    | HA24-101_0-5 | HA24-101 5-8 | HA24-102 0-5 | HA24-102 5-9 | HA24-103_0-5 | HA24-103_5-10 | HA24-104 0-5 | HA24-104 5-10 |
| Sample Date                             | керогтаріе             | 09/23/2024   | 09/23/2024   | 09/20/2024   | 09/20/2024   | 09/19/2024   | 09/19/2024    | 09/18/2024   | 09/18/2024    |
| Lab Sample ID                           | Concentration<br>RCS-1 | L2454565-01  | L2454565-02  | L2454367-01  | L2454367-02  | L2454018-01  | L2454018-02   | L2453671-01  | L2453671-02   |
| Sample Depth (bgs)                      | 2024                   | 0 - 5 (ft)   | 5 - 8 (ft)   | 0 - 5 (ft)   | 5 - 9 (ft)   | 0 - 5 (ft)   | 5 - 10 (ft)   | 0 - 5 (ft)   | 5 - 10 (ft)   |
| Soil Description                        | 2024                   | FILL         | FILL         | FILL         | FILL         | FILL         | FILL          | FILL         | FILL          |
| Volatile Organic Compounds (mg/kg)      |                        |              |              |              |              |              |               |              |               |
| 2-Butanone (Methyl Ethyl Ketone)        | 4                      | ND (0.01)    | 0.042        | ND (0.0093)  | ND (0.0095)  | ND (0.0077)  | ND (0.011)    | ND (0.012)   | ND (0.0092)   |
| Acetone                                 | 6                      | ND (0.026)   | 0.2          | ND (0.023)   | ND (0.024)   | ND (0.019)   | ND (0.027)    | ND (0.031)   | ND (0.023)    |
| SUM of Volatile Organic Compounds       | NA                     | ND           | 0.242        | ND           | ND           | ND           | ND            | ND           | ND            |
| Semi-Volatile Organic Compounds (mg/kg) |                        |              |              |              |              |              |               |              |               |
| Acenaphthylene                          | 2                      | ND (0.15)    | ND (0.2)     | ND (0.14)    | ND (0.15)    | ND (0.8)     | ND (0.15)     | 0.32         | ND (0.15)     |
| Anthracene                              | 1000                   | ND (0.11)    | ND (0.15)    | ND (0.11)    | ND (0.11)    | ND (0.6)     | ND (0.11)     | 0.18         | ND (0.11)     |
| Benzo(a)anthracene                      | 20                     | ND (0.11)    | ND (0.15)    | 0.11         | ND (0.11)    | ND (0.6)     | ND (0.11)     | 0.58         | ND (0.11)     |
| Benzo(a)pyrene                          | 2                      | ND (0.15)    | ND (0.2)     | ND (0.14)    | ND (0.15)    | ND (0.8)     | ND (0.15)     | 0.76         | ND (0.15)     |
| Benzo(b)fluoranthene                    | 20                     | ND (0.11)    | ND (0.15)    | 0.13         | ND (0.11)    | ND (0.6)     | ND (0.11)     | 0.91         | ND (0.11)     |
| Benzo(g,h,i)perylene                    | 1000                   | ND (0.15)    | ND (0.2)     | ND (0.14)    | ND (0.15)    | ND (0.8)     | ND (0.15)     | 0.54         | ND (0.15)     |
| Benzo(k)fluoranthene                    | 200                    | ND (0.11)    | ND (0.15)    | ND (0.11)    | ND (0.11)    | ND (0.6)     | ND (0.11)     | 0.29         | ND (0.11)     |
| bis(2-Ethylhexyl)phthalate              | 100                    | ND (0.19)    | ND (0.24)    | ND (0.18)    | ND (0.19)    | ND (0.99)    | 0.3           | ND (0.18)    | ND (0.19)     |
| Chrysene                                | 200                    | ND (0.11)    | ND (0.15)    | 0.12         | ND (0.11)    | ND (0.6)     | ND (0.11)     | 0.63         | ND (0.11)     |
| Dibenz(a,h)anthracene                   | 2                      | ND (0.08)    | ND (0.1)     | ND (0.076)   | ND (0.08)    | ND (0.42)    | ND (0.077)    | 0.1          | ND (0.078)    |
| Fluoranthene                            | 1000                   | ND (0.11)    | ND (0.15)    | 0.16         | ND (0.11)    | ND (0.6)     | ND (0.11)     | 1.2          | ND (0.11)     |
| Indeno(1,2,3-cd)pyrene                  | 20                     | ND (0.15)    | ND (0.2)     | ND (0.14)    | ND (0.15)    | ND (0.8)     | ND (0.15)     | 0.44         | ND (0.15)     |
| Phenanthrene                            | 10                     | ND (0.11)    | ND (0.15)    | ND (0.11)    | ND (0.11)    | ND (0.6)     | ND (0.11)     | 0.54         | ND (0.11)     |
| Pyrene                                  | 1000                   | ND (0.11)    | ND (0.15)    | 0.18         | ND (0.11)    | ND (0.6)     | ND (0.11)     | 1.1          | ND (0.11)     |
| SUM of Semi-Volatile Organic Compounds  | NA                     | ND           | ND           | 0.7          | ND           | ND           | 0.3           | 7.59         | ND            |
| Total Petroleum Hydrocarbons (mg/kg)    |                        |              |              |              |              |              |               |              |               |
| Petroleum hydrocarbons                  | 1000                   | ND (38.3)    | 147          | 52.6         | 53.8         | 106          | ND (35.8)     | 103          | ND (37)       |
| Inorganic Compounds (mg/kg)             |                        |              |              |              |              |              |               |              |               |
| Antimony                                | 20                     | ND (4.4)     | ND (5.81)    | ND (4.18)    | ND (4.5)     | ND (4.8)     | ND (4.4)      | ND (4.44)    | ND (4.33)     |
| Arsenic                                 | 20                     | 8.88         | 10.8         | 11.5         | 12.5         | 12.5         | 11.9          | 15.5         | 14.5          |
| Barium                                  | 1000                   | 24.6         | 37.9         | 42.7         | 102          | 61.3         | 87.4          | 36           | 38.8          |
| Beryllium                               | 100                    | ND (0.44)    | ND (0.581)   | ND (0.418)   | ND (0.45)    | ND (0.48)    | ND (0.44)     | ND (0.444)   | ND (0.433)    |
| Cadmium                                 | 80                     | ND (0.88)    | ND (1.16)    | ND (0.835)   | ND (0.9)     | ND (0.961)   | ND (0.881)    | ND (0.888)   | ND (0.866)    |
| Chromium                                | 100                    | 9.12         | 14.7         | 16.2         | 25.3         | 23.3         | 37.8          | 16.2         | 14.1          |
| Lead                                    | 200                    | 7.06         | 13.5         | 7.84         | 5.97         | 8.33         | ND (4.4)      | 7.3          | 5.57          |
| Mercury                                 | 20                     | ND (0.076)   | ND (0.105)   | ND (0.077)   | ND (0.082)   | ND (0.085)   | ND (0.078)    | ND (0.082)   | ND (0.073)    |
| Nickel                                  | 700                    | 6.07         | 6.22         | 9.42         | 13           | 13           | 22.1          | 8.65         | 7.9           |
| Selenium                                | 400                    | ND (4.4)     | ND (5.81)    | ND (4.18)    | ND (4.5)     | ND (4.8)     | ND (4.4)      | ND (4.44)    | ND (4.33)     |
| Silver                                  | 100                    | ND (0.88)    | ND (1.16)    | ND (0.835)   | ND (0.9)     | ND (0.961)   | ND (0.881)    | ND (0.888)   | ND (0.866)    |
| Thallium                                | 8                      | ND (4.4)     | ND (5.81)    | ND (4.18)    | ND (4.5)     | ND (4.8)     | ND (4.4)      | ND (4.44)    | ND (4.33)     |
| Vanadium                                | 500                    | 11.1         | 17.2         | 15.4         | 31.1         | 21.1         | 24.1          | 15.1         | 13.4          |
| Zinc                                    | 1000                   | 18.5         | 28.2         | 28           | 44.7         | 36           | 26            | 25.2         | 22.8          |
| PCBs (mg/kg)                            |                        |              |              |              |              |              |               |              |               |
| Aroclor-1016 (PCB-1016)                 | 1                      | ND (0.0536)  | ND (0.0703)  | ND (0.0531)  | ND (0.0546)  | ND (0.0608)  | ND (0.0999)   | ND (0.0546)  | ND (0.0565)   |
| Aroclor-1221 (PCB-1221)                 | 1                      | ND (0.0536)  | ND (0.0703)  | ND (0.0531)  | ND (0.0546)  | ND (0.0608)  | ND (0.0999)   | ND (0.0546)  | ND (0.0565)   |
| Aroclor-1232 (PCB-1232)                 | 1                      | ND (0.0536)  | ND (0.0703)  | ND (0.0531)  | ND (0.0546)  | ND (0.0608)  | ND (0.0999)   | ND (0.0546)  | ND (0.0565)   |
| Aroclor-1242 (PCB-1242)                 | 1                      | ND (0.0536)  | ND (0.0703)  | ND (0.0531)  | ND (0.0546)  | ND (0.0608)  | ND (0.0999)   | ND (0.0546)  | ND (0.0565)   |
| Aroclor-1248 (PCB-1248)                 | 1                      | ND (0.0536)  | ND (0.0703)  | ND (0.0531)  | ND (0.0546)  | ND (0.0608)  | ND (0.0999)   | ND (0.0546)  | ND (0.0565)   |
| Aroclor-1254 (PCB-1254)                 | 1                      | ND (0.0536)  | ND (0.0703)  | ND (0.0531)  | ND (0.0546)  | ND (0.0608)  | ND (0.0999)   | ND (0.0546)  | ND (0.0565)   |
| Aroclor-1260 (PCB-1260)                 | 1                      | ND (0.0536)  | ND (0.0703)  | ND (0.0531)  | ND (0.0546)  | ND (0.0608)  | ND (0.0999)   | ND (0.0546)  | ND (0.0565)   |
| Aroclor-1262 (PCB-1262)                 | NA                     | ND (0.0536)  | ND (0.0703)  | ND (0.0531)  | ND (0.0546)  | ND (0.0608)  | ND (0.0999)   | ND (0.0546)  | ND (0.0565)   |
| Aroclor-1268 (PCB-1268)                 | NA                     | ND (0.0536)  | ND (0.0703)  | ND (0.0531)  | ND (0.0546)  | ND (0.0608)  | ND (0.0999)   | ND (0.0546)  | ND (0.0565)   |
| Polychlorinated biphenyls (PCBs)        | 1                      | ND (0.0536)  | ND (0.0703)  | ND (0.0531)  | ND (0.0546)  | ND (0.0608)  | ND (0.0999)   | ND (0.0546)  | ND (0.0565)   |
| Other                                   |                        |              |              |              |              |              |               |              |               |
| Total Solids (%)                        | NA                     | 86.5         | 66.6         | 90.9         | 86           | 81.5         | 90            | 89.7         | 87.3          |
| Reactive Cyanide (mg/kg)                | NA                     | ND (130)      | ND (130)     | ND (130)      |
| Reactive Sulfide (mg/kg)                | NA                     | ND (250)      | ND (250)     | ND (250)      |
| Ignitability (Flashpoint)               | NA                     | NI           | NI           | NI           | NI           | NI           | NI NI         | NI           | NI NI         |
| pH (lab) (pH units)                     | NA                     | 6.89         | 6.8          | 7.7          | 7.64         | 7.11         | 6.92          | 8.18         | 8.21          |
| Conductivity (umhos/cm)                 | NA                     | 22           | 22           | 21           | 24           | 15           | 24            | 25           | 33            |

#### TABLE II SUMMARY OF CHEMICAL ANALYTICAL RESULTS SEDIMENT SAMPLES OLD DUCK POND DAM MOUNT WACHUSETT COMMUNITY COLLEGE GARDNER, MASSACHUSETTS File No. 029913-028

| Precharacterization Grid                                       |                    |                           |                          |                           |                           |                          |
|----------------------------------------------------------------|--------------------|---------------------------|--------------------------|---------------------------|---------------------------|--------------------------|
| Location Name                                                  | HA24-SED-201       | HA24-SED-202              | HA24-SED-203             | HA24-SED-204              | HA24-SED-205              | HA24-SED-206             |
| Sample Name                                                    | HA24-SED-201_0-2   | HA24-SED-202_0-2          | HA24-SED-203_0-2         | -                         | HA24-SED-205_0-2          | HA24-SED-206_0           |
| Sample Date                                                    | 11/12/2024         | 11/12/2024<br>L2466236-05 | 11/12/2024               | 11/12/2024<br>L2466236-03 | 11/12/2024<br>L2466236-02 | 11/12/2024               |
| Lab Sample ID                                                  | L2466236-06        | L2467789-01               | L2466236-04              | L2467789-03               | L2467789-02               | L2466236-01              |
| Sample Depth (bgs)                                             | 0 - 2 (ft)         | 0 - 2 (ft)                | 0 - 2 (ft)               | 0 - 2 (ft)                | 0 - 2 (ft)                | 0 - 2 (ft)               |
| Volatile Organic Compounds (mg/kg)                             |                    |                           |                          |                           |                           |                          |
| 2-Butanone (Methyl Ethyl Ketone)                               | 0.37               | 0.32                      | 0.22                     | 0.26                      | 0.12                      | 0.28                     |
| Acetone                                                        | 1.4                | 1.3                       | 1.1                      | 1.1                       | 0.5                       | 1.1                      |
| SUM of Volatile Organic Compounds                              | 1.77               | 1.62                      | 1.32                     | 1.36                      | 0.62                      | 1.38                     |
| Semi-Volatile Organic Compounds (mg/kg)                        |                    | NIR (0)                   |                          |                           |                           |                          |
| Benzo(b)fluoranthene                                           | ND (3.1)           | ND (2)                    | ND (1.9)                 | ND (2.1)                  | 3.4                       | 2.3                      |
| Chrysene                                                       | ND (3.1)           | ND (2)                    | ND (1.9)                 | ND (2.1)                  | 2.5                       | ND (1.8)                 |
| Fluoranthene                                                   | ND (3.1)           | ND (2)                    | ND (1.9)                 | ND (2.1)                  | 5.1                       | 2.9                      |
| Pyrene                                                         | ND (3.1)<br>ND     | ND (2)<br>ND              | ND (1.9)<br>ND           | ND (2.1)<br>ND            | 3.6<br>14.6               | 2.1                      |
| SUM of Semi-Volatile Organic Compounds                         | ND                 | ND                        | ND                       | ND                        | 14.0                      | 7.5                      |
| Total Petroleum Hydrocarbons (mg/kg)<br>Petroleum hydrocarbons | ND (483)           | ND (336)                  | ND (309)                 | 409                       | ND (311)                  | 325                      |
|                                                                | 110 (403)          | ND (550)                  | 110 (505)                | 405                       | 110 (511)                 | 525                      |
| PCBs (mg/kg)<br>Aroclor-1016 (PCB-1016)                        | ND (0.502)         | ND (0.327)                | ND (0.322)               | ND (0.337)                | ND (0.312)                | ND (0.292)               |
| Aroclor-1010 (PCB-1010)<br>Aroclor-1221 (PCB-1221)             | ND (0.502)         | ND (0.327)                | ND (0.322)               | ND (0.337)                | ND (0.312)                | ND (0.292)               |
| Aroclor-1232 (PCB-1232)                                        | ND (0.502)         | ND (0.327)                | ND (0.322)               | ND (0.337)                | ND (0.312)                | ND (0.292)               |
| Aroclor-1232 (PCB-1232)<br>Aroclor-1242 (PCB-1242)             | ND (0.502)         | ND (0.327)                | ND (0.322)               | ND (0.337)                | ND (0.312)                | ND (0.292)               |
| Aroclor-1242 (FCB-1242)<br>Aroclor-1248 (PCB-1248)             | ND (0.502)         | ND (0.327)                | ND (0.322)               | ND (0.337)                | ND (0.312)                | ND (0.292)               |
| Aroclor-1254 (PCB-1254)                                        | ND (0.502)         | ND (0.327)                | ND (0.322)               | ND (0.337)                | ND (0.312)                | ND (0.292)               |
| Aroclor-1254 (FCB-1254)<br>Aroclor-1260 (PCB-1260)             | ND (0.502)         | ND (0.327)                | ND (0.322)               | ND (0.337)                | ND (0.312)                | ND (0.292)               |
| Aroclor-1262 (PCB-1260)<br>Aroclor-1262 (PCB-1262)             | ND (0.502)         | ND (0.327)                | ND (0.322)               | ND (0.337)                | ND (0.312)                | ND (0.292)               |
| Aroclor-1262 (PCB-1262)<br>Aroclor-1268 (PCB-1268)             | ND (0.502)         | ND (0.327)<br>ND (0.327)  | ND (0.322)<br>ND (0.322) | ND (0.337)<br>ND (0.337)  | ND (0.312)<br>ND (0.312)  | ND (0.292)<br>ND (0.292) |
| Polychlorinated biphenyls (PCBs)                               | ND (0.502)         | ND (0.327)                | ND (0.322)               | ND (0.337)                | ND (0.312)                | ND (0.292)               |
| Inorganic Compounds (mg/kg)                                    | ND (0.502)         | 100 (0.327)               | ND (0.322)               | 10 (0.557)                | ND (0.512)                | ND (0.252)               |
| Antimony                                                       | ND (40.2)          | ND (27.6)                 | ND (25.6)                | ND (28.9)                 | ND (25.7)                 | ND (23.7)                |
| Arsenic                                                        | 10.4               | 24                        | 9.65                     | 11.2                      | 25.4                      | 15.3                     |
| Barium                                                         | 89.8               | 86.7                      | 56.1                     | 63.2                      | 80.6                      | 64.6                     |
| Beryllium                                                      | ND (4.02)          | ND (2.76)                 | ND (2.56)                | ND (2.89)                 | ND (2.57)                 | ND (2.37)                |
| Cadmium                                                        | ND (8.05)          | ND (5.52)                 | ND (2.30)<br>ND (5.11)   | ND (2.83)<br>ND (5.78)    | ND (5.14)                 | ND (2.37)<br>ND (4.74)   |
| Chromium                                                       | 11.2               | 23.8                      | 8.81                     | 12.6                      | 29.4                      | 21.8                     |
| Lead                                                           | 45.5               | 105                       | ND (25.6)                | 107                       | 133                       | 75.3                     |
| Mercury                                                        | 43.3<br>ND (0.764) | ND (0.476)                | ND (23.0)<br>ND (0.429)  | ND (0.474)                | ND (0.416)                | ND (0.443)               |
| Nickel                                                         | ND (20.1)          | 20.4                      | ND (0.423)<br>ND (12.8)  | 15.6                      | 21.4                      | 16.9                     |
| Selenium                                                       | ND (40.2)          | ND (27.6)                 | ND (12.6)                | ND (28.9)                 | ND (25.7)                 | ND (23.7)                |
| Silver                                                         | ND (40.2)          | ND (27.0)<br>ND (5.52)    | ND (23.0)<br>ND (5.11)   | ND (28.3)<br>ND (5.78)    | ND (23.7)<br>ND (5.14)    | ND (23.7)<br>ND (4.74)   |
| Thallium                                                       |                    |                           | ND (3.11)<br>ND (25.6)   |                           | ND (3.14)<br>ND (25.7)    | ND (4.74)                |
| Vanadium                                                       | ND (40.2)<br>11.6  | ND (27.6)<br>34           | 7.33                     | ND (28.9)<br>20.3         | 41.1                      | 21.2                     |
| Zinc                                                           | 120                | 408                       | 38.5                     | 191                       | 41.1                      | 183                      |
| TCLP Inorganic Compounds (mg/L)                                | 120                | 400                       | 30.5                     | 151                       | 475                       | 105                      |
| Lead                                                           | -                  | ND (0.5)                  | -                        | ND (0.5)                  | ND (0.5)                  | -                        |
| Other                                                          |                    |                           |                          |                           |                           |                          |
| Total Solids (%)                                               | 9.64               | 14                        | 14.8                     | 13.8                      | 15.3                      | 16.2                     |
| Reactive Cyanide (mg/kg)                                       | ND (130)           | ND (130)                  | ND (130)                 | ND (130)                  | ND (130)                  | ND (130)                 |
| Reactive Sulfide (mg/kg)                                       | ND (250)           | ND (250)                  | ND (250)                 | ND (250)                  | ND (250)                  | ND (250)                 |
| Ignitability (Flashpoint)                                      | NI                 | NI                        | NI                       | NI                        | NI                        | NI                       |
|                                                                | 6.13               | 5.97                      | 5.77                     | 5.45                      | 5.8                       | 5.49                     |
| pH (lab) (pH units)                                            |                    |                           | 230                      | 270                       | 330                       | 480                      |

umhos/cm: micromhos per centimeter

HALEY & ALDRICH, INC. G:\29913\028-OldDuckPond\Database\Output\2024\_1202\_HAI Sediment Summary.xlsx

