Appendix P Geotechnical Data Report

GEOTECHNICAL DATA REPORT

Rehabilitation of Weston Aqueduct Supply Main 3 MWRA Contract No. 6539

Weston, Waltham, Belmont, Arlington, Somerville, and Medford, Massachusetts

Stantec, Inc.

for the

Massachusetts Water Resources Authority

September 2023

Table of Contents

1. Introduction.		1-1
1.1 Report Su	ımmary	1-1
1.2 Purpose a	and Scope	1-1
2. Site and Subsu	urface Conditions	2-1
2.1 Existing S	ite Conditions	2-1
_	ce Exploration Programs	
	sting Subsurface Information	
2.2.2 Sul	osurface Exploration Program	2-4
2.3 Deviation	s from the Work Plan	2-6
2.4 Geotechn	ical Laboratory Testing	2-7
2.5 Subsurfac	ce Conditions	2-8
2.5.1 Reg	gional Geology	2-8
2.5.2 Sul	osurface Conditions	2-8
2.6 Groundwa	ater Levels	2-17
2.6.1 Du	ring Drilling and Excavation	2-17
2.6.2 Gro	oundwater Monitoring Well Readings	2-17
2.7 Expected	Variations in Subsurface Conditions	2-18
Figure 1-1	Project Locus Plan	1-2
Figure 2-1	Existing and Recent Test Boring Location Plan CP 1	2-19
Figure 2-2	Existing and Recent Test Boring Location Plan CP 2	2-20
Figure 2-3	Existing and Recent Test Boring Location Plan CP 3	2-21
Figure 3-3A	Test Boring Location, Plan 1 of 18	3-1
Figure 3-3B	Test Boring Location, Plan 2 of 18	
Figure 3-3C	Test Boring Location, Plan 3 of 18	
Figure 3-3D	Test Boring Location, Plan 4 of 18	
Figure 3-3E	Test Boring Location, Plan 5 of 18	
Figure 3-3F	Test Boring Location, Plan 6 of 18	
Figure 3-3G	Test Boring Location, Plan 7 of 18	
Figure 3-3H	Test Boring Location, Plan 8 of 18	
Figure 3-3I	Test Boring Location, Plan 9 of 18	
Figure 3-3J	Test Boring Location, Plan 10 of 18	
Figure 3-3K	Test Boring Location, Plan 11 of 18	
Figure 3-3L	Test Boring Location, Plan 12 of 18	
Figure 3-3M Figure 3-3N	Test Boring Location, Plan 13 of 18 Test Boring Location, Plan 14 of 18	
Figure 3-30	Test Boring Location, Plan 14 of 18 Test Boring Location, Plan 15 of 18	
Figure 3-3P	Test Boring Location, Plan 16 of 18	
1 15 (1) (1		10

Table of Contents

Figure 3-3Q	Test Boring Location, Plan 17 of 18	3-17
Figure 3-3R	Test Boring Location, Plan 18 of 18	3-18
List of Table	es	
Table 2-1	Summary of Geotechnical Laboratory Test Results (6 pages)	2-22
Table 2-2	Summary of Subsurface Conditions (6 pages)	2-28
Table 2-3	Summary of Groundwater Monitoring Well Readings	2-33
Appendices	5	
Appendix A – Exis	sting Test Boring Logs	
Appendix B – Rec	ent Test Boring and Monitoring Well Installation Logs	
Appendix C – Roc	k Core Photo Logs	
Appendix D – Geo	otechnical Laboratory Test Results	
Appendix E – Reg	rional Geology Maps	

Acronyms

bgs below ground surface
BCB Boston City Base
bl/ft blows per foot

CP1 Construction Package 1
CP2 Construction Package 2
CP3 Construction Package 3

El. elevation
CTI CorrTech, Inc.
HA hand auger

HSA hollow stem auger I.D. inside diameter

MWRA Massachusetts Water Resources Authority

N-Value standard penetration resistance

O.D. outside diameter

RQD rock quality designation SPT standard penetration test

Stantec Stantec, Inc.

WASM 3 Weston Aqueduct Supply Main 3

Section 1

Introduction

1.1 General

This report summarizes CDM Smith's field exploration and laboratory test program for the Rehabilitation of the Weston Aqueduct Supply Main 3 (WASM 3) Project, MWRA Contract No. 6539, in the Town of Weston, City of Waltham, Town of Belmont, Town of Arlington, City of Somerville, and City of Medford, Massachusetts.

The Massachusetts Water Resources Authority (MWRA) Rehabilitation of WASM 3 Project, MWRA Contract No. 6539, consisted of evaluating the condition of the existing WASM 3 water mains, and providing recommendations for the rehabilitation or replacement of the water mains. This report was completed in conjunction with the hazardous materials and corrosion assessments to characterize subsurface conditions to be used in design. Rehabilitation recommendations will be provided by Stantec, Inc (Stantec), of Boston, MA, under separate cover.

The project site and existing WASM 3 main alignment are illustrated on **Figure 1-1** - Project Locus Plan.

Elevations noted are in feet and referenced to North American Vertical Datum 1988 (NAVD88).

1.2 Purpose and Scope

The purpose of the subsurface exploration program was to provide the design team with subsurface information along the existing WASM 3 alignments; including soil boring logs, approximate location of bedrock surface, groundwater levels and installation of groundwater monitoring wells, collection of soil and bedrock samples for geotechnical analysis, corrosion analysis, and analytical analysis.

Specifically, CDM Smith's scope of work included:

- Review existing subsurface information;
- Prepare a soil exploration program work plan for Stantec and MWRA's approval;
- Conduct a subsurface exploration program along the existing WASM 3 alignment, that consisted of performing 112 test borings;
- Install 12 groundwater monitoring wells at select test boring locations;
- Collect soil and bedrock samples for geotechnical testing, analytical analysis, and corrosion analysis;
- Coordinate with CorrTech, Inc. (CTI) of Hopkinton, MA for corrosion sample collection;
- Coordinate with Stantec for analytical sample collection;

PROJECT LOCUS PLAN FIGURE 1-1

- Conduct geotechnical laboratory tests on select soil samples to assist with the classification of soils encountered;
- Prepare test boring logs;
- Prepare groundwater monitoring well logs;
- Provide Stantec with subsurface information to prepare geotechnical profile drawings of the existing section alignments; and
- Prepare this memorandum summarizing the geotechnical data collected as part of the recent subsurface exploration program.

Section 2

Site and Subsurface Conditions

2.1 Existing Site Conditions

The WASM 3 rehabilitation project is separated for bidding purposes into three proposed Construction Packages denoted as CP-1, CP-2 and CP-3. The conditions along each construction package are presented below.

Construction Package 1

The proposed WASM 3 Construction Package 1 (CP-1) includes the rehabilitation of approximately 13,609 feet of lock-bar steel pipe as follows:

- 5,080 feet of existing 56-inch diameter steel pipe along Section W11 between Sta. 394+70 and Sta. 445+50 in Arlington, MA; and
- 8,529 feet of existing 60-inch diameter steel pipe along Sections W12, W51, and W16 between Sta. 445+50 and Sta. 557+19 in Arlington, Somerville, and Medford, MA.

The alignment is located within the streets of Arlington, Somerville and Medford; including, Pleasant Street, Swan Street, Swan Place, Massachusetts Avenue, Broadway, Palmer Street, Hamlet Street, Coral Street, and the Mystic Valley Parkway in Arlington, Mystic Valley and Alewife Brook Parkway, Capen Street, Irvington Road, and Boston Avenue in Somerville, and Boston Street, and the Mystic Valley Parkway in Medford. The pipe invert ranges from approximately 6.5 feet to 21 feet bgs. The existing water main crosses beneath the Charles River in Medford.

Construction Package 2

The proposed WASM 3 Construction Package 2 (CP-2) includes the rehabilitation of approximately 10,769 feet of existing 56-inch diameter lock-bar steel pipe along Section W11 between Sta. 288+44 and Sta. 394+34 in Belmont and Arlington, MA.

The alignment begins at Pleasant Street in Belmont, and extends east to Venner Road in Arlington, MA. The alignment is located along Route 60 (Pleasant Street) within Belmont. The pipe invert ranges from approximately 6 feet to 21 feet bgs. The existing water main within the CP-2 limits connects to other MWRA distribution alignments including Section 59 and W118 and crosses beneath the Concord Turnpike/Route 2.

Construction Package 3

The proposed WASM 3 Construction Package 3 (CP-3) includes the rehabilitation of approximately 28,719 feet of 56-inch or 60-inch diameter lock-bar steel pipe as follows:

• 26,825 feet of existing 60-inch diameter steel pipe along Sections W9 and W10 between Sta. 0+00 and Sta. 269+50 in Weston and Waltham, MA; and

• 1,894 feet of existing 56-inch diameter steel pipe along Section W11 between Sta. 269+50 and Sta. 288+44 in Waltham, and Belmont, MA.

The alignment begins near the intersection of MA Route 30 and River Road in Weston, and extends east where it connects to the CP-2 alignment at Pleasant Street in Belmont. The alignment is located within the streets of Weston, Waltham and Belmont; including, River Road in Weston, and South Street, Charles River Road, Howe Avenue, Hope Avenue, Sun Street, Fern Street, Felton Street, Central Street, Newton Street, Barton Street, Chamberlain Terrace, Linden Street, and Waverly Oaks Road in Waltham, and Trapelo Road in Belmont. The areas along the pipe alignment are generally a mixture of residential and commercial properties; a portion of the alignment is adjacent to the Charles River and Stony Brook Basin. The pipe invert ranges from approximately 6 feet to 17 feet below ground surface (bgs).

Within the CP-3 limits, the existing water main connects to other MWRA distribution alignments; including, Section W1, Section W10B and 10C, and the Watertown Section.

2.2 Subsurface Exploration Programs

2.2.1 Existing Subsurface Information

A variety of existing documents were reviewed prior to developing the subsurface exploration program for the proposed Rehabilitation of WASM 3 Project. Documents included: contract plans, record drawings, detail records, existing boring data, and construction drawings for the WASM 3 water mains, as well as for other nearby projects including the following:

Construction Package 1

- Utility System Record Plans including the following:
 - 1924 and 1926 Section W11,
 - 1925 Section W12, and
 - 1934 Section W16 Distribution
- Parsons Brinkerhoff. "MWRA Weston Aqueduct Supply Main 3 New Shaft 7 Connection Alignment Plan", March 3, 2003.
- One (1) test boring log prepared by CDM Smith conducted for the MWRA Contract 6540 project.
- One (1) test boring log conducted for the MassDOT, Line Borings Arlington, Lexington, and Belmont, 1966 project.
- One (1) test boring log conducted for the MWRA Proposed Distribution Line from Shaft 9, Medford, MA, 1967 project.
- Six (6) test boring logs conducted for the MassDOT, River Street and Harvard Avenue Over the Mystic River, Arlington, MA, 1933 project.

- Eight (8) test boring logs conducted for the MassDOT, Mystic Valley Parkway Over Alewife Brook, Arlington and Somerville, MA, 2010 project.
- Ten (10) test boring logs conducted for the MassDOT, Winthrop Street Bridge Over Mystic River, Medford, MA project.
- Eleven (11) test boring logs conducted for the MWRA WASM 3, 1933 project.
- One (1) test boring log conducted for the MWRA 1937 Contract No. 59, 1937 project.

Construction Package 2

- Utility System Record Plans of 1926 Section W11 Distribution.
- One (1) test boring log conducted by Capone Construction Co., Belmont, MA, January 1987.
- Twenty-one (21) test boring logs conducted for the MassDOT Pleasant Street (Route 60)
 Belmont, MA 2004 project.
- Two (2) test boring logs conducted fort the MassDOT Route 2 Arlington/Belmont, 1964 project.
- Eleven (11) test boring logs conducted for the MassDOT Route 60 at Route 2
 Belmont/Arlington, MA 1967, project.
- Test boring logs by Raymond Concrete Pile Co. prepared for MassDOT, Belmont, MA, 1967

Construction Package 3

- Utility System Record Plans including:
 - 1924 Section W9,
 - 1932 Section W10, and
 - 1926 Section W11 Distribution.
- Sixteen (16) test boring logs conducted for the MassDOT Rte. 128 Widening Under River Street, Weston, MA, October, 1960 project.
- Twelve (12) test boring logs conducted for the MassDOT Northern Circumferential Highway Over Norumbega Rd, Weston, MA, March 1950 project.
- Four (4) test boring logs prepared by Hager-Richeter Geoscience, Inc., Weston, MA, January 1997.
- Thirteen (13) test boring logs conducted for the MWRA Contract No. 233,8, Charles Relief Sewer, Waltham, MA, 1956 project.
- One (1) test boring logs conducted for the MWRA 1937 Contract No. 59, 1937 project.

Site plans identifying the approximate location of relevant existing test borings and test boring locations are included in **Figures 2-1**, **2-2** and **2-3**. Relevant existing test boring logs are included in **Appendix A**.

2.2.2 Subsurface Exploration Program

A work plan was prepared for and approved by Stantec and the MWRA, outlining the subsurface exploration program for the MWRA Rehabilitation of the WASM 3 Project (*Final Soil Exploration Program Work Plan*, Stantec/CDM Smith, September 2017).

The subsurface exploration program consisted of performing one hundred and twelve (112) test borings. Seventy-one (71) test borings were drilled from ground surface without utilizing vacuum excavation. The locations of forty-two (42) test borings were advanced using vacuum excavation prior to performing the test borings. Twelve (12) groundwater monitoring wells were installed in completed test borings. A breakdown of the subsurface exploration program by Construction Package is provided below.

All test borings were conducted and completed by GeoLogic-Earth Exploration Inc. of Norfolk, Massachusetts between August 28, 2017 and January 29, 2018. Test borings were conducted using a Acker Soil Scout ATV track-mounted drill rigs. Test borings were drilled using drive and wash techniques with 3 to 4-inch inside diameter (I.D.) steel casing.

Prior to drilling, select test boring locations were cleared using vacuum excavation methods to locate existing utilities that may not have been identified as part of the DigSafe utility clearance. Vacuum excavation was conducted to depths ranging from four (4) feet to six (6) feet bgs unless a subsurface obstruction, such as a utility, boulder or shallow bedrock was encountered. Test borings were then drilled to depths ranging from 5 to 26 feet bgs, approximately.

Split spoon sampling was typically conducted continuously, from the ground surface or bottom of the vacuum excavation depth through the approximate existing pipe depth, and at five-foot intervals thereafter. Split spoon sampling was conducted in accordance with ASTM D1586 (using a 2-inch outside diameter (0.D.) sampler, driven 24 inches by blows from a 140-pound hammer falling freely for 30-inches). The number of blows required to drive the sampler each 6-inch increment was recorded and the Standard Penetration Resistance (N-value) was determined as the sum of the blows over the middle 12 inches of penetration. Samples collected from the test borings were visually logged and classified by a CDM Smith representative at the time of drilling. Representative soil samples from each split spoon were collected and stored in jars for subsequent review and laboratory testing.

Rock coring was conducted at select locations where bedrock was encountered at or near the approximate existing pipe invert depth. Rock coring was conducted using an NX core barrel and in accordance with ASTM D2113. In the field, rock core samples were evaluated for percent recovery and Rock Quality Designation (RQD). The RQD was estimated for each rock core by dividing the total length of the rock segments longer than four inches by the total length of the rock core run. The time to advance each foot of rock core was recorded during the rock coring process. Rock core samples collected from rock coring activities were visually logged and classified by a CDM Smith representative at the time of coring.

Soil samples and rock core samples were transported to and stored at the CDM Smith Geotechnical Testing Laboratory in Somerville, Massachusetts.

Analytical and corrosivity soil samples were collected during the subsurface exploration program; analysis and results are reported by others under separate cover.

Where encountered, groundwater levels at the test boring locations were estimated from the condition of the samples obtained, and by the observed water levels within the borehole at the time of drilling.

Where installed, groundwater monitoring wells were constructed in accordance with ASTM D5092 (Standard Practice for Design and Installation of Groundwater Monitoring Wells). Each groundwater monitoring well was constructed using 2-inch I.D. Schedule 40 PVC riser, and 10-foot-long well screens. Clean No. 2 silica sand was placed in the annular space surrounding the well screens to approximately two feet above the top of the well screen. A bentonite seal, between one (1) and two (2) feet thick, was placed in the annular space above the silica sand pack, and the annular space above the bentonite seal was backfilled with native material to approximately one foot below ground surface. Wells were completed with flush-mount casing with a bolted road box cover and surface seal consisting of approximately one foot of concrete.

Boreholes not completed as monitoring wells were backfilled with cuttings with asphalt patch as required.

Development of monitoring wells will be performed by Stantec. Well development will be performed to remove fine-grained materials from the monitoring well and sand filter pack, to establish hydraulic connections between the well and screened formations, and to improve well yield.

The test boring locations were located in the field through the use of a portable, hand-held Global Positioning System (GPS) receiver. The approximate as-drilled test boring locations are shown on **Figures 3-3A** through **3-3R**.

Construction Package 1

The CP-1 subsurface exploration program included conducting the following:

- Thirty-two (32) test borings, B-84 through B-116, excluding B-106;
- Six (6) test borings were converted into groundwater monitoring wells upon completion, B-93 (MW), B-100 (MW), B-104 (MW), B-107 (MW), B-110 (MW), and B-113 (MW);
- Forty (40) analytical samples and fifteen (15) corrosion samples were collected;
- Split spoon refusal or split spoon and auger refusal encountered at four (4) test boring locations, B-84, B-87, B-104 (MW), and B-105; and
- Rock coring was conducted at two (2) test boring locations, B-86 and B-107 (MW).

Construction Package 2

The CP-2 subsurface exploration program included conducting the following:

- Twenty-three (23) test borings, B-60 through B-82A;
- One (1) test boring was converted into a groundwater monitoring well upon completion, B-75A (MW);
- Thirty-two (32) analytical samples and eleven (11) corrosion samples were collected;
- Split spoon refusal or split spoon and auger refusal encountered at eleven (11) test boring locations, B-62 through B-64, B-66, B-67, B-69, B-70, B-72, B-73, B-76, and B-78; and
- Five-foot long rock core samples were collected at four (4) test boring locations, B-60, B-61, B-62, and B-75A (MW).

Construction Package 3

The CP-3 subsurface exploration program included conducting the following:

- Fifty-seven (57) test borings, B-1 through B-59, with the exception of B-15 and B-23;
- Five (5) test borings were converted into groundwater monitoring wells upon completion, B-9 (MW), B-17 (MW), B-20 (MW), B-25 (MW), and B-53 (MW);
- In addition to geotechnical sampling, seventy (70) analytical samples and twenty-three (23) corrosion samples were collected;
- Split spoon or rollerbit refusal encountered at nine (9) test boring locations, B-3, B-7, B-18, B-20 (MW), B-31, B-51, B-52, B-54, and B-58; and
- Rock coring was conducted at six (6) test boring locations, B-8A, B-19, B-22, B-53 (MW), B-55, and B-57.

2.3 Deviations from the Work Plan

The following deviations were made to the final work plan:

Construction Package 1

- At test boring locations B-87 and B-90, groundwater monitoring wells were not installed because groundwater was not encountered within the existing pipe invert depth.
- At test boring location B-102, the boring was terminated in very soft clay. Based on previous borings conducted by the Massachusetts DOT in 1933 this location was known to have a 30 to 40 ft thick soft clay layer. Therefore, the boring was terminated at 23 ft bgs, after penetrating approximately 9 ft into the soft clay layer.
- At test boring location B-108, an unmarked and abandoned utility was encountered at approximately 8 ft bgs. The boring was backfilled and offset approximately 10 ft to location B-108A where vacuum excavation was performed to a depth of approximately 6 feet bgs and the boring was drilled to a depth of 16 ft bgs.

 At test boring location B-108A, the planned corrosion sample was not collected due to insufficient volume of soil material recovered in the split spoon.

Construction Package 2

- At test boring locations B-71 and B-80, the planned second analytical samples were not collected due to insufficient volume of soil material available; very dense materials or numerous cobbles and boulders were encountered within the existing pipe zone depth.
- At test boring location B-82, the test boring was terminated prematurely at approximately 10 ft bgs because the drill crew was informed that the location was too close to an existing utility. The drill crew offset the boring to location B-82A and drilled the boring to 26 ft bgs.

Construction Package 3

- At test boring locations B-3, B-14, B-40, B-53 (MW) and B-60 the planned second analytical soil samples were not collected due to insufficient volume of soil material available; very dense materials or cobbles and coarse gravel were encountered within the existing pipe zone depth.
- At test boring location B-8, the test boring was terminated prematurely at 5 ft bgs because it was suspected that an unmarked utility was encountered. The test boring location was offset approximately 5 ft south to location B-8A where vacuum excavation was performed and the boring was drilled to a depth of 16 ft bgs.
- At test boring locations B-13, B-35, B-37, and B-59 groundwater monitoring wells were not installed because groundwater was not encountered at the time of drilling.
- At test boring location B-23, the boring was not performed due to the number of utilities in the vicinity of the proposed boring location. A hand auger was attempted at location B-23, but the auger could not be advanced due to frost.
- At test boring location B-52, a soil corrosion sample was not collected due to insufficient volume of soil material available; numerous cobbles and boulders were encountered within the existing pipe zone depth.

2.4 Geotechnical Laboratory Testing

Geotechnical laboratory tests were performed on select split spoon soil samples recovered from the subsurface exploration program. Soil geotechnical laboratory tests were performed by CDM Smith at the Geotechnical Testing Laboratory located in Somerville, Massachusetts. A summary of the laboratory testing conducted for each construction package follows. Testing was performed in accordance with the cited ASTM standards on samples selected from various test borings, strata, and depths.

A summary of the geotechnical laboratory test results is presented in **Table 2-1**. The laboratory test results are included in **Appendix C**.

Contachnical Laboratory Tost	Test Standard	Quantity of Tests Performed							
Geotechnical Laboratory Test	Test Standard	CP-1	CP-2	CP-3					
Soil:									
Gradation (Sieve)	ASTM D422	38	28	67					
Gradation (Sieve & Hydrometer)	ASTM D422	11	8	10					
Atterberg Limits	ASTM D4318	9	1	5					
Organic Content	ASTM D2974	10	3	4					

2.5 Subsurface Conditions

2.5.1 Regional Geology

Select available regional geology references were reviewed and are included in **Appendix D** including:

- Stone, J.R., "Surficial Geologic Map of the Clinton-Concord-Grafton-Medfield 12-Quadrangle Area in East Central Massachusetts", 2006.
- Nelson, A.E., "Surficial Geologic Map of the Natick Quadrangle, Middlesex and Norfolk Counties, Massachusetts", 1974.
- Goldsmith, R., "Bedrock Geologic Map of Massachusetts", 1983.

Subsurface geology in the area of the project site may be classified as glacial stratified deposits, consisting of a mix of sand and gravel, with cobbles, clay, and silt.

The bedrock geology within the CP-1 alignment consists of Cambridge Argillite, composed of gray argillite and minor quartzite, with rare sandstone and conglomerate. The bedrock geology within the CP-2 and CP-3 alignments consists of diorite and gabbro, and gray granite or granodiorite.

2.5.2 Subsurface Conditions

Construction Package 1

The subsurface conditions encountered within the CP-1 limits typically consist of Pavement or Topsoil located at ground surface that is underlain by a sequence of Fill, Sand and Gravel, Silty Sand, Sand, Organic Soils, Silty Clay, Weathered Rock, and Bedrock.

Pavement

Pavement was encountered at 13 of the 32 CP-1 test boring locations, B-84, B-91, B-92, B-94, B-96 through B-100 (MW), and B-105 through B-109. The pavement ranged from approximately 0.2 to 1.2 ft thick, with an average thickness of approximately 0.6 ft. The pavement typically consisted of asphalt with an underlying gravel base.

Topsoil

Topsoil was encountered at 17 of the 32 CP-1 test boring locations. The topsoil layer ranged from approximately 0.2 to 0.5 ft thick, with an average thickness of approximately 0.3 ft at the test boring locations. The topsoil layer typically consisted of fine to coarse SAND, with varying amounts of fine gravel and silt.

Fill

A Fill stratum was encountered underlying the pavement or topsoil at 15 of the 32 CP-1 test boring locations. This stratum generally consists of dry to moist, gray to brown, medium dense to very dense, fine to coarse SAND, some to "and" fine to coarse gravel, trace to little silt.

- The Fill stratum was fully penetrated at all test boring locations where it was encountered, B-91, B-92, B-94, B-95, B-101 through B-105, and B-108A through B-113 (MW). The stratum thickness ranged from approximately 1.3 to 8.5 ft, with an average thickness of approximately 4 ft at the test boring locations.
- Standard Penetration Test (SPT) N-values in the Fill stratum ranged from 5 to greater than 100 blows per foot (bl/ft), with an average value of approximately 52 bl/ft at the test boring locations.

Sand and Gravel

A Sand and Gravel stratum was encountered at 23 of the 32 CP-1 test boring locations and typically consists of moist, medium to very dense, brown, fine to coarse SAND, little to "and" amounts fine to coarse gravel, trace to little silt or fine to coarse GRAVEL, little to "and" amounts fine to coarse sand, trace to little silt.

- This stratum was fully penetrated at 9 test boring locations, B-86 through B-88, B-98, B-102, B-107 (MW), B-109 through B-111. At these locations the average stratum thickness was approximately 8.2 ft.
- This stratum was not fully penetrated at the following 14 test boring locations: B-84, B-89 through B-97, B-99, B-101, B-103, and B-104 (MW). At these locations, the average stratum penetration depth was approximately 12.7 ft.
- SPT N-values in the Sand and Gravel stratum ranged from 7 to greater than 100 bl/ft, with an average value of approximately 86 bl/ft at the test boring locations.

Silty Sand

A Silty Sand stratum was encountered at 12 of the 32 CP-3 test boring locations. This stratum typically consists of moist, medium to very dense, brown, fine to medium SAND, little to "and" amounts of silt, trace to little fine gravel.

This stratum was fully penetrated at 9 test boring locations, B-85, B-90, B-104 (MW), B-109, B-111 through B-113 (MW), B-115, and B-116. At these locations, the average stratum thickness was approximately 5.9 ft.

- This stratum was not fully penetrated at 3 test boring locations: B-104 (MW), B-108A, and B-114. At these locations, the average stratum penetration depth was approximately 7.6 ft.
- SPT N-values in the Silty Sand stratum ranged from 9 to greater than 100 bl/ft, with an average value of approximately 54 bl/ft at the test boring locations.

Sand

A Sand stratum was encountered at 4 of the 32 CP-1 test boring locations. This stratum typically consisted of moist, medium to very dense, brown, fine to coarse SAND, trace to little fine gravel, trace to little silt.

- The Sand stratum was fully penetrated at 2 test boring locations, B-95 through B-114. At these locations, the average penetration depth into the stratum was approximately 7.5 ft.
- The Sand stratum was not fully penetrated at 2 test borings locations, B-98 and B-100 (MW). At these locations, the stratum penetration depth was approximately 12.1 ft.
- SPT N-values in the Sand stratum ranged from 8 to greater than 100 bl/ft, with an average value of approximately 42 bl/ft at the test boring locations.

Organic Soils

An Organic Soils stratum was encountered at 5 of the 32 CP-1 test boring locations: B-88, B-103, and B-111 through B-113. This stratum typically consisted of moist, very stiff to hard, brown, Organic Silty CLAY, trace to "and" amounts of fine to coarse sand, trace to little fine gravel, trace peat.

- The Organic Soils stratum was fully penetrated at all test boring location where encountered. At these locations, the average stratum thickness was approximately 1.5 ft.
- SPT N-values in the Organic Soils stratum ranged from 3 to 39 bl/ft, with an average value of approximately 21 bl/ft at the test boring locations.

Silty Clay

A Silty Clay stratum was encountered at 12 of the 32 CP-1 test boring locations. This stratum typically consisted of moist to wet, very stiff to hard, brown, Silty CLAY or CLAY & SILT, trace to "and" amounts of fine to coarse sand, trace to little fine gravel.

- The Silty Clay stratum was fully penetrated at 3 test boring locations, B-84, B-103, and B-109. At these locations, the penetration depth into the stratum was approximately 5.0, 5.5, and 3.5 ft, respectively.
- The Silty Clay stratum was not fully penetrated at 9 test boring locations B-85, B-88, B-102, B-110 (MW) through B-113 (MW), B-115, and B-116. At these locations, the average stratum penetration depth was approximately 6.5 ft.
- SPT N-values in the Silty Clay stratum ranged from 0 to 76 bl/ft, with an average value of approximately 27 bl/ft at the test boring locations.

Weathered Rock

A Weathered Rock stratum was encountered at 3 of the 32 CP-1 test boring locations. This stratum consisted of moist, very dense, gray-brown, fine to coarse GRAVEL, little to "and" amounts of fine to coarse sand, trace to some silt.

- The Weathered Rock stratum was fully penetrated at test boring locations B-86, and B-107 (MW). The average stratum penetration depth was approximately 3.3 ft.
- The Weathered Rock stratum was not fully penetrated at test boring location B-87. At this location the stratum penetration depth was 2.6 ft.
- SPT N-values in the Weathered Rock stratum were greater than 100 bl/ft.

Bedrock

Bedrock was encountered at 2 of the 32 CP-1 test boring locations: B-86, and B-107 (MW). At these test boring locations, the depth to top of bedrock was approximately 10.0, and 14.5 ft bgs, respectively. Rock core recovery was approximately 100 and 96 percent, and the RQD was approximately 22 and 8 percent, respectively.

- The Bedrock at test boring B-86 consisted of hard, moderately fractured, very slightly weathered, dark gray, fine grained, GRANITE; primary joint set moderate, very close to close, rough, stepped.
- The Bedrock at test boring location B-107 (MW) consisted of medium hard, sound, slightly weathered, gray, fine grained, ARGILLITE; primary joint set shallow to vertical, very close to close, rough, stepped.

Refusal (drilling and split spoon) was encountered at depths ranging from of approximately 14 to 24.7 ft bgs at 4 of the 32 test boring locations, B-84, B-87, B-104 (MW), and B-105 in the following strata: Sand and Gravel, Silty Sand, and Weathered Rock.

Construction Package 2

The subsurface conditions encountered within the CP-2 limits typically consist of Pavement or Topsoil located at ground surface that is underlain by a sequence of Fill, Sand and Gravel, Sandy Silt, Silty Sand, Clay, Weathered Rock, and Bedrock.

Pavement

Pavement was encountered at 17 of the 23 CP-2 test boring locations, B-60 through B-62, B-66 through B-70, B-72 through B-78, B-80, and B-82A. The pavement ranged from approximately 0.3 to 1.0 ft thick, with an average thickness of approximately 0.5 ft. The pavement typically consisted of asphalt with an underlying gravel base.

Topsoil

Topsoil was encountered at 4 of the 23 CP-2 test boring locations, B-65, B-71, B-79, and B-81. The topsoil layer ranged from approximately 0.2 to 0.5 ft thick, with an average thickness of approximately 0.3 ft. The topsoil layer typically consisted of fine to coarse SAND, with varying amounts of fine gravel and silt.

Fill

A Fill stratum was encountered underlying the pavement or topsoil at 9 of the 23 CP-2 test boring locations. This stratum generally consists of dry to moist, gray to brown, medium dense to very dense, fine to coarse SAND, some to "and" fine to coarse gravel, trace silt.

- The Fill stratum was fully penetrated at all test boring locations where it was encountered, B-62, B-64, B-67 through B-69, B-76, B-80, B-81, and B-82A. The stratum thickness ranged from approximately 1.7 to 6.0 ft, with an average thickness of approximately 3.5 ft.
- Standard Penetration Test (SPT) N-values in the Fill stratum ranged from 10 to greater than 100 blows per foot (bl/ft), with an average value of approximately 60 bl/ft at the test boring locations.

Sand and Gravel

A Sand and Gravel stratum was encountered at 20 of the 23 CP-2 test boring locations and typically consists of moist, medium to very dense, brown, fine to coarse SAND, little to "and" amounts fine to coarse gravel, trace to little silt or fine to coarse GRAVEL, little to "and" amounts fine to coarse sand, trace to little silt.

- This stratum was fully penetrated at 6 test boring locations, B-60 through B-62, B-75A (MW), B-79 and B-82A. At these locations the average stratum thickness was approximately 6.9 ft.
- This stratum was not fully penetrated at 14 test boring locations: B-63 through B-66, B-70 through B-74, B-76 through B-78, B-80, and B-81, At these locations, the average stratum penetration depth was approximately 11.3 ft.
- SPT N-values in the Sand and Gravel stratum ranged from 14 to greater than 100 bl/ft, with an average value of greater than 100 bl/ft at the test boring locations.

Sandy Silt

A Sandy Silt stratum was encountered at 5 of the 23 CP-2 test boring locations. This stratum typically consists of moist, medium to very dense, brown, SILT, little to "and" amounts fine to coarse sand, trace to "and" fine to coarse gravel.

- This stratum was fully penetrated at all test boring location where encountered, B-66, B-77 through B-79, and B-82A. At these locations, the average stratum thickness was approximately 3.8 ft.
- SPT N-values in the Sandy Silt stratum ranged from 17 to greater than 100 bl/ft, with an average value of approximately 68 bl/ft at the test boring locations.

Silty Sand

A Silty Sand stratum was encountered at 4 of the 23 CP-2 test boring locations. This stratum typically consists of moist, medium to very dense, brown, fine to medium SAND, little to "and" amounts of silt, trace to little fine gravel.

- This stratum was not fully penetrated at test boring locations, B-67 through B-69, and B-82A. At these locations, the average stratum penetration depth was approximately 12.2 ft.
- SPT N-values in the Silty Sand stratum ranged from 33 to greater than 100 bl/ft, with an average value of approximately greater than 100 bl/ft at the test boring locations.

Silty Clay

A Silty Clay stratum was encountered at 2 of the 23 CP-2 test boring locations. This stratum typically consisted of moist to wet, very stiff to hard, brown, CLAY or Silty CLAY, little to "and" amounts of silt, trace to some fine to medium sand.

- The Silty Clay stratum was fully penetrated at test boring location B-76. At this location, penetration depth into the stratum was approximately 4 ft.
- The Silty Clay stratum was not fully penetrated at test boring location B-79. At this location, the stratum penetration depth was approximately 4 ft.
- SPT N-values in the Silty Clay stratum ranged from 6 to 38 bl/ft, with an average value of approximately 33 bl/ft at the test boring locations.

Weathered Rock

A Weathered Rock stratum was encountered at 2 of the 23 CP-2 test boring locations. This stratum consisted of moist, very dense, gray-brown, fine to coarse GRAVEL, with varying amounts of fine to coarse SAND, trace silt.

- The Weathered Rock stratum was fully penetrated at test boring location B-61. The stratum thickness at this location was approximately 3 ft.
- The Weathered Rock stratum was not fully penetrated at test boring location B-62. At this location, the stratum penetration depth was approximately 4.6 ft.
- SPT N-values in the Weathered Rock stratum were greater than 100 bl/ft.

Bedrock

Bedrock was encountered at the following 3 of the 23 CP-2 test boring locations: B-60, B-61, and B-75A (MW). At these test boring locations, the depth to top of bedrock was approximately 3.5, 9.0, and 8.5 ft bgs, respectively. Rock core recovery was approximately 93, 87, and 50 percent. The RQD was approximately 35, 17, and 24 percent, respectively.

- The bedrock at test boring location B-60 consisted of hard, moderately fractured, slightly weathered, gray, medium grained, GRANITE; primary joint set shallow, very to moderately close, rough, stepped.
- The bedrock at test boring location B-61 consisted of hard, moderately fractured, slightly weathered, gray, medium grained, GRANITE; primary joint set shallow to steep, very close to close, rough, stepped.

• The bedrock at test boring location B-75A (MW) consisted of hard, slightly weathered, fine to medium grained, gray, GRANITE, close jointing.

Refusal (drilling and split spoon) was encountered at depths ranging from of approximately 11 of 22 test boring locations, B-62 through B-64, B-66, B-67, B-69, B-70, B-72, B-73, B-76, and B-78 and in the following strata: Sand and Gravel, Silty Sand, and Silty Clay.

Construction Package 3

The subsurface conditions encountered within the CP-3 limits typically consist of Pavement or Topsoil located at ground surface that is underlain by a sequence of Fill, Sand and Gravel, Silty Sand, Sand, Sandy Silt, Clay, Weathered Rock, and Bedrock.

Pavement

Pavement was encountered at 30 of the 58 CP-3 test boring locations, B-9 (MW), B-12, B-18, B-19, B-24 through B-31, B-33 through B-40, B-42, B-48, B-50, B-52 through B-55, and B-57 through B-59. The pavement ranged from approximately 0.2 to 0.7 feet thick, with an average thickness of approximately 0.4 feet. The pavement typically consisted of asphalt with an underlying gravel base.

Topsoil

Topsoil was encountered at 27 of the 58 CP-3 test boring locations, B-1 through B-8, B-10, B-11, B-13 through B-17 (MW), B-20 (MW) through B-22, B-32, B-41, B-43 through B-47, B-49, B-51, and B-56. The topsoil layer ranged from approximately 0.2 to 4 feet thick, with an average thickness of approximately 1.1 feet. The topsoil layer typically consisted of fine to coarse SAND, with varying amounts of fine gravel and silt.

Fill

A Fill stratum was encountered underlying the pavement or topsoil at 23 of the 58 CP-3 test boring locations. This stratum generally consists of dry to moist, gray to brown, medium dense to very dense, fine to coarse SAND, some to "and" fine to coarse gravel, trace to little silt.

- The Fill stratum was fully penetrated at all test boring locations where it was encountered, B-10, B-13, B-16, B-18, B-19, B-21, B-22, B-24 through B-26, B-29, B-30, B-32, B-33, B-36 through B-38, B-40, B-41, B-43, B-49, B-54, and B-59. The stratum thickness ranged from approximately 0.5 to 7.5 feet, with an average thickness of approximately 3.1 feet.
- Standard Penetration Test (SPT) N-values in the Fill stratum ranged from 9 to greater than 100 blows per foot (bl/ft), with an average value of approximately 75 bl/ft at the test boring locations.

Sand and Gravel

A Sand and Gravel stratum was encountered at 53 of the 58 CP-3 test boring locations and typically consists of moist, medium to very dense, brown, fine to coarse SAND, little to "and" amounts fine to coarse gravel, trace to little silt or fine to coarse GRAVEL, little to "and" amounts fine to coarse sand, trace to little silt.

- This stratum was fully penetrated at 19 test boring locations, B-3, B-6, B-7, B-18, B-20 (MW), B-22, B-38 through B-41, B-42, B-44, B-46, B-48, B-52 through B-55, and B-57. At these locations, the average stratum thickness was approximately 5.8 feet.
- This stratum was not fully penetrated at 34 test boring locations, B-1, B-2, B-4, B-5, B-8A, B-9 (MW), B-10 through B-17 (MW), B-21, B-24 through B-37, B-47, B-49 through B-51, B-56, B-58, and B-59. At these locations, the average stratum penetration depth was approximately 13.4 feet.
- SPT N-values in the Sand and Gravel stratum ranged from 6 to greater than 100 bl/ft, with an average value of greater than 100 bl/ft at the test boring locations.

Silty Sand

A Silty Sand stratum was encountered at 10 of the 57 CP-3 test boring locations. This stratum typically consists of moist, medium to very dense, brown, fine to medium SAND, little to "and" amounts of silt, trace to little fine gravel.

- This stratum was fully penetrated at 4 test boring locations, B-11, B-13, B-18, and B-20 (MW). At these locations, the average stratum thickness was approximately 6 feet.
- This stratum was not fully penetrated at 6 test boring locations, B-6, B-7, B-41, B-42, B-43, and B-48. At these locations, the average stratum penetration depth was approximately 9.1 feet.
- SPT N-values in the Silty Sand stratum ranged from 4 to greater than 100 bl/ft, with an average value of approximately 54 bl/ft at the test boring locations.

Sand

A Sand stratum was encountered at 4 of the 57 CP-3 test boring locations: B-36 through B-39. This stratum typically consists of moist, medium dense to dense, to dense, brown, fine to coarse SAND, with trace to little silt and fine gravel.

- The Sand stratum was fully penetrated at 4 test boring locations, B-36 through B-39. At these locations, the average stratum thickness was approximately 8.4 feet.
- The Sand stratum was not fully penetrated at test boring location B-44. At this location, the penetration depth into the stratum was approximately 4 ft.
- SPT N-values in the Sand stratum ranged from 9 to 68 bl/ft, with an average value of approximately 33 bl/ft at the test boring locations.

Sandy Silt

A Sandy Silt stratum was encountered at 6 of the 57 CP-3 test boring locations. This stratum typically consists of moist, medium to very dense, brown, SILT, little to "and" amounts fine to coarse sand, trace to "and" fine to coarse gravel.

• This stratum was fully penetrated at 3 test boring locations B-44 through B-46. At these locations, the average stratum thickness was approximately 7.1feet.

- This stratum was not fully penetrated at 3 test boring locations, B-38 through B-40. At these locations, the average stratum penetration depth was approximately 6.3 feet.
- SPT N-values in the Sandy Silt stratum ranged from 17 to greater than 100 bl/ft, with an average value of approximately 68 bl/ft at the test boring locations.

Silty Clay

A Silty Clay stratum was encountered at 4 of the 57 CP-3 test boring locations. This stratum typically consisted of moist to wet, very stiff to hard, gray-brown, CLAY or Silty CLAY, trace to little fine sand.

- The Silty Clay stratum was fully penetrated at test boring location B-43. At this location, the stratum thickness was approximately 4 feet.
- The stratum was not fully penetrated at 3 test boring location B-44 through B-46. At these locations, the average stratum penetration depth was approximately 3.7 feet.
- SPT N-values in the Silty Clay stratum ranged from 21 to 78 bl/ft, with an average value of approximately 44 bl/ft at the test boring locations.

Weathered Rock

A Weathered Rock stratum was encountered at 10 of the 57 CP-3 test boring locations. This stratum consisted of moist, very dense, gray-brown, fine to coarse GRAVEL, with varying amounts of fine to coarse sand, trace to some silt.

- This stratum was fully penetrated at 4 test boring locations, B-19, B-22, B-53, and B-57. At these locations, the average stratum thickness at these locations was approximately 1.2 feet.
- The stratum was not fully penetrated at 6 test boring locations, B-3, B-18, B-20 (MW), B-52, B-54, and B-55. At these locations, the average stratum penetration depth was approximately 2.9 feet.
- SPT N-values in the Weathered Rock stratum were greater than 100 bl/ft.

Bedrock

Bedrock was encountered at the following 4 of the 57 CP-3 test boring locations: B-19, B-22, B-53 (MW), and B-57. At these test boring locations, the depth to top of bedrock was approximately 9.0, 11.5, 6.0, 9.0, and 3.5 feet bgs, respectively. Rock core recovery was approximately 67, 95, 75, and 100 percent. The RQD was approximately 7, 50, 0, and 55 percent, respectively.

- The bedrock at test boring location B-19 consisted of hard, extremely fracture, slightly weathered, gray, fine grained, GABBRO; primary joint set moderately dipping to vertical, very close, rough, stepped.
- The bedrock at test boring location B-22 consisted of hard, slightly weathered, gray, fine grained, FELSITE; primary joint set steep to vertical, very close, rough, stepped.

- The bedrock at test boring location B-53 (MW) consisted of hard, extremely fractured, slightly weathered, gray, fine grained, GRANITE; primary joint set very close.
- The bedrock at test boring location B-57 consisted of hard, moderately fractured, slightly weathered, gray, fine grained, GABBRO; primary joint set moderate to vertical, very close to close, rough, planar.

Refusal (drilling and split spoon) was encountered at depths ranging from of approximately 14 to 24.7 feet bgs at 9 of the 58 CP-3 test boring locations, B-3, B-7, B-18, B-20 (MW), B-31, B-51, B-52, B-54, and B-58 in the following strata: Sand and Gravel, Silty Sand, and Weathered Rock.

A summary of the subsurface conditions encountered at the test boring locations is presented in **Table 2-2**. Test boring logs, groundwater monitoring well installation logs prepared by CDM Smith, are included in **Appendix E**. Rock core photo logs, prepared by CDM Smith, are included in **Appendix F**.

2.6 Groundwater Levels

2.6.1 During Drilling and Excavation

Where groundwater was encountered at the time of drilling, the depth to groundwater was recorded prior to backfilling the test boring.

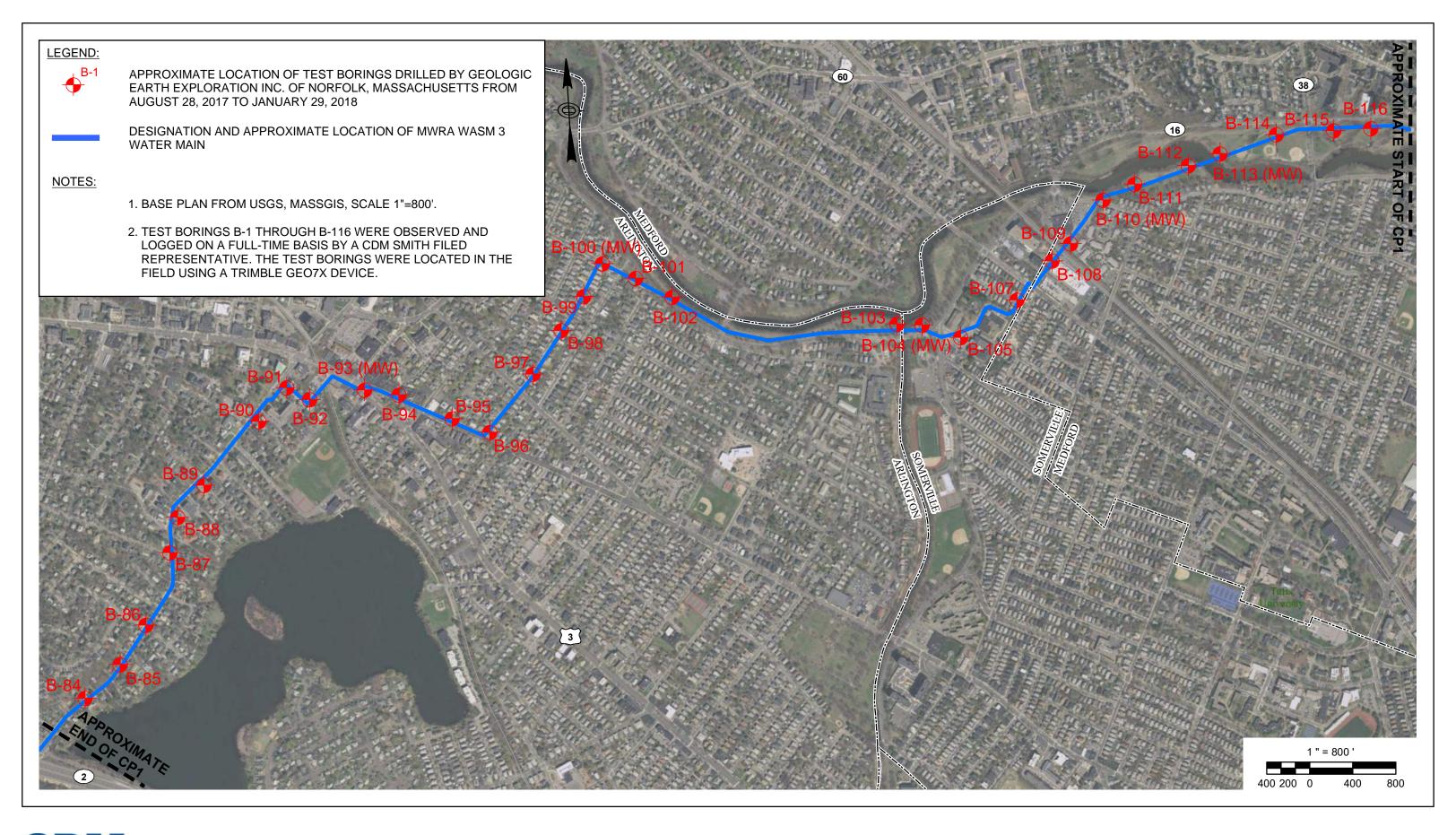
- Along the CP-1 alignment, groundwater was encountered at 24 of the 32 test boring locations. At the time of drilling, the depth to groundwater was recorded between 3.0 and 15.7 feet bgs, approximately.
- Along the CP-2 alignment, groundwater was encountered at 20 of the 23 test boring locations. At the time of drilling, the depth to groundwater ranged from approximately 2.5 to 11.8 feet bgs.
- Along the CP-3 alignment, groundwater was encountered at 38 of the 57 test boring locations. At the time of drilling, the depth to groundwater ranged from approximately 1.5 to 14 feet bgs.

Groundwater levels recorded at the completion of drilling are included in **Table 2-2**.

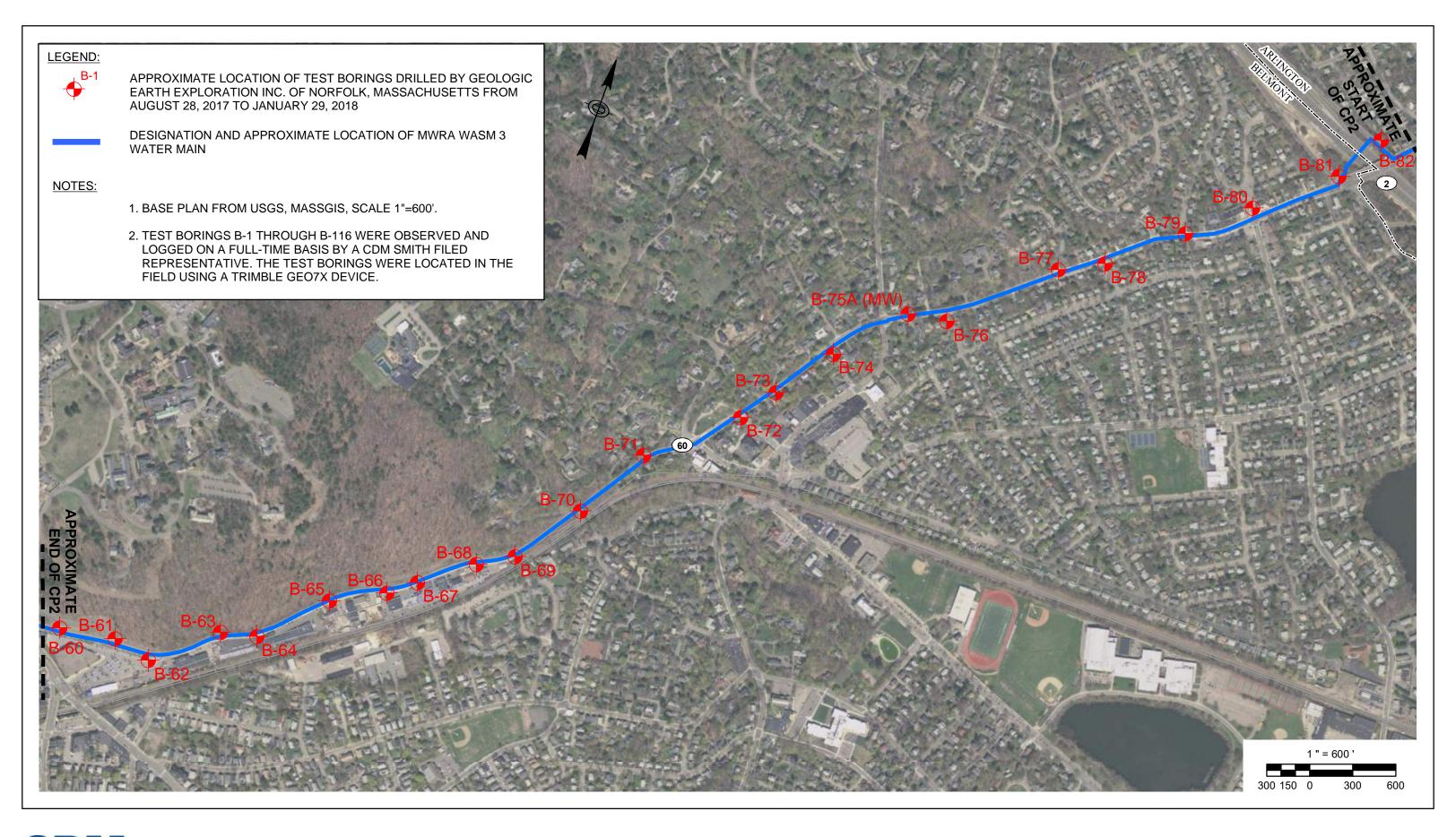
2.6.2 Groundwater Monitoring Well Readings

Groundwater monitoring wells were installed at the following 12 test boring locations at the completion of drilling:

CP-1:	B-93 (MW)	B-100 (MW)	B-104 (MW)
•	B-107 (MW)	B-110 (MW)	B-113 (MW)
CP-2:	D 75 A (NA)A/)		
CP-Z:	B-75A (MW)		
CP-3:	B-9 (MW)	B-17 (MW)	B-20 (MW)
•	B-25 (MW)	B-53 (MW)	


Groundwater levels were collected within the installed monitoring wells between on February 27, 2018. A summary of groundwater monitoring well readings is presented in **Table 2-3**.

2.7 Expected Variations in Subsurface Conditions


Subsurface conditions presented herein are based on soil, rock and groundwater conditions observed at the test boring locations. However, subsurface conditions may vary at other locations within the site.

Groundwater levels change with time, season, river levels, temperature, and construction activities in the area, as well as with other factors. In addition, stabilized groundwater levels can be difficult to obtain in test borings drilled using drive and wash drilling methods (during rock coring) due to the presence of drilling fluid in the borehole. Therefore, groundwater conditions at the time of construction may be different from those observed at the time of explorations.

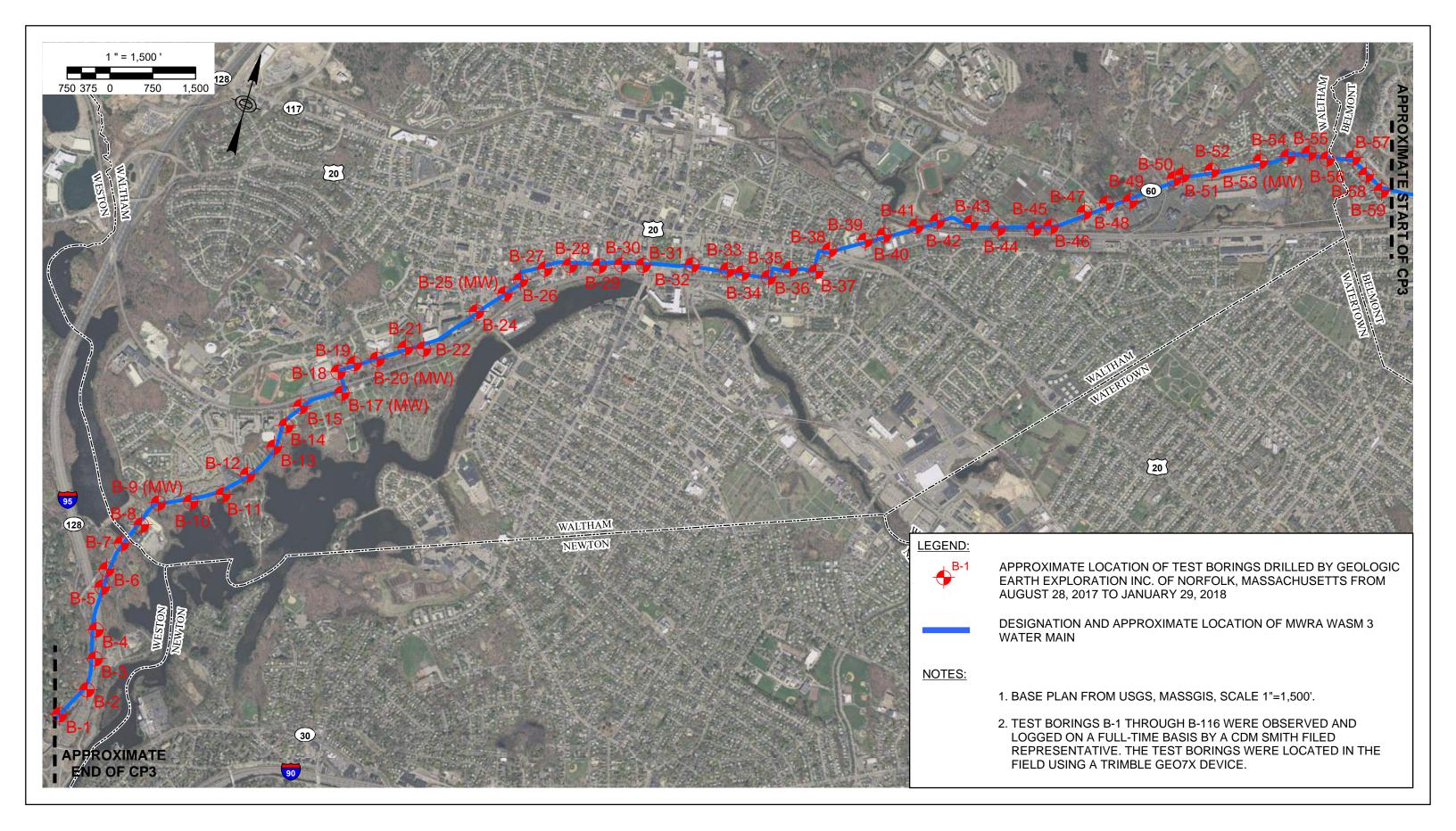


Table 2-1
Summary of Geotechnical Laboratory Test Results

Exploration	Sample	Sample		USCS			Grain	Size Analys	is ²		At	terberg Lir	nits ³	Moisture	Organi
Number			Stratum		Grav	el (%)		Sand (%)		Fines (%)	— LL (%)		PI (%)	Content	Conten
Number	Number	Depth (ft)		Classification ¹	Coarse	Fine	Coarse	Medium	Fine	Silt Cla	y LL (%)	PL (%)	PI (%)	(%) ⁽⁴⁾	(%) ⁽⁵⁾
						Constru	iction Pack	age 3							
B-1	S-2	2-4	Sand and Gravel	SP-SM	13.2	21.9	9.8	23.3	22.9	8.9				4.2	
B-2	S-1	6-8	Sand and Gravel	GP-GM	8.0	36.8	13.0	19.1	12.5	10.6					
B-3	S-1	6-6.8	Sand and Gravel	SW-SM	7.2	34.4	17.0	21.6	10.8	9.0				8.3	
B-4	V-1	2.5-3	Sand and Gravel	SM	0.0	1.0	2.3	9.4	61.7	25.6				10.9	
B-5	S-1	6-8	Sand and Gravel	SM	0.0	0.6	0.8	6.9	71.3	20.4				14.1	
B-6	S-1	6-8	Sand and Gravel	SW-SM	10.8	19.8	15.2	37.7	11.2	5.3				12.1	
B-7	S-3	4-5.3	Sand and Gravel	SM	9.6	15.2	10.7	21.8	18.2	24.5				11.3	
B-9 (MW)	S-1	6-8	Sand and Gravel	SM	0.0	26.7	11.7	13.1	13.6	34.9				32.1	3.1
B-10	S-2	2-4	Fill	SP-SM	18.4	19.6	12.0	24.9	17.6	7.5				5.1	
B-10	S-4	6-8	Sand and Gravel	SP	0.0	0.3	4.4	53.8	38.7	2.8				21.3	
B-11	S-3	4-6	Sand and Gravel	GW-GM	25.1	22.2	14.7	19.7	10.5	7.8				10.5	
B-11	S-5	8-10	Silty Sand	SM	0.0	3.2	1.6	19.2	28.9	45.4 1.7	7 NV	NP	NP	4.2	
B-12	S-2	8-10	Sand and Gravel	SP-SM	0.0	3.9	5.3	32.6	51.6	6.6				8.7	
B-13	S-4	6-8	Silty Sand	SM	0.0	23.7	9.1	19.3	26.4	21.5				4.0	
B-14	S-2	2-2.5	Sand and Gravel	SM	12.7	26.4	12.6	16.0	15.6	16.7				7.5	
B-16	S-2	2-4	Sand and Gravel	GM	13.8	31.5	13.7	12.9	12.8	15.3				9.1	
B-17 (MW)	S-3	4-6	Sand and Gravel	GW-GM	17.8	30.7	14.6	19.5	10.5	6.9				8.5	
B-18	S-5	9-10.5	Silty Sand	SM	3.2	11.1	10.9	24.2	23.9	26.7				11.6	
B-19	S-3	4-6	Fill	SM	0.0	39.8	15.1	18.5	12.8	13.8				9.7	
B-20 (MW)	S-2	2-4	Silty Sand	ML	0.0	0.2	3.2	18.2	26.1	52.3				22.9	3.2
B-21	S-5	8-10	Fill	SM	30.0	6.4	6.8	17.6	23.9	15.3				13.8	
B-22	S-3	4-6	Sand and Gravel	SM	9.5	18.6	16.6	21.9	16.3	17.1				11.0	
B-24	V-1	2-2.5	Fill	SM	0.0	11.5	9.1	21.7	28.2	29.5				13.8	
B-24	V-2	4.5-5	Fill	SM	0.0	19.3	13.3	22.1	25.0	20.3				8.3	
B-25 (MW)	V-1	2-2.5	Fill	GM	18.4	26.8	10.3	18.1	13.1	13.3				7.2	
B-25 (MW)	S-1	6-8	Sand and Gravel	GP-GM	14.5	33.6	11.8	18.0	13.6	8.5				11.4	
B-26	V-1	2-2.5	Fill	SM	0.0	36.1	14.5	22.5	12.8	14.1				8.6	
B-26	S-2	9-9.7	Sand and Gravel	SM	1.8	37.3	13.3	22.2	12.6	12.8				7.9	
B-27	S-1	0.5-2	Sand and Gravel	SM	0.0	24.8	13.5	25.3	21.1	15.3				6.5	
B-28	S-4	9-9.8	Sand and Gravel	SP-SM	21.8	18.9	13.3	23.2	11.7	11.1				7.2	

Table 2-1
Summary of Geotechnical Laboratory Test Results

Exploration	Sample	Sample		USCS			Grain	Size Analys	is ²			Atterberg Li	mits ³	Moisture	Organic
Number	Number		Stratum		Grave	el (%)		Sand (%)		Fines (%	5)) DL /0/)	PI (%)	Content	Content
Nullibel	Number	Deptii (it)		Classification ¹	Coarse	Fine	Coarse	Medium	Fine	Silt C	Clay) PL (%)	PI (%)	(%) ⁽⁴⁾	(%) ⁽⁵⁾
B-29	S-5	8-10	Sand and Gravel	GW-GM	22.1	29.4	12.7	18.7	9.1	8.0				10.8	
B-30	V-2	5-5.5	Sand and Gravel	ML	0.0	6.3	4.5	15.4	19.0	45.1	9.7 20	17	3	20.2	
B-31	V-1	2-2.5	Sand and Gravel	SM	18.1	1.2	3.2	19.0	15.0	43.5				20.3	
B-31	S-3	14-14.7	Sand and Gravel	ML	0.0	6.2	4.1	14.7	24.9	32.5 1	7.6			11.0	
B-32	S-2	8-10	Sand and Gravel	SW-SM	13.8	28.5	14.9	22.8	10.8	9.2				9.0	
B-33	S-2	2-4	Sand and Gravel	GP-GM	9.5	41.1	10.6	21.0	11.0	6.8				5.6	
B-34	V-1	2-2.5	Sand and Gravel	SM	12.2	21.3	9.0	19.1	14.5	23.9				13.1	
B-35	S-2	2-3.5	Sand and Gravel	SP-SM	18.7	27.5	13.8	21.9	11.3	6.8				6.3	
B-36	S-3	4-6	Sand	SP	0.0	3.5	13.5	55.5	26.0	1.5				4.5	
B-37	V-1	2-2.5	Sand	SP	3.2	7.5	3.2	52.2	32.0	1.9				5.1	
B-38	V-1	3-3.5	Sand	SP	5.3	4.9	4.8	51.3	31.7	2.0				6.3	
B-38	S-3	14-16	Sandy Silt	ML	0.0	0.0	0.0	0.3	2.6	87.1 1	.0.0 NV	NP	NP	28.6	
B-39	S-5	8-10	Sand	SW-SM	0.0	10.5	8.5	53.6	18.8	8.6				6.4	
B-40	S-6	14-16	Sandy Silt	ML	0.0	0.0	0.0	0.6	1.6	80.7 1	7.1			27.4	
B-41	V-2	5.5-6	Sand and Gravel	SP-SM	0.0	4.0	3.9	52.0	29.0	11.1				28.8	
B-41	S-2	8-10	Silty Sand	SM	0.0	0.0	0.0	0.6	79.9	19.5				28.5	
B-42	S-2	8-10	Silty Sand	SM	0.0	12.4	4.2	7.8	37.7	25.3 1	2.6			80.6	9.4
B-42	S-3	14-16	Silty Sand	ML	0.0	0.0	0.1	0.6	7.2	92.1				25.1	
B-43	S-5	8-10	Clay	CL	0.0	0.0	0.1	0.6	2.1	44.8 5	2.4 42	21	21	25.7	
B-44	S-1	6-8	Sand and Gravel	SM	5.6	29.2	12.0	18.4	22.0	12.8				14.4	
B-45	S-3	10-12	Sandy Silt	ML	0.0	0.7	0.3	1.1	3.6	87.9	6.4			24.1	
B-45	S-4	14-16	Clay	CL	0.0	0.0	0.0	0.1	0.4	59.3 4	0.2 30	18	12	24.8	
B-46	S-2	8-10	Sandy Silt	ML	0.0	0.0	0.0	0.1	29.3	66.7	3.9			26.0	
B-47	V-1	2-2.5	Sand and Gravel	GP-GM	13.8	32.9	12.4	21.0	12.1	7.8				5.4	
B-48	S-4	6-8	Silty Sand	SM	0.0	0.0	0.1	1.7	76.8	21.4				9.2	
B-50	S-2	2-4	Sand and Gravel	SM	20.4	17.5	11.0	14.1	14.0	23.0				11.7	
B-51	S-4	6-8	Sand and Gravel	GW-GM	21.5	33.5	11.1	15.2	10.5	8.2				6.3	
B-52	S-3	4-5	Sand and Gravel	SM	0.0	17.0	14.3	26.5	28.6	13.6				13.4	
B-53 (MW)	S-2	2-3.3	Sand and Gravel	SM	9.6	24.7	10.8	13.5	14.5	26.9				10.3	
B-54	S-3	4-6	Sand and Gravel	GM	10.6	33.2	12.5	15.7	10.9	17.1				10.3	
B-55	S-1	2-3.8	Sand and Gravel	GW-GM	18.6	30.5	14.4	19.0	10.7	6.8				9.4	
B-56	S-2	2-3.3	Sand and Gravel	SM	0.0	31.4	15.2	21.7	18.0	13.7				9.6	2.6

Table 2-1
Summary of Geotechnical Laboratory Test Results

Exploration	Sample	Sample		USCS			Grair	n Size Analys	is ²		Att	terberg Lir	nits³	its ³ Moisture	
Number			Stratum		Grave	el (%)		Sand (%)		Fines (%)				Content	Content
Number	Number	Depth (ft)		Classification ¹	Coarse	Fine	Coarse	Medium	Fine	Silt Clay	- LL (%)	PL (%)	PI (%)	(%) ⁽⁴⁾	(%) ⁽⁵⁾
B-56	S-3	11-13	Sand and Gravel	SM	11.5	24.2	12.1	22.6	16.8	12.8				10.1	
B-57	S-3	4-5.5	Sand and Gravel	GM	0.0	47.0	16.8	10.8	8.7	16.7				10.9	
B-58	V-1	2-3	Sand and Gravel	GW-GM	5.1	41.3	15.3	19.5	10.6	8.2				5.1	
B-59	V-2	5-6	Fill	GP-GM	6.6	44.3	11.4	15.8	13.5	8.4				6.1	
B-59	S-3	14-16	Sand and Gravel	GW-GM	16.6	33.2	15.2	14.7	13.0	7.3				7.8	
						Constru	ıction Pack	age 2							
B-60	S-2	2-3.3	Sand and Gravel	GW-GM	17.5	39.5	12.1	15.9	9.6	5.4				6.8	
B-61	S-3	4-6	Sand and Gravel	GW	9.0	40.9	19.2	19.5	8.0	3.4				12.4	
B-63	S-3	4-6	Sand and Gravel	SM	14.3	23.2	10.5	19.1	13.0	19.9				18.4	
B-64	S-1	6-8	Sand and Gravel	SM	13.6	11.0	8.0	15.1	18.1	34.2				10.7	
B-65	S-3	4-6	Sand and Gravel	ML	0.0	4.8	3.0	8.2	16.5	59.4 8.1				19.9	
B-65	S-5	8-8.5	Sand and Gravel	SM	11.1	20.4	10.1	16.1	19.7	22.6				9.7	
B-66	S-1	6-8	Sandy Silt	ML	0.0	5.9	4.0	12.5	21.1	56.5				48.2	6.8
B-67	S-1	6-7.1	Silty Sand	SM	0.0	28.1	8.5	12.3	15.4	35.7				34.0	5.9
B-68	S-2	8-10	Silty Sand	ML	0.0	7.0	6.3	9.5	17.4	50.5 9.3				13.2	
B-69	S-3	4-6	Silty Sand	SM	0.0	12.2	11.8	21.2	27.1	27.7				11.5	
B-70	S-2	2-4	Sand and Gravel	SM	4.7	30.5	13.2	19.7	14.8	17.1				8.0	
B-70	S-4	6-8	Sand and Gravel	SM	0.0	32.3	13.4	19.6	19.3	15.4				8.8	
B-71	V-1	2-3	Sand and Gravel	SP-SM	15.5	25.8	11.6	19.7	16.1	11.3				6.8	
B-71	S-4	14-15.5	Sand and Gravel	SM	0.0	22.9	21.7	24.4	14.7	16.3				15.4	
B-72	S-2	2-4	Sand and Gravel	ML	0.0	16.9	8.2	11.0	13.2	40.0 10.7				23.9	
B-73	S-2	2-4	Sand and Gravel	SM	0.0	16.3	14.6	23.3	26.7	19.1				6.2	
B-74	S-1	0.5-1.7	Sand and Gravel	SM	0.0	33.1	14.6	20.7	14.6	17.0				9.5	
B-74	S-5	8-9.3	Sand and Gravel	SW	8.6	37.9	20.7	20.5	7.8	4.5				8.3	
B-75A	S-1	6-8	Sand and Gravel	GM	14.4	40.6	10.9	10.8	8.5	14.8				14.0	
B-76	S-2	2-4	Clay	CL	0.0	0.0	0.8	6.3	16.3	44.3 32.3				20.4	
B-77	S-2	2-4	Sandy Silt	ML	0.0	12.6	5.4	14.0	14.1	44.3 9.6				40.9	
B-78	S-2	2-4	Sand and Gravel	SW-SM	6.0	21.2	19.6	28.1	15.8	9.3				13.5	
B-78	S-5	8-10	Sandy Silt	ML	0.0	0.0	0.0	0.0	12.3	70.1 17.6				21.8	
B-79	S-6	14-16	Clay	CL	0.0	0.0	0.2	3.7	24.6	71.5	32	20	12	28.8	
B-80	S-2	6-8	Sand and Gravel	SP-SM	11.0	25.8	11.6	23.5	19.9	8.2				8.2	

Table 2-1
Summary of Geotechnical Laboratory Test Results

Exploration	Sample	Sample		USCS			Grair	Size Analys	is ²			Att	erberg Lir	nits³	Moisture	Organic
			Stratum		Grave	el (%)		Sand (%)		Fine	s (%)				Content	Content
Number	Number	Depth (ft)		Classification ¹	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	- LL (%)	PL (%)	PI (%)	(%) ⁽⁴⁾	(%) ⁽⁵⁾
B-81	S-4B	9.5-10	Sand and Gravel	ML	0.0	1.3	3.1	6.6	25.9	34.3	28.8				18.0	
B-82A	S-1	0.5-2	Fill	ML	0.0	7.9	4.6	11.2	18.9	57	7.4				32.5	5.0
B-82A	S-5A	8-8.5	Sandy Silt	ML	0.0	5.6	2.0	7.4	13.4	44.2	27.4				21.3	
						Constru	ction Pack	age 1								
B-84	S-5	9-11	Clay	CL	0.0	0.0	0.0	0.7	9.0	52.8	37.5	28	16	12	21.0	
B-85	S-6	14-16	Clay	CL	0.0	0.0	0.0	0.2	1.3	47.1	51.4	39	25	14	31.0	
B-86	S-3	4-6	Sand and Gravel	SM	4.8	13.0	7.8	16.6	29.9	27	7.9				30.8	
B-87	S-2	2-4	Sand and Gravel	SP-SM	8.8	27.9	9.7	24.0	19.9	9	.7				2.4	
B-88	S-1	0-2	Organic Soils				Additi	onal Laborato	ory Testing A	Assigned and	d Pending	Completio	on		21.6	4.3
B-88	S-6B	14.2-15.1	Clay	ML	0.0	1.6	1.8	6.7	20.0	69	9.9				29.0	
B-89	S-3	9-10.5	Sand and Gravel	GM	30.7	13.6	7.4	13.3	14.3	20).7				8.9	
B-90	S-1	0-2	Silty Sand				Additi	onal Laborato	ory Testing A	Assigned and	d Pending	Completio	on		10.1	4.4
B-90	S-3	4-4.8	Sand and Gravel	SP-SM	4.3	33.6	14.5	24.7	14.6	8	.3				7.5	
B-91	S-1	5-7	Sand and Gravel	SW-SM	12.0	31.9	11.8	24.2	11.8	8	.3				8.6	
B-92	S-1	5-7	Sand and Gravel	SW	0.0	40.9	19.4	25.3	9.9	4	.5				8.2	
B-93 (MW)	S-2	2-4	Sand and Gravel	SP	11.9	21.1	13.5	33.8	16.3	3	.4				3.9	
B-94	S-3	4-5.3	Fill	SP-SM	2.5	27.4	18.4	29.1	17.0	5	.6				12.6	
B-95	S-2	2-4	Fill	SP-SM	0.0	27.0	10.3	29.5	24.6	8	.6				4.8	
B-96	S-3	4-6	Sand and Gravel	SP-SM	0.0	17.7	12.1	28.3	35.0	6	.9				4.2	
B-97	S-1B	0.9-2	Sand and Gravel	SM	0.0	0.0	0.8	13.5	36.8	47.3	1.6				25.9	
B-97	S-5	8-10	Sand and Gravel	SP	0.0	24.3	10.4	37.6	24.0	3	.7				3.8	
B-98	S-1	5-7	Sand and Gravel	SP-SM	3.2	12.0	7.9	48.8	22.3	5	.8				13.1	
B-99	S-2	7-9	Sand and Gravel	SW	0.0	18.1	22.0	41.9	13.4	4	.6				9.1	
B-100 (MW)	S-1	0.5-2	Sand				Additi	onal Laborato	ory Testing A	Assigned and	d Pending	Completio	on		19.2	2.9
B-100 (MW)	S-3	4-6	Sand	SP	0.0	7.0	10.0	54.3	24.9	3	.8				4.2	
B-101	S-4	4-6	Sand and Gravel	SP-SM	13.4	30.0	13.9	21.9	10.2	10	0.6				7.2	
B-102	S-4	6-8	Sand and Gravel	GP-GM	22.3	25.3	12.3	20.2	12.3	7	.6				25.5	7.8
B-103	S-4	6-8	Organic Soils	ML	0.0	0.1	4.2	10.1	19.9	65	5.7				80.2	9.4
B-104 (MW)	S-2	8-10	Sand and Gravel	SM	0.0	27.2	15.8	24.9	17.5	14	1.6				28.4	4.2

Table 2-1
Summary of Geotechnical Laboratory Test Results

Exploration	Sample	Sample		USCS	Grain Size Analysis ²							Att	erberg Lir	nits ³	Moisture	Organic
Number	Number	Depth (ft)	Stratum	Classification ¹	Grave	el (%)		Sand (%)		Fine	s (%)	- LL (%)	PL (%)	PI (%)	Content	Content
Number	Number	Depth (It)		Classification	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	- LL (%)	PL (%)	PI (%)	(%) ⁽⁴⁾	(%) ⁽⁵⁾
B-105	S-4	6-8	Silty Sand	SM	0.0	13.8	8.0	20.7	25.6	33	1.9				11.4	
B-107 (MW)	S-1	0.5-2	Sand and Gravel	SM	0.0	11.7	12.6	34.2	29.3	12	2.2				14.6	
B-107 (MW)	S-4	6-8	Sand and Gravel	SM	0.0	13.2	11.8	18.7	24.3	32	2.0				9.6	
B-108	S-2	8-10	Silty Sand	SM	0.0	22.8	11.4	21.1	26.3	18	3.4				16.2	
B-110 (MW)	S-3	4-6	Organic Soil	ОН	Additional Laboratory Testing Assigned and Pendi							Completio	on		62.9	7.8
B-110 (MW)	S-5	8-10	Organic Soil	ОН	0.0	0.0	0.6	3.0	11.1	46.5	38.8	98	41	57	80.0	
B-110 (MW)	S-7	19-21	Clay	CL	0.0	0.0	0.0	0.5	3.3	47.9	48.3	33	17	16	31.8	
B-111	S-3B	4.5-6	Silty Sand	SM	0.0	0.7	2.2	17.1	46.5	33	3.5				26.2	
B-112	S-2	2-4	Organic Soils	CL	0.0	0.0	0.0	4.3	5.4	31.0	59.3				55.7	5.9
B-112	S-6	14-16	Clay	CL	0.0	0.0	0.0	0.2	1.6	33.2	65.0	46	21	25	38.7	
B-113 (MW)	S-3A	4-5	Organic Soils				Additio	onal Laborato	ory Testing A	Assigned and	d Pending	Completio	on		185.9	21.1
B-113 (MW)	S-5	9-11	Clay	CH/OH	0.0	0.0	0.0	1.1	1.9	49.6	47.4	96	36	60	85.5	
B-113 (MW)	S-6B	14.5-16	Clay	CL	0.0	0.0	0.0	0.8	10.1	33.6	55.5	37	18	19	35.3	
B-114	S-1	6-8	Sand	SP-SM	7.3	9.2	6.3	15.7	54.9	6	.6				14.6	
B-115	S-2	8-10	Silty Sand	SM	0.0	12.5	7.2	21.2	15.4	43	3.7				63.4	5.4
B-115	S-4	19-21	Clay	CL	0.0	0.0	0.0	0.3	11.5	44.1	44.1	38	18	20	32.5	
B-116	S-2	8-10	Silty Sand	SP-SM	0.0	28.5	11.5	31.9	22.4	5	.7				11.0	
B-116	S-3	14-16	Clay	CL	0.0	0.0	0.7	0.3	5.4	41.4	52.2	30	16	14	29.9	

Notes:

- 1. USCS classifications were performed in accordance with ASTM D2487.
- 2. Grain size analysis tests performed in accordance with ASTM D7928 & D6913 and ASTM D1140.
- 3. Atterberg limit tests performed in accordance with ASTM D4318.
- 4. Moisture content analysis performed in accordance with ASTM D2216.
- 5. Organic content analysis performed in accordance with ASTM D2974.

Abbreviations:

SP-SM: Poorly Graded Sand and Silty Sand GP-GM: Poorly Graded Gravel and Silty Gravel SW-SM: Well Graded Sand and Silty Sand SM: Silty Sand

SP: Poorly Graded Sand GW-GM: Well Graded Gravel

-- Not conducted

ML: Silt

GM: Silty Gravel CL: Lean Clay CH: Fat Clay

OH: Organic Silt

Table 2-2 Summary of Subsurface Conditions

							Stratum	Thickness (ft)				Approximate	Approximate
Exploration Number	Approximate Ground Surface Elevation (ft) ⁽¹⁾	Approximate Exploration Depth (ft)	Pavement or Topsoil	Fill	Sand and Gravel	Silty Sand	Sand	Organic Soils		Silty Clay	Weathered Rock	Bedrock	- Depth to Top of Bedrock (ft)	Depth to Groundwater (ft) ⁽²⁾
Construction	Package 1													
B-84	Survey Pending	15.0	0.6	NE	6.9/>2.0	NE	NE	NE	NE	5.5	NE	NE	NE	NE
B-85	Survey Pending	16.0	0.4	NE	NE	8.6	NE	NE	NE	>7.0	NE	NE	NE	6.5
B-86	Survey Pending	15.0	0.3	NE	7.7	NE	NE	NE	NE	NE	2.0	>5.0	10.0	3.0
B-87	Survey Pending	14.0	0.3	NE	11.1	NE	NE	NE	NE	NE	>2.6	NE	NE	11.5
B-88	Survey Pending	16.0	0.5	NE	11.2	NE	NE	2.5	NE	>1.8	NE	NE	NE	NE
B-89	Survey Pending	15.3	0.5	NE	>14.8	NE	NE	NE	NE	NE	NE	NE	NE	2.0
B-90	Survey Pending	16.0	NE	NE	>14.0	2.0	NE	NE	NE	NE	NE	NE	NE	NE
B-91	Survey Pending	16.0	0.9	3.1	>12.0	NE	NE	NE	NE	NE	NE	NE	NE	NE
B-92	Survey Pending	16.0	0.7	4.3	>11.0	NE	NE	NE	NE	NE	NE	NE	NE	NE
B-93 (MW)	Survey Pending	16.0	1.0	NE	>15.0	NE	NE	NE	NE	NE	NE	NE	NE	3.0
B-94	Survey Pending	16.0	0.3	4.9	>10.8	NE	NE	NE	NE	NE	NE	NE	NE	10.0
B-95	Survey Pending	16.0	1.3	3.5	>8.0	NE	3.2	NE	NE	NE	NE	NE	NE	NE
B-96	Survey Pending	16.0	0.3	NE	>15.7	NE	NE	NE	NE	NE	NE	NE	NE	14.5
B-97	Survey Pending	16.0	0.6	NE	>15.4	NE	NE	NE	NE	NE	NE	NE	NE	10.0
B-98	Survey Pending	21.0	1.0	NE	11.5	NE	>8.5	NE	NE	NE	NE	NE	NE	8.0
B-99	Survey Pending	16.0	0.9	NE	>15.1	NE	NE	NE	NE	NE	NE	NE	NE	13.2
B-100 (MW)	Survey Pending	16.0	0.3	NE	NE	NE	>15.7	NE	NE	NE	NE	NE	NE	8.0
B-101	Survey Pending	16.0	0.7	3.3	>12.0	NE	NE	NE	NE	NE	NE	NE	NE	NE
B-102	Survey Pending	23.0	0.3	4.0	7.7	NE	NE	NE	NE	>11.0	NE	NE	NE	7.5
B-103	Survey Pending	26.0	0.5	5.5	4.0/>8.5	NE	NE	2.0	NE	5.5	NE	NE	NE	7.2
B-104 (MW)	Survey Pending	24.7	0.3	5.2	>12.7	6.0	NE	NE	NE	NE	NE	NE	NE	5.3
B-105	Survey Pending	14.8	0.3	3.7	NE	>10.8	NE	NE	NE	NE	NE	NE	NE	4.0
B-107 (MW)	Survey Pending	18.5	0.3	NE	9.7	NE	NE	NE	NE	NE	4.5	>4.0	14.5	5.0
B-108	Survey Pending	16.0	1.2	6.8	NE	>8.0	NE	NE	NE	NE	NE	NE	NE	7.4
B-109	Survey Pending	21.0	1.0	8.5	5.5	2.5	NE	NE	NE	3.5	NE	NE	NE	6.5
B-110 (MW)	Survey Pending	21.0	NE	2.0	5.5	NE	NE	NE	NE	10.0/ >3.5	NE	NE	NE	5.8
B-111	Survey Pending	16.0	0.5	1.7	4.0	4.3	NE	2.0	NE	>3.5	NE	NE	NE	5.5
B-112	Survey Pending	26.0	0.7	1.3	NE	5.5	NE	2.0	NE	>16.5	NE	NE	NE	5.1
B-113 (MW)	Survey Pending	26.0	0.3	1.7	NE	7.5/2.0/ 5.0	NE	1.0	NE	2.0/7.5/ 3.0/>3.5	NE	NE	NE	5.5

Table 2-2
Summary of Subsurface Conditions

Exploration	Approximate	Approximate					Stratum	Thickness (ft)				Approximate - Depth to Top	Approximate Depth to
Number	Ground Surface Elevation (ft) ⁽¹⁾	Exploration Depth (ft)	Pavement or Topsoil	Fill	Sand and Gravel	Silty Sand	Sand	Organic Soils	Sandy Silt	Silty Clay	Weathered Rock	Bedrock	of Bedrock (ft)	Groundwater (ft) ⁽²⁾
B-114	Survey Pending	16.0	0.3	NE	NE	>4.0	11.7	NE	NE	NE	NE	NE	NE	4.0
B-115 B-116	Survey Pending Survey Pending	21.0 16.0	0.2 0.2	NE NE	NE NE	11.8 9.8	NE NE	NE NE	NE NE	>9.0 >6.0	NE NE	NE NE	NE NE	4.3 3.7

Notes:

- 1. Ground surface elevations have not yet been acquired. Survey will be scheduled in the Spring 2018 when conditions are favorable for locating the boreholes.
- 2. Indicated depths are depths below ground surface at the time of drilling.
- 3. Groundwater levels were measured at the completion of drilling and may not represent static groundwater conditions.

Abbreviations:

NE - Not Encountered

NR - Not Recorded

> - Layer not fully penetrated

/ - Layer encountered twice in test boring

Table 2-2 Continued Summary of Subsurface Conditions

Exploration	Approximate	Approximate					Stratum ⁻	Thickness (ft)				Approximate	Approximate Depth to
Number	Ground Surface Elevation (ft) ⁽¹⁾	Exploration Depth (ft)	Pavement or Topsoil	Fill	Sand and Gravel	Silty Sand	Sand	Organic Soils	Sandy Silt	Silty Clay	Weathered Rock	Bedrock	Depth to Top of Bedrock (ft)	Groundwater (ft) ⁽²⁾
Construction F	Package 2													
B-60	Survey Pending	8.5	0.5	NE	3.0	NE	NE	NE	NE	NE	NE	>5.0	3.5	NE
B-61	Survey Pending	14.0	1.0	NE	5.0	NE	NE	NE	NE	NE	3.0	>5.0	9.0	6.0
B-62	Survey Pending	14.1	0.3	1.7	12.1	NE	NE	NE	NE	NE	>4.6	NE	NE	6.0
B-63	Survey Pending	14.3	NE	NE	>14.3	NE	NE	NE	NE	NE	NE	NE	NE	6.2
B-64	Survey Pending	15.3	NE	6.0	>9.3	NE	NE	NE	NE	NE	NE	NE	NE	11.8
B-65	Survey Pending	15.0	0.3	NE	>14.7	NE	NE	NE	NE	NE	NE	NE	NE	9.0
B-66	Survey Pending	14.2	0.3	NE	4.2/>3.2	NE	NE	NE	6.5	NE	NE	NE	NE	7.0
B-67	Survey Pending	14.8	0.5	4.5	NE	>9.8	NE	NE	NE	NE	NE	NE	NE	2.5
B-68	Survey Pending	15.5	0.3	4.7	NE	>10.5	NE	NE	NE	NE	NE	NE	NE	6.1
B-69	Survey Pending	14.8	0.5	3.5	NE	>10.8	NE	NE	NE	NE	NE	NE	NE	11.5
B-70	Survey Pending	13.5	0.3	NE	>13.2	NE	NE	NE	NE	NE	NE	NE	NE	3.2
B-71	Survey Pending	15.5	0.5	NE	>15.0	NE	NE	NE	NE	NE	NE	NE	NE	NE
B-72	Survey Pending	13.5	0.4	NE	>13.1	NE	NE	NE	NE	NE	NE	NE	NE	3.0
B-73	Survey Pending	14.3	0.5	NE	>13.8	NE	NE	NE	NE	NE	NE	NE	NE	8.0
B-74	Survey Pending	16.0	0.3	NE	>15.7	NE	NE	NE	NE	NE	NE	NE	NE	7.0
B-75A (MW)	Survey Pending	14.5	0.8	NE	7.7	NE	NE	NE	NE	NE	NE	>6.0	8.5	5.0
B-76	Survey Pending	14.8	0.5	1.5	>10.8	NE	NE	NE	NE	4.0	NE	NE	NE	NE
B-77	Survey Pending	15.0	0.3	NE	>10.5	NE	NE	NE	4.2	NE	NE	NE	NE	8.0
B-78	Survey Pending	14.5	0.3	NE	7.7/>2.5	NE	NE	NE	4.0	NE	NE	NE	NE	7.5
B-79	Survey Pending	16.0	0.3	NE	8.4	NE	NE	NE	3.3	>4.0	NE	NE	NE	9.5
B-80	Survey Pending	16.0	0.5	3.5	>12.0	NE	NE	NE	NE	NE	NE	NE	NE	8.5
B-81	Survey Pending	26.0	0.3	4.7	>21.0	NE	NE	NE	NE	NE	NE	NE	NE	9.0
B-82A	Survey Pending	26.0	0.3	1.7	6.0	>17.5	NE	NE	0.5	NE	NE	NE	NE	8.5

Notes:

- Ground surface elevations have not yet been acquired. Survey will be scheduled in the Spring 2018 when conditions are favorable for locating the boreholes.
- 2. Indicated depths are depths below ground surface at the time of drilling.
- 3. Groundwater levels were measured at the completion of drilling and may not represent static groundwater conditions.

Abbreviations:

NE - Not Encountered

NR - Not Recorded

> - Layer not fully penetrated

/ - Layer encountered twice in test boring

Table 2-2 Continued Summary of Subsurface Conditions

Exploration	Approximate	Approximate					Stratum [*]	Thickness (ft)				Approximate	Approximate Depth to
Number	Ground Surface Elevation (ft) ⁽¹⁾	Exploration Depth (ft)	Pavement or Topsoil	Fill	Sand and Gravel	Silty Sand	Sand	Organic Soils	Sandy Silt	Silty Clay	Weathered Rock	Bedrock	Depth to Top of Bedrock (ft)	Groundwater (ft) ⁽²⁾
Construction	Package 3													
B-1	Survey Pending	16.0	0.5	NE	>15.5	NE	NE	NE	NE	NE	NE	NE	NE	NE
B-2	Survey Pending	16.0	3.5	NE	>12.5	NE	NE	NE	NE	NE	NE	NE	NE	10.9
B-3	Survey Pending	14.0	0.2	NE	11.8	NE	NE	NE	NE	NE	>2.0	NE	NE	5.2
B-4	Survey Pending	16.0	1.0	NE	>15.0	NE	NE	NE	NE	NE	NE	NE	NE	9.0
B-5	Survey Pending	16.0	0.7	NE	>15.3	NE	NE	NE	NE	NE	NE	NE	NE	NE
B-6	Survey Pending	16.0	1.5	NE	10.5	>4.0	NE	NE	NE	NE	NE	NE	NE	NE
B-7	Survey Pending	24.7	3.0	NE	14.0	>7.7	NE	NE	NE	NE	NE	NE	NE	11.1
B-8A	Survey Pending	16.0	0.8	NE	>15.2	NE	NE	NE	NE	NE	NE	NE	NE	14.0
B-9 (MW)	Survey Pending	21.0	1.0	NE	>20.0	NE	NE	NE	NE	NE	NE	NE	NE	9.0
B-10	Survey Pending	16.0	0.7	3.3	>12.0	NE	NE	NE	NE	NE	NE	NE	NE	NE
B-11	Survey Pending	16.0	0.5	NE	7.5/>4.0	4.0	NE	NE	NE	NE	NE	NE	NE	NE
B-12	Survey Pending	16.0	0.2	NE	>15.8	NE	NE	NE	NE	NE	NE	NE	NE	NE
B-13	Survey Pending	16.0	1.0	1.0	>4.0	10.0	NE	NE	NE	NE	NE	NE	NE	NE
B-14	Survey Pending	16.0	0.7	NE	>15.3	NE	NE	NE	NE	NE	NE	NE	NE	12.0
B-16	Survey Pending	16.0	0.5	1.5	>14.0	NE	NE	NE	NE	NE	NE	NE	NE	NE
B-17 (MW)	Survey Pending	21.0	0.5	NE	>20.5	NE	NE	NE	NE	NE	NE	NE	NE	8.4
B-18	Survey Pending	14.0	0.3	1.7	5.5	4.5	NE	NE	NE	NE	>2.0	NE	NE	1.5
B-19	Survey Pending	14.0	0.3	6.2	NE	NE	NE	NE	NE	NE	2.5	>5.0	9.0	9.3
B-20 (MW)	Survey Pending	14.0	0.5	NE	6.0	5.5	NE	NE	NE	NE	>2.0	NE	NE	4.1
B-21	Survey Pending	15.0	4.0	7.5	>3.5	NE	NE	NE	NE	NE	NE	NE	NE	12.0
B-22	Survey Pending	16.5	0.3	2.7	6.2	NE	NE	NE	NE	NE	2.3	>5.0	11.5	7.8
B-23					To	Be Conducte	ed In the	Spring of 2	2018					
B-24	Survey Pending	21.0	1.0	3.8	>16.2	NE	NE	NE	NE	NE	NE	NE	NE	14.5
B-25 (MW)	Survey Pending	15.0	0.3	3.2	>11.5	NE	NE	NE	NE	NE	NE	NE	NE	8.5
B-26	Survey Pending	15.0	0.3	5.2	>9.5	NE	NE	NE	NE	NE	NE	NE	NE	8.0

Table 2-2 Continued Summary of Subsurface Conditions

Exploration	Approximate	Approximate					Stratum	Thickness (ft)				Approximate	Approximate Depth to
Number	Ground Surface Elevation (ft) ⁽¹⁾	Exploration Depth (ft)	Pavement or Topsoil	Fill	Sand and Gravel	Silty Sand	Sand	Organic Soils	Sandy Silt	Silty Clay	Weathered Rock	Bedrock	Depth to Top of Bedrock (ft)	Groundwater (ft) ⁽²⁾
B-27	Survey Pending	16.0	0.3	NE	>15.7	NE	NE	NE	NE	NE	NE	NE	NE	6.5
B-28	Survey Pending	16.0	0.3	NE	>15.7	NE	NE	NE	NE	NE	NE	NE	NE	14.5
B-29	Survey Pending	16.0	0.3	1.7	>14.0	NE	NE	NE	NE	NE	NE	NE	NE	6.6
B-30	Survey Pending	16.0	0.4	4.1	>11.5	NE	NE	NE	NE	NE	NE	NE	NE	5.2
B-31	Survey Pending	19.8	1.2	NE	>18.6	NE	NE	NE	NE	NE	NE	NE	NE	6.0
B-32	Survey Pending	16.0	3.0	3.0	>10.0	NE	NE	NE	NE	NE	NE	NE	NE	NE
B-33	Survey Pending	16.0	0.3	1.7	>14.0	NE	NE	NE	NE	NE	NE	NE	NE	NE
B-34	Survey Pending	16.0	0.7	NE	>15.3	NE	NE	NE	NE	NE	NE	NE	NE	NE
B-35	Survey Pending	16.0	0.5	NE	>15.5	NE	NE	NE	NE	NE	NE	NE	NE	NE
B-36	Survey Pending	15.3	0.3	1.7	>6.8	NE	6.5	NE	NE	NE	NE	NE	NE	NE
B-37	Survey Pending	16.0	0.3	0.7	>4.0	NE	11.0	NE	NE	NE	NE	NE	NE	NE
B-38	Survey Pending	16.0	0.7	2.3	4.0	NE	5.0	NE	>4.0	NE	NE	NE	NE	8.5
B-39	Survey Pending	17.0	0.4	NE	3.6	NE	11.1	NE	>1.9	NE	NE	NE	NE	11.8
B-40	Survey Pending	21.0	0.2	3.8	4.0	NE	NE	NE	>13.0	NE	NE	NE	NE	5.2
B-41	Survey Pending	16.0	0.2	3.3	4.5	>8.0	NE	NE	NE	NE	NE	NE	NE	4.1
B-42	Survey Pending	21.0	0.2	NE	5.8	>15.0	NE	NE	NE	NE	NE	NE	NE	3.2
B-43	Survey Pending	16.0	0.5	1.5	NE	6.0/>4.0	NE	NE	NE	4.0	NE	NE	NE	5.3
B-44	Survey Pending	16.0	1.0	NE	6.5	NE	>4.0	NE	4.5	>4.0	NE	NE	NE	7.0
B-45	Survey Pending	16.0	0.3	NE	NE	NE	NE	NE	12.7	>3.0	NE	NE	NE	5.4
B-46	Survey Pending	16.0	1.0	NE	7.0	NE	NE	NE	4.0	>4.0	NE	NE	NE	6.4
B-47	Survey Pending	16.0	1.0	NE	>15.0	NE	NE	NE	NE	NE	NE	NE	NE	12.8
B-48	Survey Pending	16.0	0.5	NE	5.5	>10.0	NE	NE	NE	NE	NE	NE	NE	11.3
B-49	Survey Pending	16.0	0.8	5.2	>10.0	NE	NE	NE	NE	NE	NE	NE	NE	7.2
B-50	Survey Pending	15.0	1.0	NE	>14.0	NE	NE	NE	NE	NE	NE	NE	NE	NE
B-51	Survey Pending	14.4	0.3	NE	>14.1	NE	NE	NE	NE	NE	NE	NE	NE	7.7
B-52	Survey Pending	14.5	0.3	NE	8.7	NE	NE	NE	NE	NE	>5.5	NE	NE	5.2
B-53 (MW)	Survey Pending	11.0	0.3	NE	2.6	NE	NE	NE	NE	NE	3.1	>5.0	6.0	6.0
B-54	Survey Pending	14.1	0.4	1.6	11.0	NE	NE	NE	NE	NE	>1.1	NE	NE	11.0
B-55	Survey Pending	13.0	1.5	NE	6.5	NE	NE	NE	NE	NE	>5.0	NE	NE	5.8
B-56	Survey Pending	15.0	0.5	NE	>14.5	NE	NE	NE	NE	NE	NE	NE	NE	7.2
B-57	Survey Pending	14.0	0.5	NE	5.5	NE	NE	NE	NE	NE	3.0	>5.0	9.0	5.8
B-58	Survey Pending	10.0	0.4	NE	>9.6	NE	NE	NE	NE	NE	NE	NE	NE	NE

Table 2-2 Continued Summary of Subsurface Conditions

Exploration	Approximate	Approximate					Stratum	Thickness (ft)				Approximate	Approximate Depth to
Number	Ground Surface Elevation (ft) ⁽¹⁾	Exploration Depth (ft)	Pavement or Topsoil	Fill	Sand and Gravel	Silty Sand	Sand	Organic Soils	Sandy Silt	Silty Clay	Weathered Rock	Bedrock	Depth to Top of Bedrock (ft)	Groundwater
B-59	Survey Pending	16.0	0.8	5.2	>10.0	NE	NE	NE	NE	NE	NE	NE	NE	NE

Notes:

- Ground surface elevations have not yet been acquired. Survey will be scheduled in the Spring 2018 when conditions are favorable for locating the boreholes.
- 2. Indicated depths are depths below ground surface at the time of drilling.
- 3. Groundwater levels were measured at the completion of drilling and may not represent static groundwater conditions.

Abbreviations:

NE - Not Encountered

NR - Not Recorded

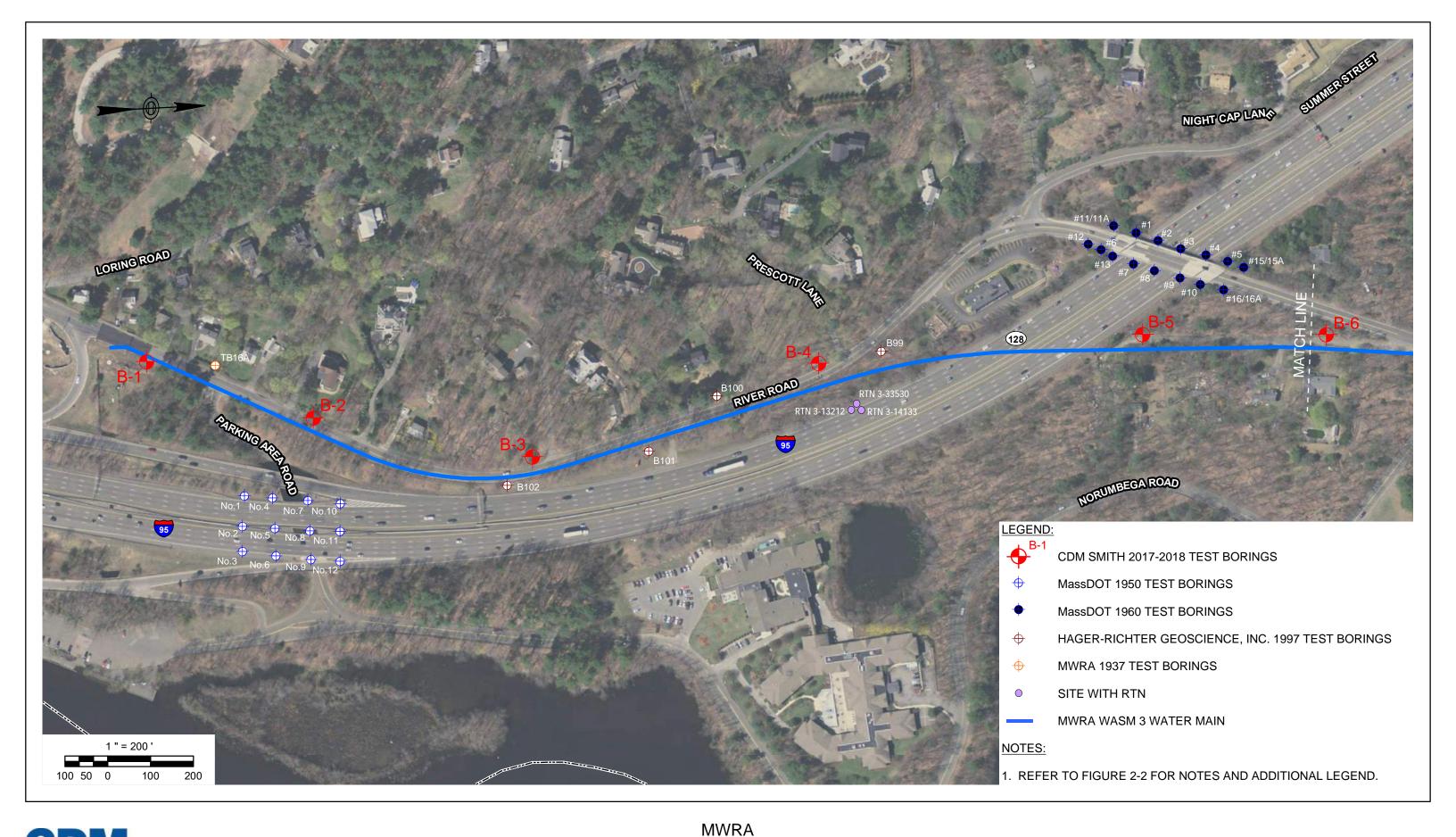
> - Layer not fully penetrated

/ - Layer encountered twice in test boring

Table 2-3
Summary of Groundwater Monitoring Well Readings

Monitoring Well Number	Ground Surface Elevation (1)	Depth to Groundwater (ft) ⁽²⁾
		2/27/2018
B-9 (MW)	Survey Pending	8.32
B-17 (MW)	Survey Pending	NE
B-20 (MW)	Survey Pending	3.40
B-25 (MW)	Survey Pending	8.12
B-53 (MW)	Survey Pending	6.90
B-75A (MW)	Survey Pending	5.70
B-93 (MW)	Survey Pending	NE
B-100 (MW)	Survey Pending	13.77
B-104 (MW)	Survey Pending	8.15
B-107 (MW)	Survey Pending	7.08
B-110 (MW)	Survey Pending	6.55
B-113 (MW)	Survey Pending	2.50

Notes:

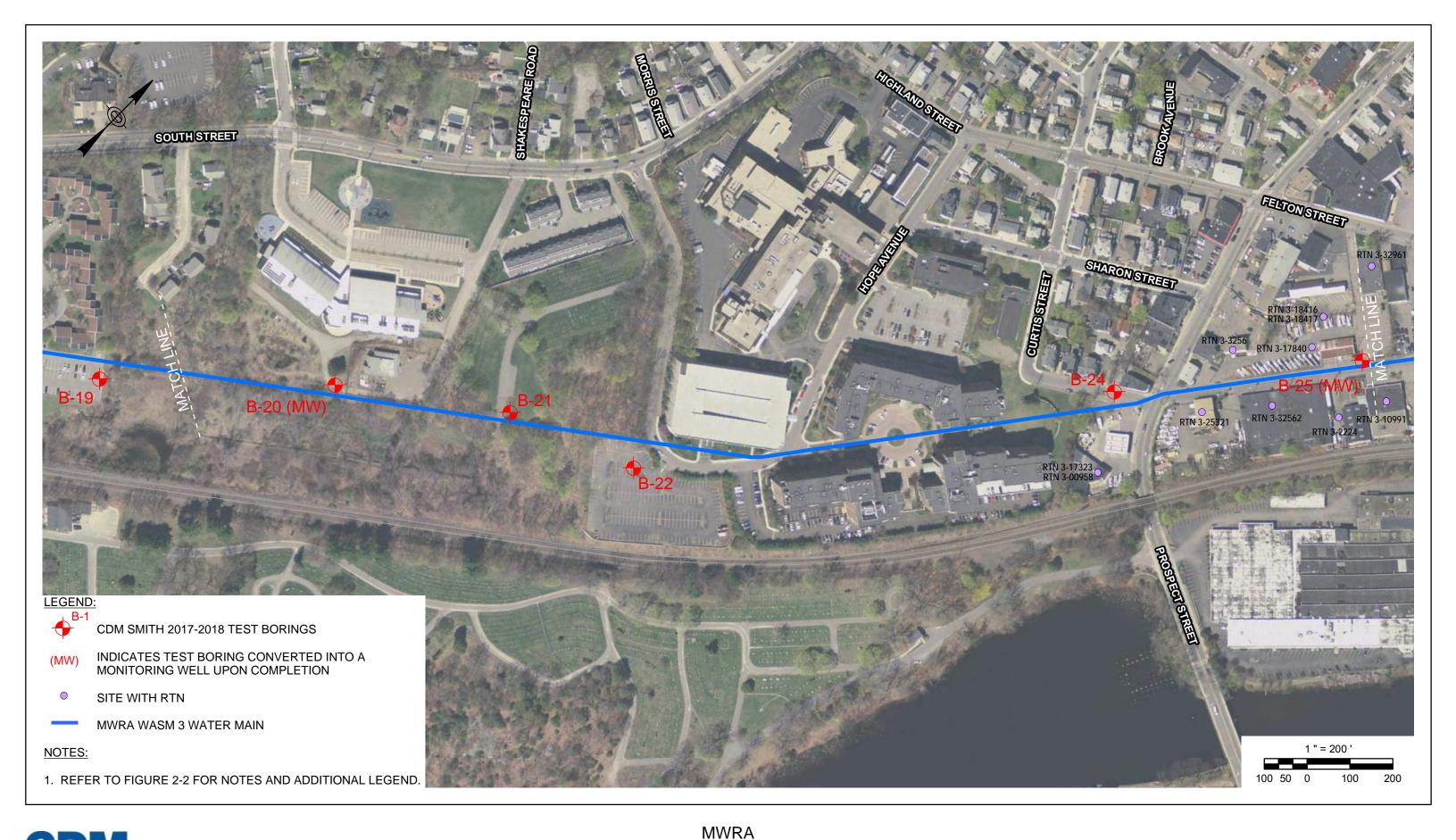

- 1. Ground surface elevations have not yet been acquired. Survey will be scheduled in the Spring 2018 when conditions are favorable for locating the boreholes.
- 2. Indicated depths are depths below ground surface as measured on the date identified.

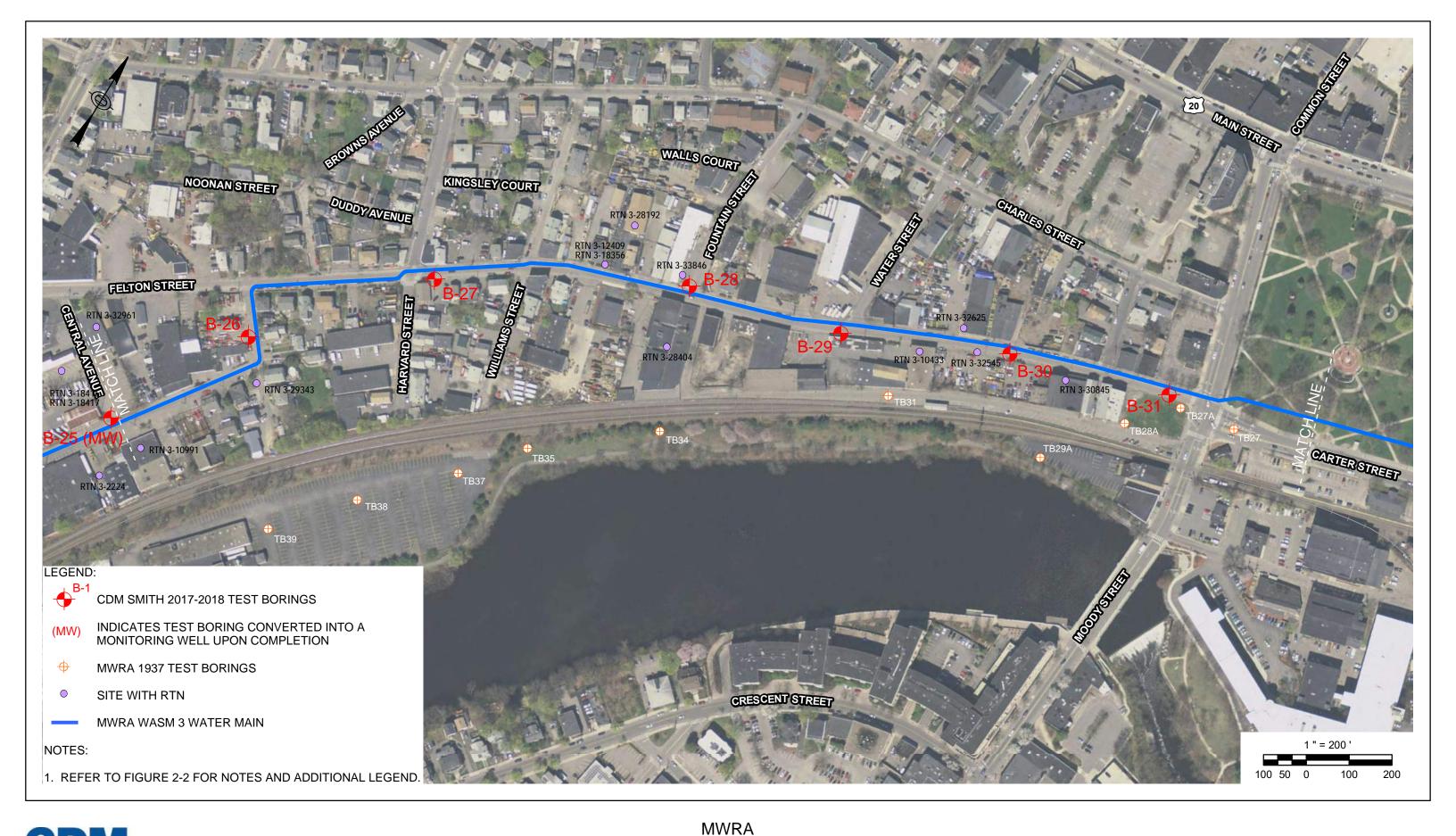
Abbreviations:

ft - feet

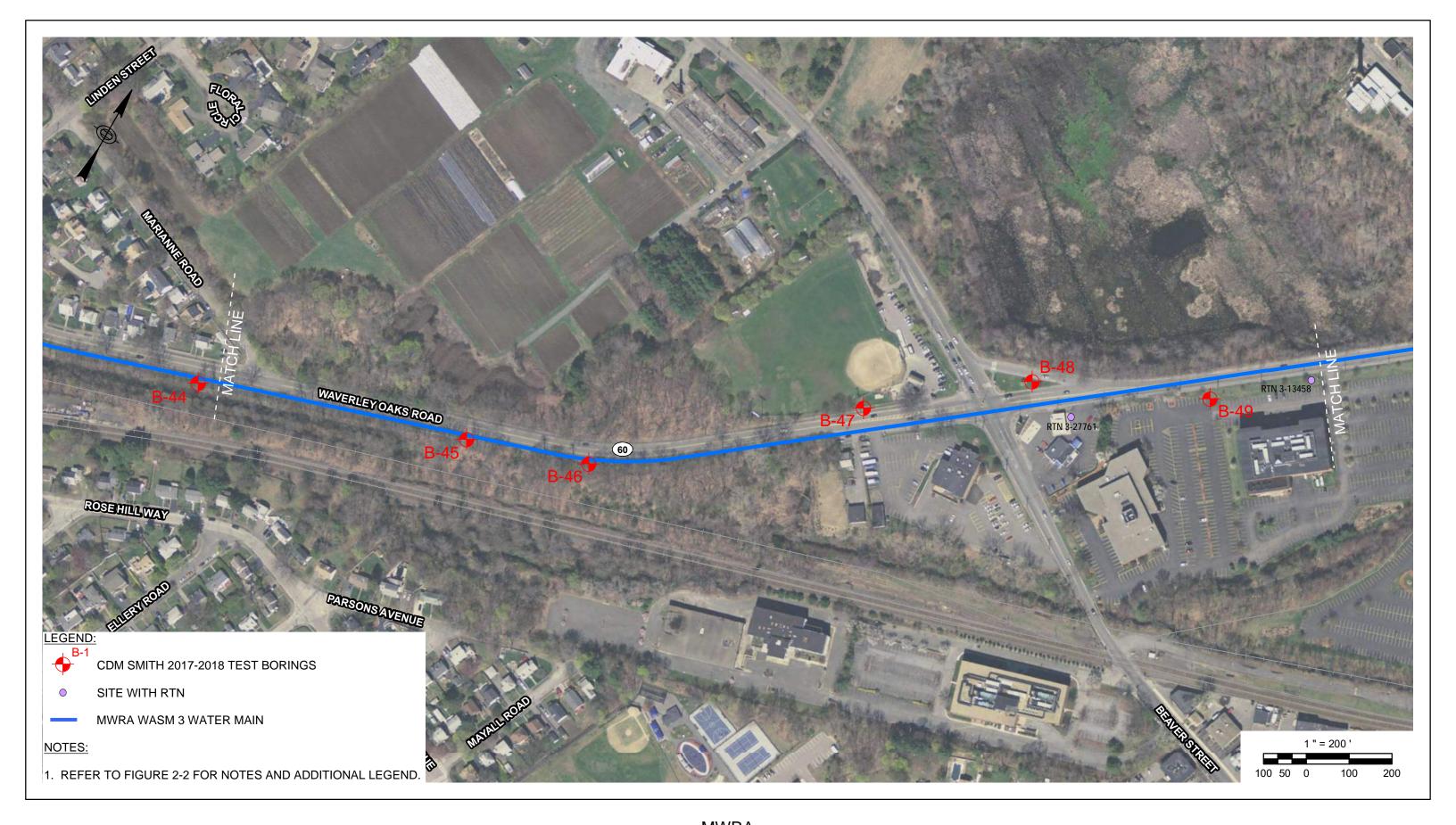
NE - Not Encountered

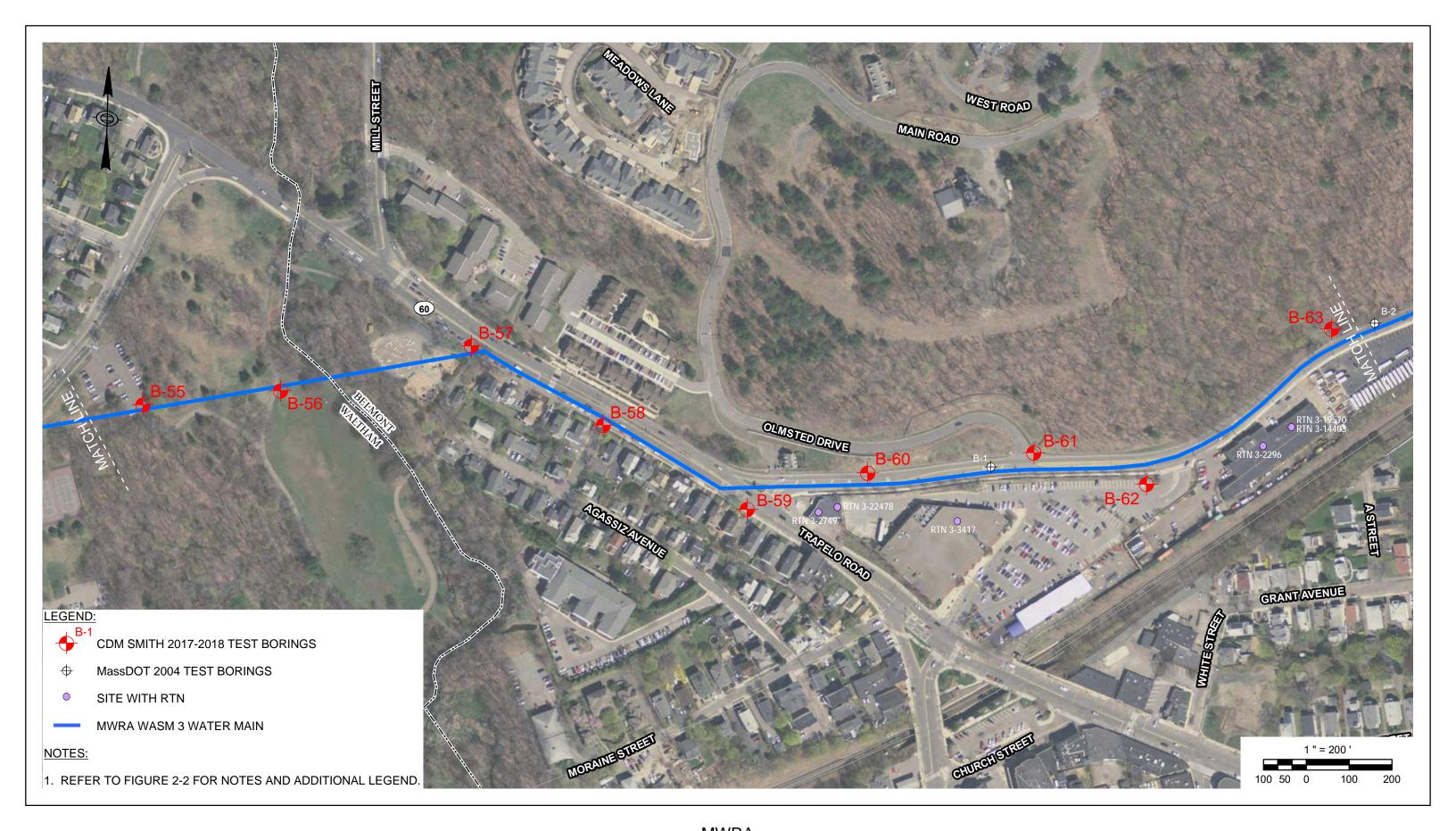


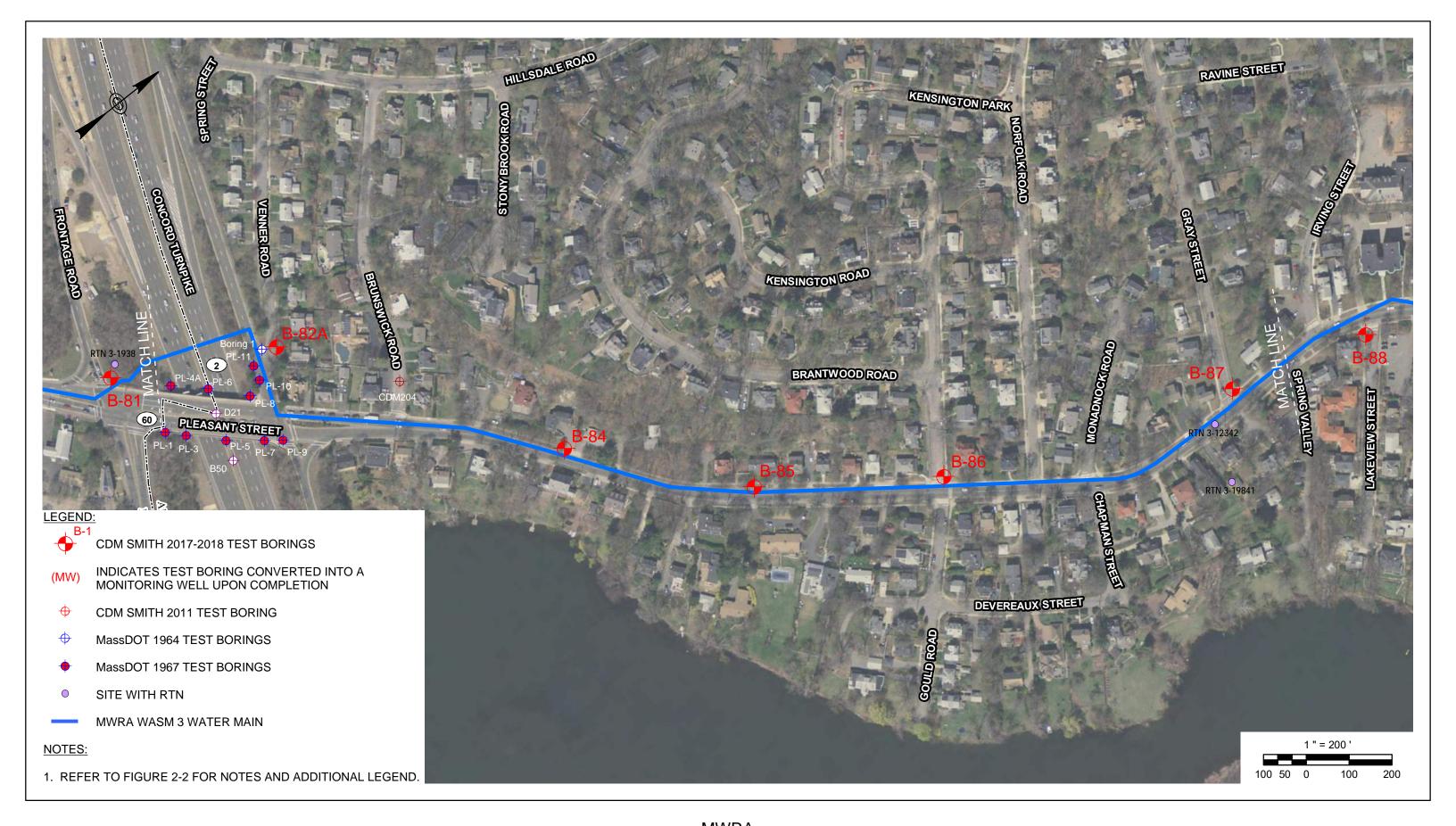




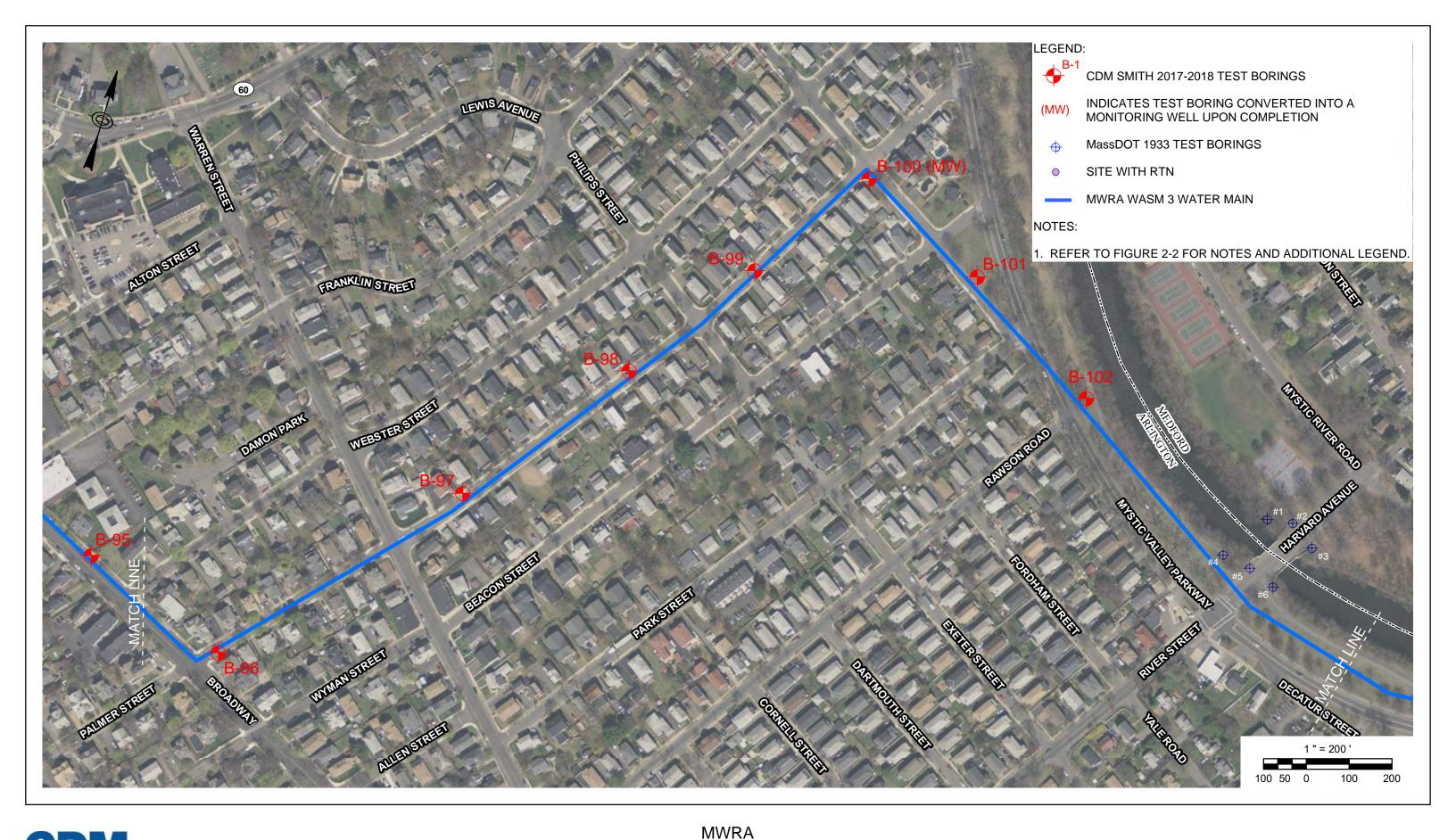


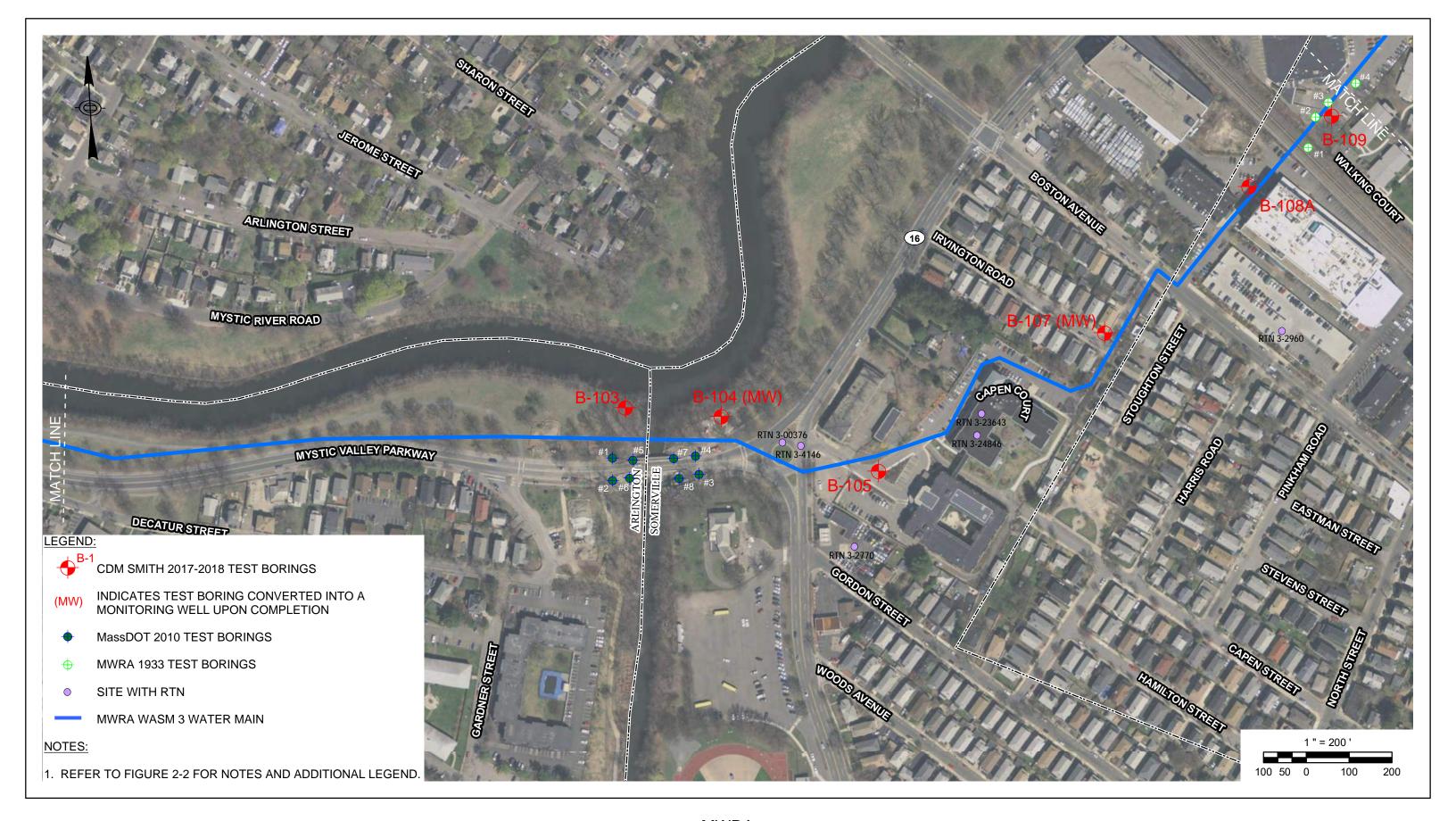












Appendix A

Existing Test Boring Logs

CDM Smith 2011 Test Boring Arlington, MA

Sheet 1 of 1

Boring Number: CDM-204

Client: Green International Affiliates Project Location: Arlington, MA

Project Name: MWRA - Contract 6540

Project Number: 33341-82080

Drilling Contractor/Driller: Soil Exploration / George Guinto

Drilling Method/Casing/Core Barrel Size: Hollow Stem Auger / 4/

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2

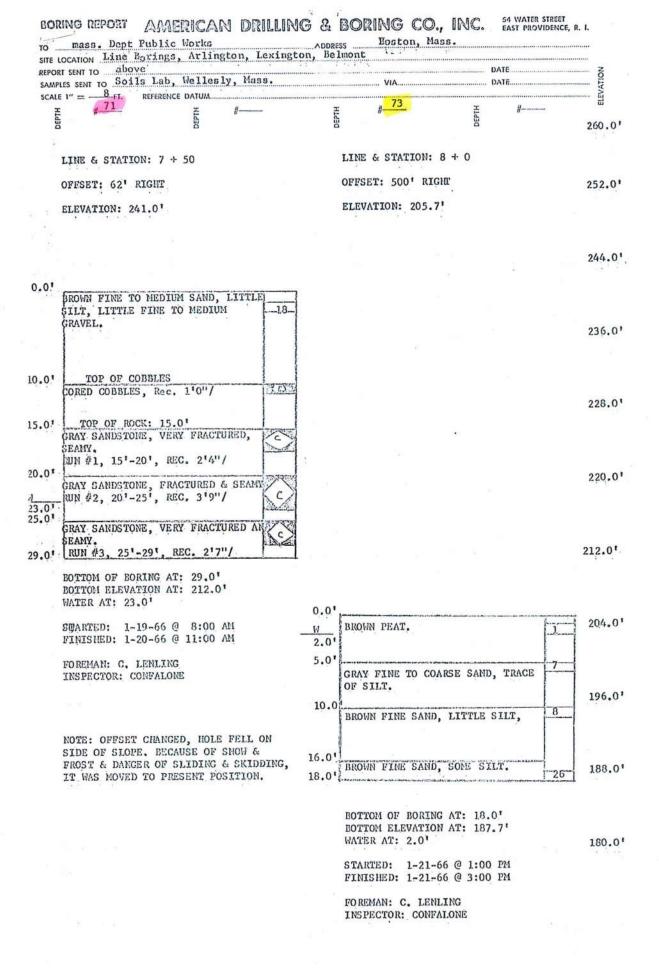
Bore Hole Location: Brunswick Ave

N: 2973476 E: 747149

Drilling Date: Start: 6/15/2011 End: 6/15/2011

Surface Elevation (ft.): 54.1

Total Depth (ft.): 15.5


Depth to Initial Water Level (ft): Depth Date

NE

Abandonment Method: Backfill with cuttings, cold patch

Ele Dej (fi	1	Sample	Sample	Sample	Length (in) Blows per	Sample Recovery (in)	Split Spoon Size (0.D.)	Graphic Log	Strata	Materi	al Description	Ģ.	Remark
-	1							***		Asphalt			
-	-	ss	S-1	24	4 4 2 6	10			Ē	Moist, loose, brown, and fine to coarse G	medium to coarse RAVEL, trace silt	SAND	
-	+						8	~					Hard drilling - ri
49.1		s	S-2	24	29 46 50 48	22	0.	(C)		Moist, very dense, bro some fine gravel, trace	own, fine to coarse e silt	SAND,	chatter
_	- 88	8	S-3	24	5 50 45 45	17	0.0) ()	avei	Moist, very dense, dar SAND, some silt, little	k gray, fine to coar fine gravel	rse	
44.1	SS		S-4	24	56 44 30 30	16		Sand and Grand		Moist, very dense, brow some fine to coarse gra	vn, fine to coarse S avel, little silt	SAND,	Rock fragments in op of spoon
39.1 15	SS	S	3-5	7	40 0/1"	5				Moist, very dense, browr SRAVEL, some fine to c Boring terminated at 15.5		silt	
34.1		-	Types HP-H	vdro F	Punch				Cons	istency vs Blowcount/Foo	at .	Diam's 4	
- Auger/C - Californ - 1.5" Ro - 2" Rock	Core	е	WS - V	olit Sp nelby /ash S eoprob	oon Fube Sample	IIVI IIAn	Se: 0-	ular (Sand) ense; Dens	Eine Gr	ained (Clay): Stiff: 8-15 V. Stiff: 15-30	and some little	35-50% 20-35% 10-20%
eviewe	a pi	/: G	eoff B	. Sc	hwar	tz	-		Т	Date: 12/8/2011	Hard: >30	trace moisture	<10% lensity, color

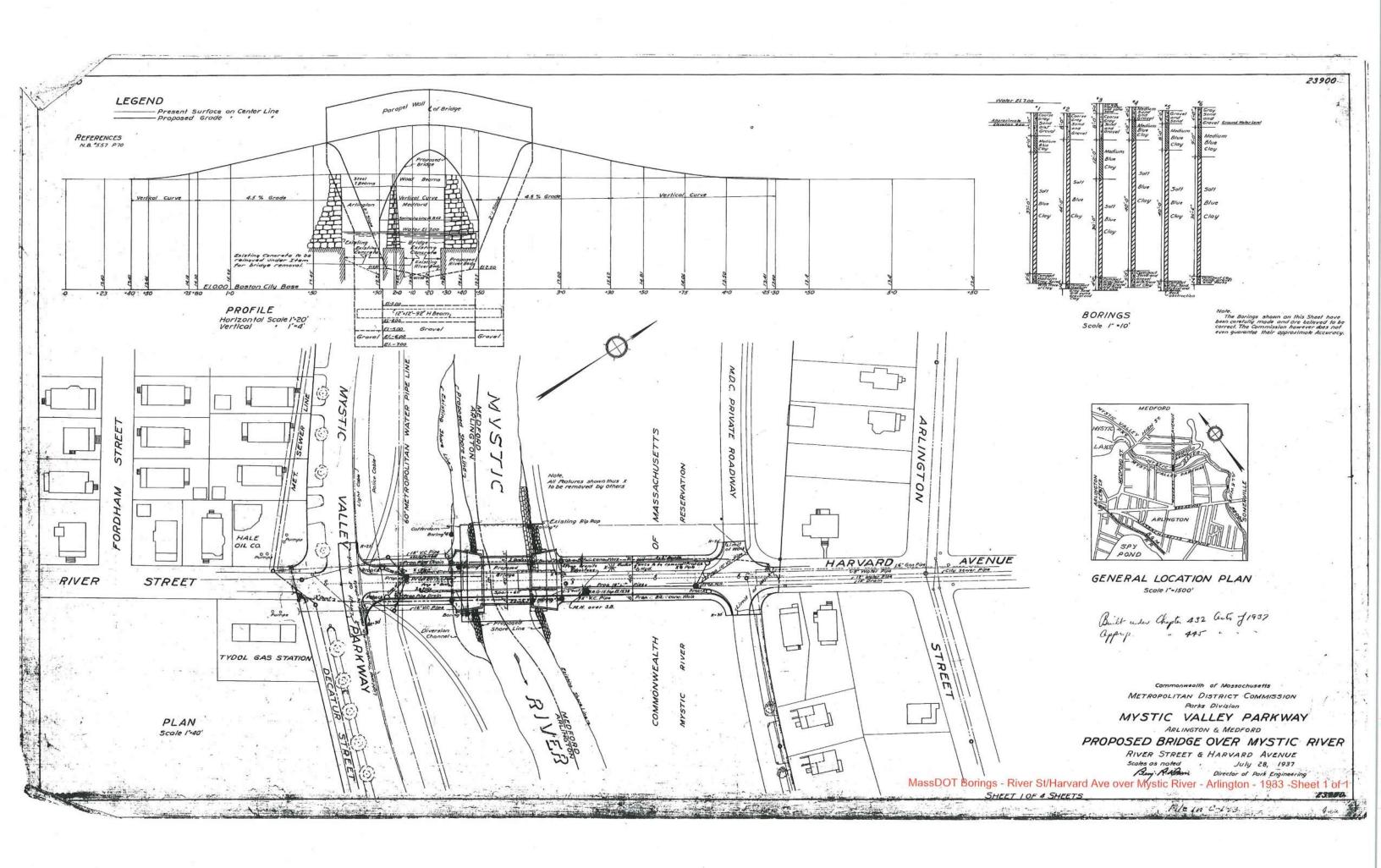
MassDOT 1966 Project Arlington, MA

MWRA Proposed Distribution Line from Shaft 9

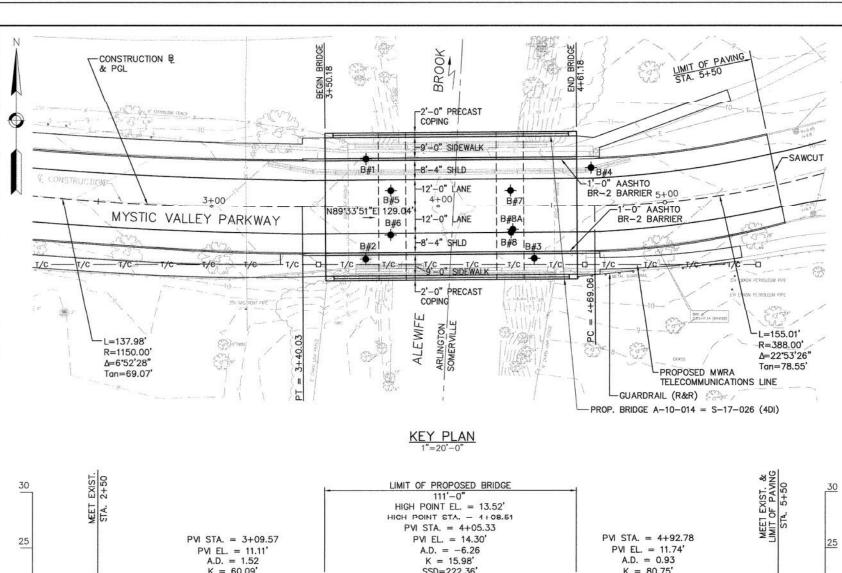
Medford, MA

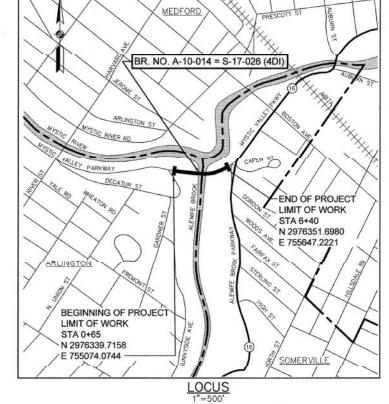
NEW ENGLAND TEST BORING CORP. TEST BORING REPORT

Contract No. C-348 BOSTON, MASSACHUSETTS


Yelephone Baldesseerskx3694

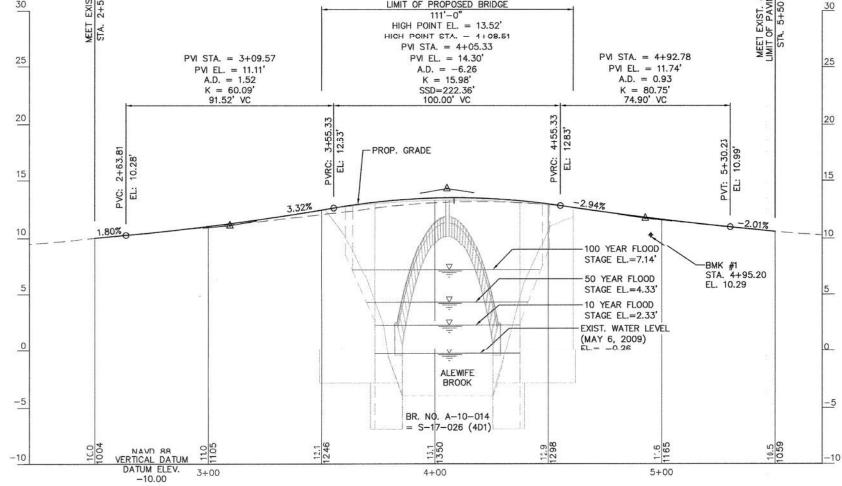
Comm. of Mass. - Met. Dist. Comm. - Constructionete-


2/23/67 Job No. 3628


Scale F= 4 Proposed Distribution Line from Shaft 9, Medford, Mass. Figures to right head column tedicate number of blows required to drive 2 tech campling open 1 feet, using 140-th, weight falling 30 tech 106+17 104+84 Sta. 406-10 Sta. 40494 Sta. 103+20 BORING # 28 BORING # 30 BORING # 29 O'O'Elev. 8.77 0'0"Elev. 10.83 O'O'Elev. 8.95 sandy loam, fill sand, loam, fill W.L. SOFT, DARK-BROWN SANDY, SILTY PEAT 2 sand, gravel and loam, fill (no sample) M. La (no sample) 30 OH VERY SOFT, DARK-BROWN SILTY FEAT V.LOOSE, COARSE (wet) TO MEDIUM DK-GRAY MED-DENSE, COARSE TO MEDIUM YELLOW SAND & GRAVEL, son fine sand (wet) 510H W.L. trace of gravel YELLOW SAND, GRAVEL & SILT, FILL (wet) 6 . OH 6.64 MED-DENSE, COARSE DK-GRAY-YELLOW SOFT, DK-GRAY-2 YELLOW PEATY MEDIUM, VERY FINE TO FINE GRAY SAND & ORAVEL, ORGANIC SILT (moint) some medium sand SAND & INORGANIC 910# 10'ou trace fine sand&gilt SILT & CLAY DOOSE, COARSE TO MEDIUM DK-GRAY DENSE, COARSE TO MEDIUM SILTY (some plasticity wet) SAND & GRAVEL, 1200m 12'6" ailt (vat) GRAY SAND AND MED-DENSE, VERY GHAVEL, some fine 13.6" sand, trace olay PINE TO FINE SILTY GRAY SAND, trace 14 SOFT GRAY SANDY, of olay SILTY CLAY MEDIUM, VERY FINE GRAY SAND, INORGANIC (wet) 1600H SILT AND CLAY MEDIUM TO SOFT SANDY, SILTY (moderately to very GRAY CLAY plastic; wet) (slightly plastid; (moderately plastic; moist) wet) 2000L 20 0H Water Level -2'0' 50 0 OH Water Level -500 Water Level -2'6'

MassDOT River Street and Harvard Avenue Over the Mystic River 1933 Project Arlington, MA

MassDOT Mystic Valley Parkway Over Alewife Brook 2010 Project Arlington/Somerville, MA


ARLINGTON / SOMERVILLE MYSTIC VALLEY PARKWAY

FED. AID PROJ. NO.	SHEET NO.	SHEETS
NFA	21	40
	15000	FED. AID PROJ. NO. NO.

KEY PLAN & PROFILE

BRIDGE SHEET NO.	TITLE
1	KEY PLAN & PROFILE
2	GENERAL NOTES
3	BORING LOGS
4	BORING LOGS
5	PLAN & SECTION
6	EXISTING & PROPOSED ELEVATIONS
7	TYPICAL SECTIONS
8	DEMOLITON PLAN AND SECTION
9	SEQUENCE OF CONSTRUCTION STAGE I
10	SEQUENCE OF CONSTRUCTION STAGE II
11	SEQUENCE OF CONSTRUCTION STAGE II
12	MISCELLANEOUS DETAILS
13	MISCELLANEOUS DETAILS
14	FOUNDATION LAYOUT DETAILS
15	BRIDGE RAIL DETAILS
16	BRIDGE RAIL DETAILS
17	HISTORIC DRAWINGS
18	HISTORIC DRAWINGS
19	HISTORIC DRAWINGS
20	HISTORIC DRAWINGS


ESTIMATED QUANTITIES QUANTITY DEMOLITION OF BRIDGE NO A-10-014=S-17-026 LS CY CY CY CY CY CY BRIDGE EXCAVATION 1,620 160 45 520 BRIDGE EXCAVATION WITHIN COFFERDAM CLASS B ROCK EXCAVATION DREDGING AND DISPOSAL OF MATERIAL 62 140 GRAVEL BORROW GRAVEL BORROW - TYPE C GRAVEL BORROW FOR BRIDGE FOUNDATIONS 860 GRAVEL BORROW FOR BACKFILLING STRUCTURES AND PIPES 1,900 FINE GRADING AND COMPACTING SY LS HR HR 750 HEALTH AND SAFETY PLAN 110 IMPLEMENTATION OF HEALTH AND SAFETY PLAN 430 625 40 PERSONNEL PROTECTION LEVEL 'C' UPGRADE MONITORING/HANDLING AND STOCKPILING OF CONTAMINATED SOILS HR LICENSED SITE PROFESSIONAL (LSP) SERVICES 2 1,100 MISCELLANEOUS SOIL TESTING EA DISPOSAL OF UNREGULATED SOIL DISPOSAL OF REGULATED SOIL: IN-STATE FACILITY DISPOSAL OF REGULATED SOIL: OUT-OF-STATE FACILITY TON TON TON CY TON TON SY SF LS FT 140 70 70 56 113 120 225 550 DISPOSAL OF HAZARDOUS WASTE DENSE GRADED CRUSHED STONE FOR SUBBASE HOT MIX ASPHALT BASE COURSE HOT MIX ASPHALT CEMENT CONCRETE SIDEWALK CEMENTIOUS MORTAR FOR PATCHING TEMPORARY SHORING METAL BRIDGE RAILING 208 CONTROL OF WATER, BRIDGE NO. A-10-014=S-17-026 LS LS BRIDGE STRUCTURE, BRIDGE NO. A-10-014=S-17-026

PROFILE - MYSTIC VALLEY PARKWAY

VERTICAL: 1"=4'
HORIZONTAL: 1"=20'

NOTE: FOR GENERAL NOTES, SEE SHEET 2 OF 20.

Gannett Fleming

199 WELLS AVE.
SUITE 210
NEWTON, MA. 02459

(617) 527-7822

25, 2010 ISSUED FOR CONSTRUCTION **MASSDOT**

PROPOSED BRIDGE REHABILITATION

ARLINGTON/SOMERVILLE

MYSTIC VALLEY PARKWAY OVER ALEWIFE BROOK

MASSACHUSETTS DEPARTMENT OF TRANSPORTATION
HIGHWAY DIVISION
10 PARK PLAZA BOSTON, MASS

THE DR. BROWN PROTECT DEVIZ. THOMAS P. Gredule DE.

SHEET 1 OF 20 SHEETS BRIDGE NO. A-10-014=S-17-026 (4D1)

TDS:

Technical Drilling Services. Inc.
P.O. Box 10/2 Peter Drive, Sterling, MA 01564

TEL (978) 422-0005 FAX (978) 422-0006

DRILLER:		INSPECTOR:			The state of the s
SITE LOCATION	CLIENT	START DATE	HOLE NO.	TOTAL DEPTH	WATER TABLE
Bridge	Gotnett Fleming	6/8/05	B-1	47"	8,-10,
Mystic Valley Parkway	199 Wells Avenue	FINISH DATE	WELL TYPE	WELLDEPTH	HOLE TYPE
Somorville, MA	Newton, MA	6/8/05	No well	No well	4 % B8A
Sample Hansnur 140 th	Drop 30"	Drive Hammer	300 Ib	Drop 24"	

le	Depth of	Caving	Depth	in Feet	Blown Fee 6' up	Rec.	SOIL DESCRIPTION
er	Sample	Blows	From	To	- speed with Hansser	1	
		1000	0"	5			Concrete
			5"				
1	5'-7'		-	-	2-3-4-2		Loose, dry to moist. Sine to med. sand, some coarse sand and silt,
1				8.			trace gravel
			0-				
-	19:-12:			-	2-2-2-2	-	V. soft, moist to wet silt and first sand, some clay, some organic
_				13"		_	matter
-			13.	-			
	15517				3-9-17-15		Loose to med, dense, wet, fine to med to consus sand, some
-				1	-	-	inorganic self, some clay, trace cobbles and gravel
-		_	-	20"	+	1	FOOTING AT EL. 0.00 (BOSTON CITY BA
_			201	1	1	-	EL,-6.46 (NGVD 88)
	201-221				2-2-3-4		V. soft to soft, moist to wet, clay, some silt
				24"			
		9	24"	1			
	25'-27"				36-41-29-26		Med. dense, wet, fine to med. to course sand, some silt, some clay.
	3032.				19-21-28-20	1	Trace gravel
_				35"			
			35.				
	35'-37"			-	48-58-60-129/2"		Dense to v. dense, wet, fine to med to coarse sand, some clay, some
1							some nilt, some med to course gravel, trace cabbles (possible weathered rock)
				36.8"			
				37.5"			End of B-1/Spoon Refusal/Augur Refusal
\neg					1		NX Core 37.5'-47.5'
\neg							No well installed
							Water at 3'-10' upon completion
\neg				1	1	-	
_				1			
1			-				
\neg							
\neg			-				
1				1	1	-	
\rightarrow	6				1	1	
-			1	1	-	-	

PENETRATIO	N RESISTANCE			PROPOR	TIONS USED	RE	MARKS
	ling 30" on 2" O.D ensity (Blows/ft.)	Sampler Cobosive Consistence	v (Blooks/fl)	Trace	D1440 505+		The stratification lines represent the approximate boundary between voil types and the transition may be
very loose	0-4 5.9	very sell	0-2	Little	20% to 20% 20% to 35%		gradual.
madium dense dense	10-29	medjum stiff	5-8 9-15	And	25% to 50%		Water level readings have been made in the drill holes of times and under conditions stated on the beginn logs.
yery dense	59+	Very stiff Hard	16-30 31°				Fluctuations in the level of the groundwater may occur due to other factors than those present at the time measurements were made.

BORING B#4 STA. 4+68.00 OFFSET: 16.70 LT ELEV. 11.8±

Technical Drilling Services, Inc. P.O. Box 10/2 Peter Drive, Sterling, MA 01564

TEL (978) 422-0005 FAX (978) 422-0006

DRH LER:		INSPECTOR:			
SITE LOCATION	CLENT	START DATE	HOLENO	TOTAL DEPTH	WATERTABLE
Bridge	Gannett Florring	6/13/05	B-4	25:5'	10'-12"
Mystic Valley Parkway	199 Wells Avenue	FINISH DATE	WELL TYPE	WELL DEPTH	HOLE TYPE
Source - May Edit.	Stores, SAA	C03.05	No well	Nowall	4 14" MR A
Sammle Rassumer 140 lb	Drup 30"	Drive Hammur	30015	Drop 24"	

Sapaple	Depth of	Casing	Depth in Feet		Here's Per 6" mp.	Recovery	SOIL DESCRIPTION
Number	Sample	Blows	From	1 To	speen with Hommer		
			07	4"			Asphilt
			4"				
S-1	3"-7"				18-25-21-15		Med. dense, dry, fine to med, sand, some coarse sand, some
-				8.			inorganic silt, truce gravel
-	-		8				
8-2	10'-12'				2-2-2-2		V. soft, moist, fine to silty sund, some clay, organic root matter
-		-		14"	1		
-			14"				
5-3	15'-17'	-	-	1	2-3-16-17		V. loose to med, dense, wet, fine to med, sund, some med, to coarse
							sand, some silt, trace gravel and colibles
	-			17'			FOOTING AT EL 0.00 (BOSTON CITY BA
			47"		1		FL. 6.46 (NGVD 88)
S-4	20"-22"		-		18-23-23-21		Stiff to v. stiff to med. dense clay and silty sand, some med. to course
8-5	25'-27'				120/5"		sand, some fine sand (possible weathered rock)
				25.5			
1							End of B-4/Spoon Return!/Auger Refusal at 25.51
						1	No well installed
							Water at 10'-12' upon completion
				1000			
				1			
				1			
				1			
2							
				-	-	-	
			-	-		-	
				-	-	-	
			-		-	-	
				-	1	ļ	
					1		

			-				
PENETRATIO	N RESISTANCE			PROPOS	TIONS USED	REM	ARKS;
140 LB, Wt. falling 30" on 2" O.D. Sampfor Collesionless Density (Blows/R) Collesionless Density (Blows/R)				Trace:	19% to 10%		The stratification lines represent the approximate boundary between soil types and the transition may be
very loose	loose 0-4 very soft 0-2	100	-			gradual.	
loone medium dense	5-9	medium stiff	2-4 5-8	Same	20% 4x35%		Water level readines have been made in the drill holes of
dense very dense	30-49 59+	stiff Very stiff	9-15 16-30	Ast	35% to 50%		times and under conditions stated on the boring logs. Fluctuations in the level of the groundwater may occur

TDS:

BORING B#2 STA. 3+68.20 OFFSET: 22.90 RT ELEV. 12.6±

Technical Drilling Services Inc.

D.O. Box 10/2 Dator Drive Storling, MA 01564 TEL (078) 427-0005 FAV (978) 427-0006

DRILLER:		INSPECTOR:			
SITE LOCATION	CLIENT	START DATE	HOLE NO	TOTAL DEPTH	WATER TABLE
Bridge	Gannett Floming	68:05	B-2	46.6	10'-12'
Mystic Valley Parkway	199 Wells Avenue	FINISH DATE	WELL TYPE	WELL DEPTH	ROLETYPE
Somerville, MA	Newton, MA	6/8/05	No well	No well	4%"HSA
Sample Hammer 149	lb Drop 30"	Drive Hamoser	300 lb	Drop 24"	

Sample	Depth of	Casing	Depth	in Feet	Depth in Feet		Recovery	SOIL DESCRIPTION
Number	Sample	Blows	From	To	speen with			
S	11.		8"	5"		C15-12-7-01	Concrete	
			5-					
8-1	5"-7"				3-3-4-4		Loose, dry, fine to med, course sand, trace silt, trace gravel	
	-			8.	1			
			8.					
5-2	10'-12'				2-1-2-2		V. Soft to soft, moist to wet silt and fine sand, trace clay	
				14"				
			14'					
S-3	15'-17'				4-6-12-8		V. loose to loose, moist to wet, fine to med, coarse sand, some silt,	
300							some fine to med. gravel	
				20"			OOTING AT EL. 0.00 (BOSTON CITY BA	
			20"	1		1	FL-6.46 (NGVD 88)	
S-4	201-221				2-2-2-4		V. soft, wet, silty clay, trace time sands	
-				24"	1			
-			24"					
\$-5	251-271		-		20-18-21-19		Med, dense, wet, fine to med, to coarse sand, some incepance salt and	
S-6	30"-34"	-	-		18-21-20-23	-	clay (glacial till) trace cobbies	
8-7	35'-37"				13-18-17-18		any agreement and a second	
S-8	39'-40"				37-120/3"			
S-9	40'-42'				28-120/3"			
-				ABREM				
0.00							End of B-2/Auger Refusal/Spoon Refusal	
							No well installed	
							Water at 10'-12' upon completion	
					The state of the s	1		
	-	-		-		7		
				1				
-								
_		-	-	-		-		

NETRATIO	N RESISTANCE			PROPORTIONS LISED			REMARKS:		
	ling 30" on 2" O.D. S ensity (Blowert.)	iompler Cohesive Consistenc	(Blows ft)	Truse:	9% to 10% 10% to 20%		The stratification lines represent the approximate boundary between soil types and the transition may be		
ry loose	6-4	very soft	0-2	rapte.	time in time	1	gradual		
2540	5-9	woff	2-4	Some.	20% 4+35%	1	STANCE OF THE SECOND STANCE OF		
odium dense	10-29	medium stiff	5-8	10000			Water level readings have been made in the drill heder o		
COLC .	30-49	State	9-15	Anti	3514 to 5054	1	times and under conditions stated on the berine loss.		
ry dense	59~	Very stiff	16-30			1	Fluctuations in the level of the groundwater may occur		

BORING B#3 STA. 4+42.20 OFFSET: 23.10 RT

ELEV. 12.7±

TDS

Technical Drilling Services Inc.

MYSTIC VALLEY PARKWAY FED. AID PROJ. NO. SHEET TOTAL NO. SHEETS NFA 23 40 PROJECT FILE NO. 605520 TEL (978) 422-0005 FAX (978) 422-0006

BORING LOGS

ARLINGTON / SOMERVILLE

DRILLER:					INSPECTOR:			
SITE LOCATION	THE PERSON S	CLIENT	CLIENT			HOLE NO.	TOTAL BEPTH	WATER TABLE
Bridee		Gagnett Florning			6/19/05	8-3	40'6"	12'-14'
Mostic Valley Park	vav	199 Wells Avenue			FINISH DATE	WELL TYPE	WELL BEPTH	HOLE TYPE
Somerville, MA		Newton, MA			6/10/05	No well	No well	4 %" HSA
Sample Hammer	140 Th	De	ip 30"		Drive Hammer	300 fb	Drop 24"	
Sample Depth	of Casing	Depth	in Feet	Blen Per 6" o	n Recovery	SOIL DESCRIPTION		
Number Samp	le Blons	From	To	Hansser				
		0"	4"			Concrete		
	-	1.00	1	1		The state of the s		

Sample	Depth of	Casing		Blem Pers" on Recovery	SOIL DESCRIPTION		
Number	Sample	Blons	From	To	Hansser		
			0"	4"			Concrete
			4"	1			
S-1	5"-7"				2-2-1-2		V. loose, dry, med, course to fine sand, sense gravel, trace still
8-2	10'-12'			1	3-2-5-5		
	-		-	13"			
			13"	1			
\$-3	15'-17'				2-2-6-12		V. loose to med. dense, moist to wet, fine to med. coarse sand, some
	The second			20"		_	some inorganic sift, trace clay, trace gravel
		20"					
8-4	20"-22"	6			2-2-2-2	1	V, soft, wet, clay, some rilly sand
-				25"	100000000000000000000000000000000000000	1	FOOTING AT EL. 0.00 (BOSTON CITY BA
			25'			-15	EL6.46 (NGVD 88)
S-5	251-271				9-15-15-17	- F	Med. dense, wet, (till), fine to med. sand, some silt, some clay and
5-6	36'-32'	-			120/4"		med, to course gravel, trace-cobbles
-	-		1	30.4"	1	1	
	1	-	1	1		1	End of B-3/Auger Refusal/Spoon Refusal
	-			1			NX Core 30'4".40'4"
		1	1	1			No well installed
	-	1		1	1		Water at 12'-14' upon completion
-		-	-	1	1	1	
	-		1		-		
			1			-	
					1		
				1			
			1				
		1					
_		1		1			
	1	1					
	-	1				1	
-	1	1	-	1	1		
-	-	1	1	1			
	-	-	1	1	1	1	
-	-	-	-	-	1	1	
-	1	+	-	1	-	-	
	1	-		-	1	1	I

10% to 20%

1. BORING LOCATIONS ON PLAN ARE SHOWN THUSLY; P B#2.

2. BORINGS ARE TAKEN FOR THE PURPOSE OF DESIGN AND SHOW CONDITIONS AT BORING POINTS ONLY, BUT DO NOT NECESSARILY SHOW THE NATURE OF MATERIALS TO BE ENCOUNTERED DURING CONSTRUCTION.

WATER LEVELS SHOWN ON THE BORING LOGS WERE OBSERVED AT THE TIME OF BORINGS BEING TAKEN AND DO NOT NECESSARILY SHOW THE TRUE GROUNDWATER LEVEL.

4. FIGURES IN COLUMNS INDICATE NUMBER OF BLOWS REQUIRED TO DRIVE A 1%" ID SPLIT SPOON SAMPLER 6" USING A 140 POUND WEIGHT FALLING 30".

5. BORING SAMPLES ARE STORED AT A STORAGE FACILITY LOCATED ON ROUTE 114 (219 WINTHROP AVE.) IN LAWRENCE, MA. THE CONTRACTOR MAY EXAMINE THE SOIL AND ROCK SAMPLES BY CONTACTING THE MASSDOT CEOTECHNICAL SECTION AT 10 PARK PLAZA ROOM 6500. BOSTON, MA. 02116-3973 AT 617-973-8836.

6. BORINGS B-1, B-2, B-3 & B-4 WERE MADE JUNE 2005.

 BORINGS B-1, B-2, B-3 & B-4 WERE MADE BY TECHNICAL DRILLING SERVICES, INC. P.O. BOX 10/2 PETER DRIVE, STERLING, MA. 01564.

8. BORINGS B-5, B-6, B-7 & B-8+B8A WERE MADE BY GEOLOGIC EARTH EXPLORATION, INC. 7 SHERWOOD DRIVE

9. THE BOSTON CITY BASE VERTICAL DATUM IS USED ON THE BORING LOGS. TO CONVERT FROM BOSTON CITY BASE VERTICAL DATUM TO NAVD 88, SUBTRACT 6.46 FT FROM

10. FOOTING ELEVATIONS ARE BASED ON HISTORIC DRAWINGS.

SEPT. 25, 2010	ISSUED FOR CONSTRUCTION
DATE	DESCRIPTION
USE	ONLY PRINTS OF LATEST DATE

SHEET 3 OF 20 SHEETS BRIDGE NO. A-10-014 = S-17-026 (4D1)

STA. 3+79.11 OFFSET: 7.25 LT ELEV. 12.5±

Geole	ogic	- Earth E	xplora			The comment	T: Mystic	ett Fleming, Valley Par ton/Somery	kway over Ales	wife Brook	B-5
7 Shervo TEL (508					108; MA 02056 (508) 384-4452	LOCAIR	UN: Assig	LAN GOLINCI V	ide, wor		1 OF
File #: Date Sta		11016 2/9/11	0200		TYPE	CASING	SAMPLER	CORE BAR	REL Surface Ele	velign:	
Date Co					SIZE	4"	2	******			
Orillar:	пфин	D. Sheld	lon		HAMMER	300#	140#		Date	er level readings	Depth
Site Rep		Rob Gur			FALL	30*	30"	-	Date		
	-	-	Sample	-	IFALL	Strata			- I Date		Depth
Depth	-		Pen.	Rec.	Y	Change		S	ample Descript	tion	
	No.	Depth R	in	in	Blows/6*	R					
-	S-1	0.0-2.0	24	12	14-58-42-31		S-1 Very de	ense, brown S	AND with trace GF	SAVEL.	
-	1										
5-	346	4,0-6,0	24	0	27-19-17-12		\$-2 M90a;0	a densa, gray	SANU and SILT W	ITH SOME GRAVES	4.
~ 5	1 1										
-	1										
	5-3	9.0-11.0	24	8	40-21-22-24		C. T. Marchine	a dance alaski	brown SAND with	town CDANES	
10 -	-	44-1175	-		- Transaction		S-S MINORILI	Conos, Cax	DECEMBER CONTRACT	Saca Grovett	
	1 1										
	1										
-		222				14.5					
15		14.5							, drillied through to		
-	1						FOOTIN	G AT EL	. 0.00 (B	OSTON CI	Y BASE
-					1		_		6.46 (N	(GVD 88)	
20 -	84	19.5-21.5	24	24	4-6-7-9		G.d Markins	stiff, wet, gen	CLAV		
2.0		30000000	24	-			check assertions	organ's story form	roller.		
-	1 1										
		202222		1122			2220		9-102102002		
25 -	\$-5	24.0-26.0	24	15	72-16-17-21	26.0	S-5 Very st	II, gray CLAY,	trace fine SAND.		
						20.0	Bottom of a	epioration at 2	6.0"		
- 1											
-											
30 —											
-											
-											
35			8 1								
30			9								
-		- 1									
=											
Seaund S	korface	b	used				then				-
Pr	ononio	ns Used			Cohesive Con Blows/1				less Density work	Sample	Type
Trace	and a second	0 to 10%			lery Soft	9-15 8	ner ner	0-10	Loose	UP = Fixed	Piston
Little		10 to 20% 20 to 35%					A-Stiff Hard	10-30	M-Dense Dense	UT = Shelb	
And		35 to 50%	1 '	J-0 8	roer 2	197	200	50+	V-Dense	CE = Open	tommer nammer
More		1. The strafficut	ion lines	marener	the approximate	boundary	between soft for	es. The bursts	on may be gradual.		
Note	TO .	2. Water level re	and the law has		The second second						

BORING B#8+B#8A

STA. 4+32.06 OFFSET: 11.94 RT

Geolo	ogic -	- Earth E	xplor	ation,	Inc.	CLIENT	Gannett	Fleming, Ir		wife Breck	B-8/B-8/
7 Sherwo TEL (508)	od Drive) 384-44			Nor FAX	TUR, MA 02056 (508) 384-4452	LOCATION		PAGE 1 OF 2			
File in: Date Sta Date Cor Driller:	replated	11016 2/11/11 2/14/11 D. Sheld Rob Gur			TYPE - SIZE - HAMMER -	4* 300# 30"	2' 140# 30"	CORE BARRE	Station: Groundwat Date	er tevel readings	Deprin
Site Rep	-	-		-	FALL	Strata	30		Date		lepth
Depth			Sample Pen.	Rec.		Change		Sar	nple Descript	tion	
R	No.	Depth R	in 24	in 12	Blows/6* 42-64-50-33	ft					
5	S-2	6.0-8.0	24	24	13-12-10-10				and GRAVEL, s		
10 —	5-3	9.0-11.0	24	7	28-10-13-12		S-3 Medium d	iense, dark bro	own, wet SAND	and GRAVEL.	
15-		13.5				13.5			0.00 (B	OSTON CI	TY BASE
20-	84	20.0-22.0	24	24	4-5-7-7		S-4 Still, wort,	gray SAND or	dSET.	,	
25	9-5	24.0-26.0	24	10	20-25-39-41		S-5 Hard, gray	r, wed SAND w	ith some SILT.		
30-	8-6	29.0-31.0	24	12	20-27-39-85		S-6 Dense, gr	ay, wel SAND	with some SILT	r.	
35-	8-7	34.0-34.5	8	15	108-113		S-7 Very deno	e, gray CLAY	and medium S1	FONE, ROCK in tip	of spoon.
Pround S			used			39,9	hen				
	-		Diego		Cobselve Con	sistency	7	Cohesionies	s Density	T 6-	7
Trace Little Stone And	уролю	0 to 10% 10 to 20% 20 to 36% 35 to 50%		3-4 3		9-15 S 16-30 V	Self (-Self) fond	10-30 30-50	Loose M-Danse Dense V-Dense	Sample UP = Fixed UT = Shelt OE = Open * = 300¢	Platon y Tuba
Note	s:	1, The stratifical 2. Weder front of	ion lines exdings w	regressor min mode	the approximate in the drift hole	boundary i during or est	ketween soil types. The completion of	The transition drilling. The year	may be gradual, ar level irony Aucti	uale over time.	

BORING B#6 STA. 3+78.94 OFFSET: 21.70 RT ELEV. 12.5±

Seolo Shervo	od Driv	- Earth E	eplon	Nor	Inc.	100000	Gannett T: Mystic V ON: Arlingtor		vay over Ale	wife Brook	B-6
No.#:		11016	2,11			CASING	SAMPLER (ORE BARRE		vation:	
lata Ste					TYPE _	40	-	-	Station:		
lette Cor	nplote			-	SIZE _	4*	2		100000000000000000000000000000000000000	ar level readings	
dier.		D. Sheld		-	HAMMER	300#	140#		Date		Depth
ite Rep	-	Rob Gur	ilaw	_	FALL	30"	30*	-	Date	-	Depth
Depth			Sample			Strata Change		0	mple Descript	lieum.	
ft	No.	Depth ft	Pen.	Rec.	Blows/6"	R		OBI	npic Descrip	aQ11	
55	S-1	0.0-2.0	24	13	56-44-18-23		S-1 Medium to	dense, wet S	SAND, GRAVEL	, trace SILT.	
5-	a-c	4.000	-	D.	66-61-13-19		GLAY,	omnou, wur.	anno, urvivez	, Z. OTONE NIJO	ature gray
10 —	8-3	9.0-11.0	24	7	15-6-4-5		S-3 Loose to r	nedium SANE	to coarse SAN	ID above CLAY,	
15 —		14.0				14.0	(1.1.1.4 U.S.) A.B.	AT EL.	0.00 (B	OSTON CI	TY BASE
20-	\$4	20,0-22.0	24	24	7-6-8-8		S-4 Stiff, gray	CLAY,		*	
25-	S-6	24.0-26.0	24	12	24-43-34-41		S-5 Hard, gray	CLAY, some	STONE.		
30-	8-0	28.0-30.0	24	9	10-16-46-64		S-6 Hard, gray	CLAY, some	trace of SAND.		
35	8-7	34.0-36.0	24	11	30-37-38-22		S-7 Hard, gray				
=	S-8	35.0-37.5	18	8	62-72/3*	37.5	S-8 Hard, gray Battom of expl		TONE - mhani 5°	`	
round S	artere	to	used				hen		ryen new		
		-	1		Cohesive Con			Cohesionies	ss Density	1	
	oportio	ms Used	1		Blows/1	1		Blow	s/ft	Sampl UP = Fixe	ю Туро
Trace Little Some And		0 to 10% 10 to 20% 20 to 35% 35 to 50%	1	3-4 5		16-30 V	siff r-Saff tend	10-30 30-50	Loose M-Derse Dense V-Dense	UP = Fixe UT = Shal OE = Ope * = 3004	by Tube n End Rod
		1. The stratifical	ton three	represen	the approximate	s boundary t	boleron soil types.	The transition	may be gradual.		
Note	s:	2. Weter level n	adiana v		a la tha dell'hale		April 1			Control of the Control	

BORING B#8+B#8A

STA. 4+32.85 OFFSET: 10.66 RT

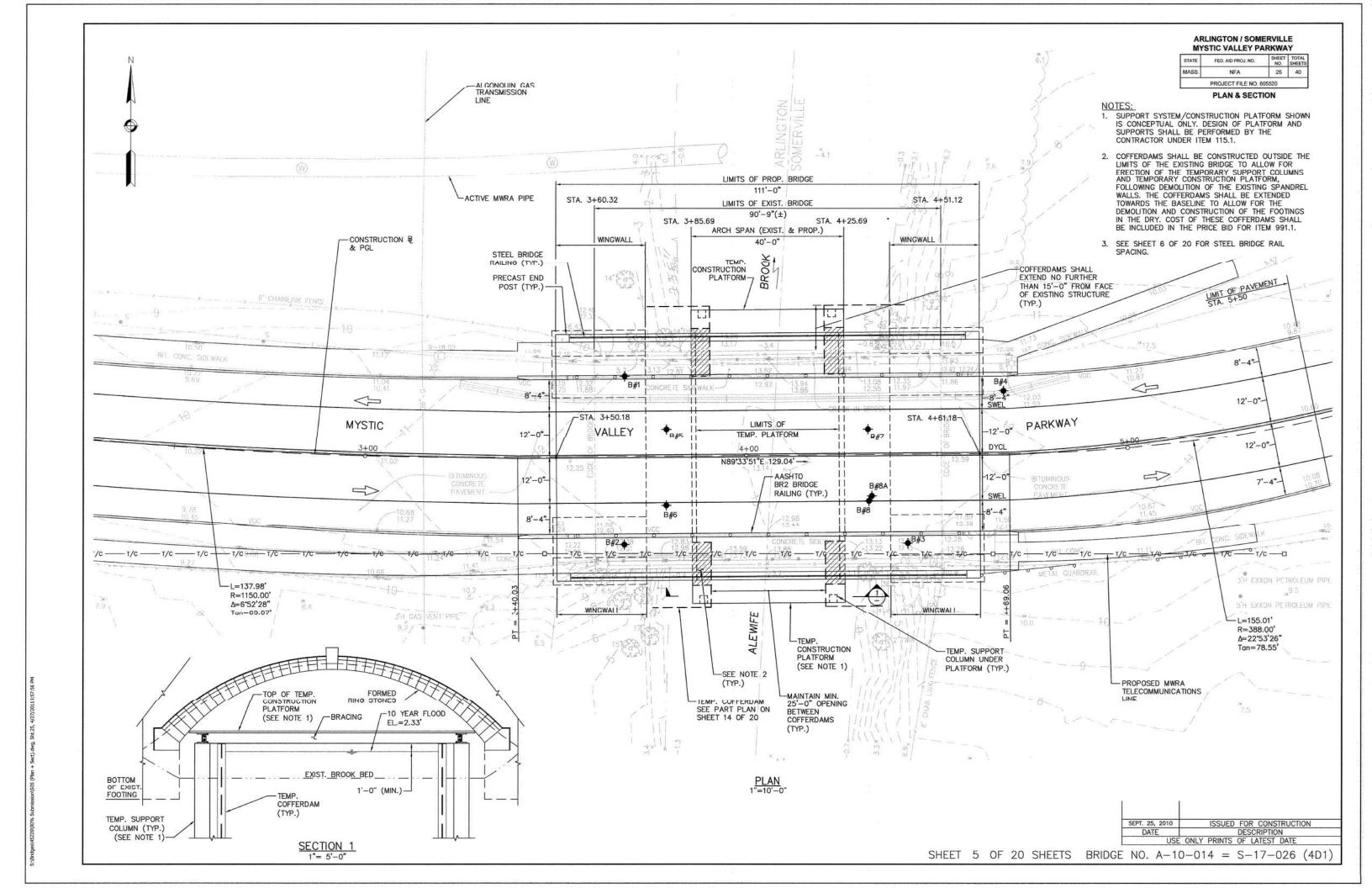
- Lurur L	xpiorai	ion, l	nc.	CLIENT: PROJEC	0.00	ett Fleming, Inc. c Valley Parkway over Ale	wife Brook	B-8/B-8.
				LOCATIO	N: Arlino	ton/Somerville, MA		PAGE 2 OF 2
7	Pen.		Blows/6"	Strata Unange		ъатрів цевспр	pon .	
					School of	regional de Si Si		#1
<u> </u>	4	_	charlus Can	Interven		Cohemicalism County		
0 to 10% 10 to 20% 20 to 35% 35 to 50%	3-	4 Sol	y Soft	9-15 S 16-30 V	-Stiff	9-10 Loose 10-30 M-Dense 30-50 Dense 50+ V-Occan	UP = Fixe UT = Shel OE = Oper	d Piston by Tube
	Depth # 8 39.5-30.6	Sample S	Sample S	Sample PAR (Sole) 394 4492	Nortick Max 00006 IOCATIC	Nortick MA 00056 LOCATION: Affine Affine	Nortick_MA 00056 LOCATION: Artington/Somerville, MA	Salmole

BORING B#7

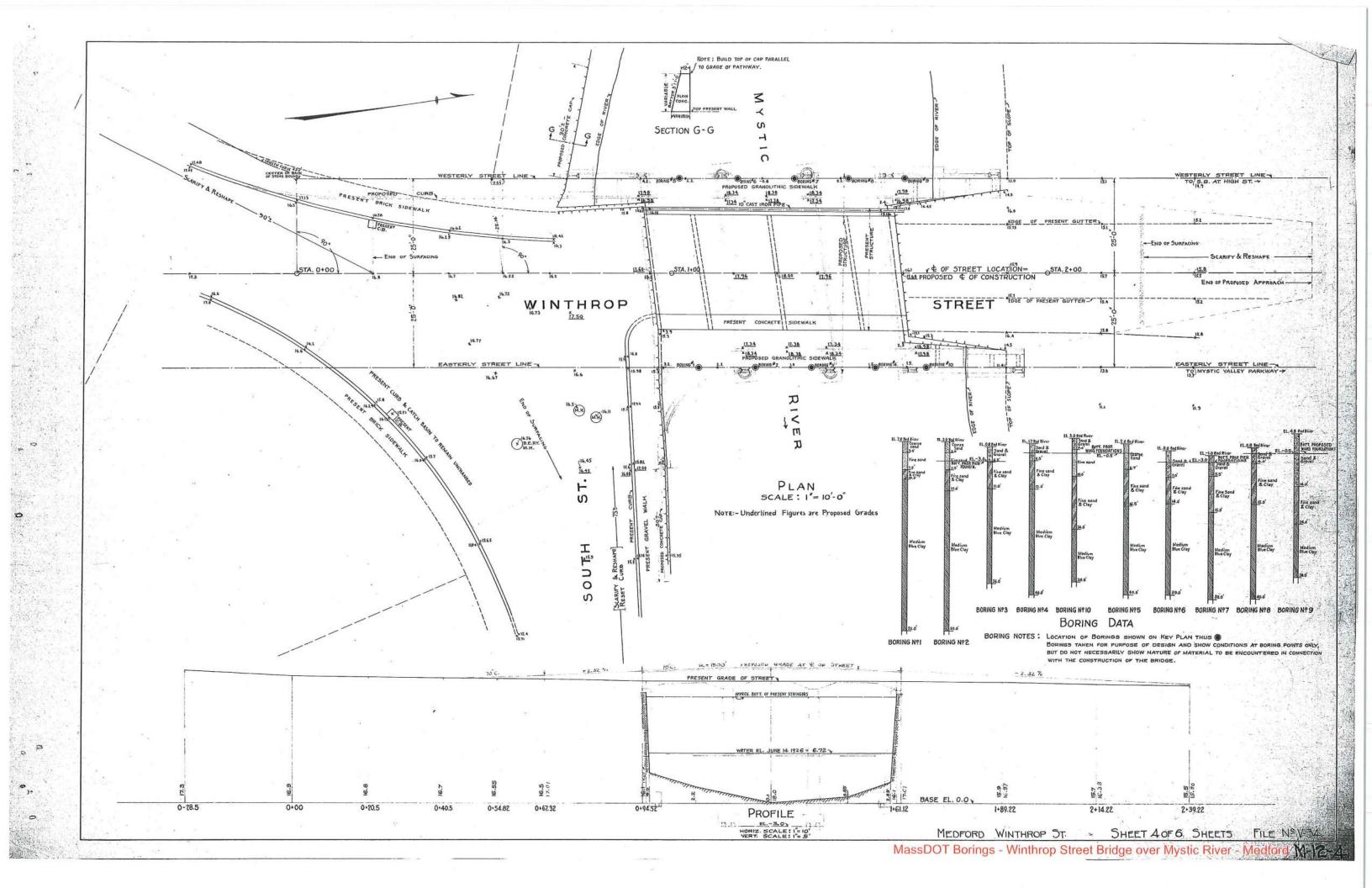
STA. 4+31.90 OFFSET: 6.90 LT

ELEV. 12.5± CUENT: Gannett Fleming, Inc. Geologic - Earth Exploration, Inc. B-7 PROJECT: Myslic Valley Parkway over Alewife Brook LOCATION Arlington/Somerville, MA 1 OF 11016 Date Started: 2/7/11 Date Completed: 2/9/11 TYPE 4* 2' | SIZE 4* 2' | HAMMER 300# 140# | FALL 30" 30" ---Rob Gunlaw | Depth | Sample | Surata Change | Surata Change | Size | Surata Change | Surata Change | Size | Si 4.0-6.0 3-3 Logse, wet, fine to medium SAND, trace SRLT, trace GRAVEL on STONE. Top of Foundation at 14.2, drilled through to 19'. 14.2 FOOTING AT EL. 0.00 (BOSTON CITY BASE) 5-4 Stiff, gray CLAY S-5 Hard, well, gray CLAY, base small STONE. 50-52-55 -100/2* 26.0 Bottom of exploration at 26.0' Ground Surface to used then Cohesive Consistency

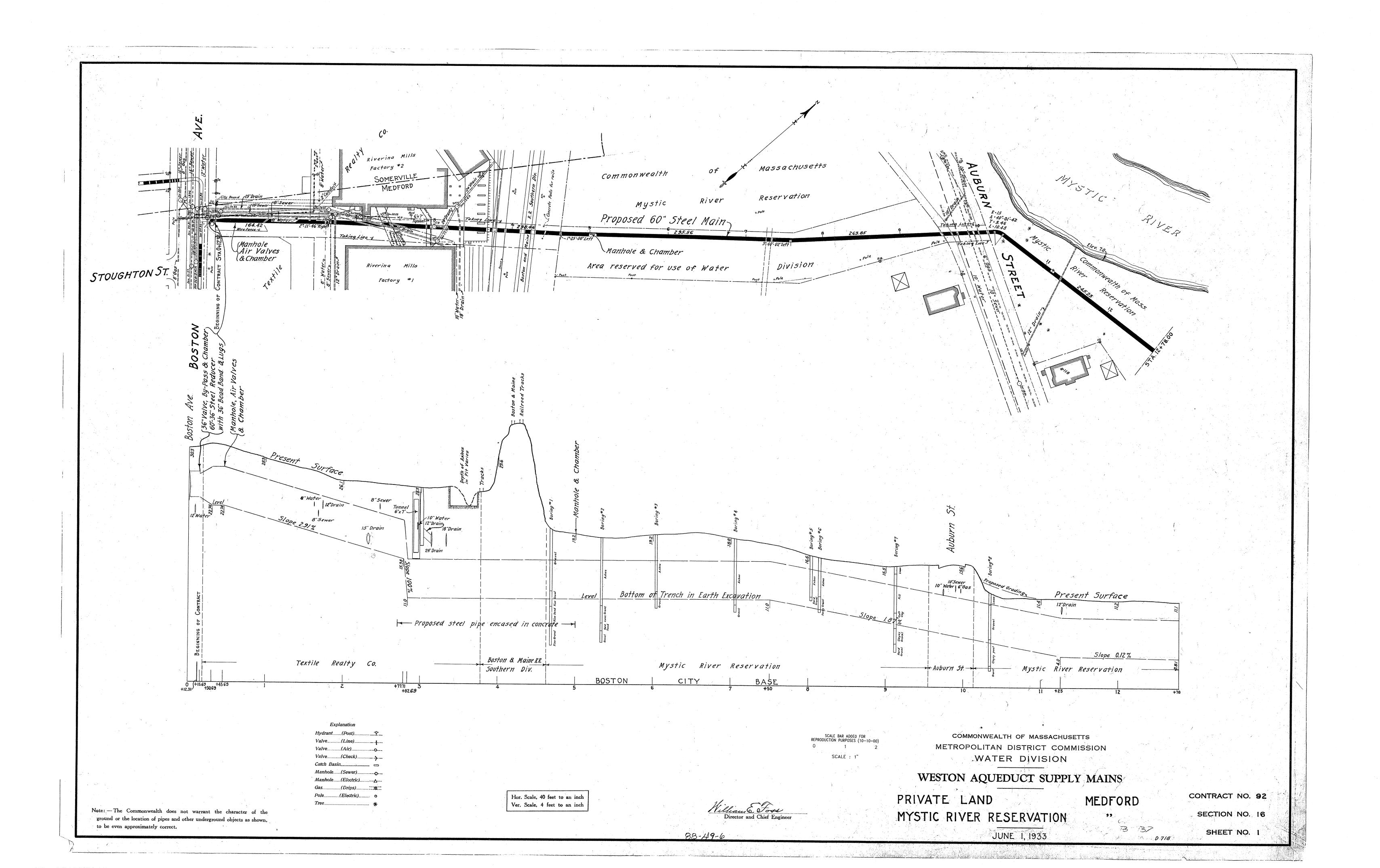
ARLINGTON / SOMERVILLE MYSTIC VALLEY PARKWAY

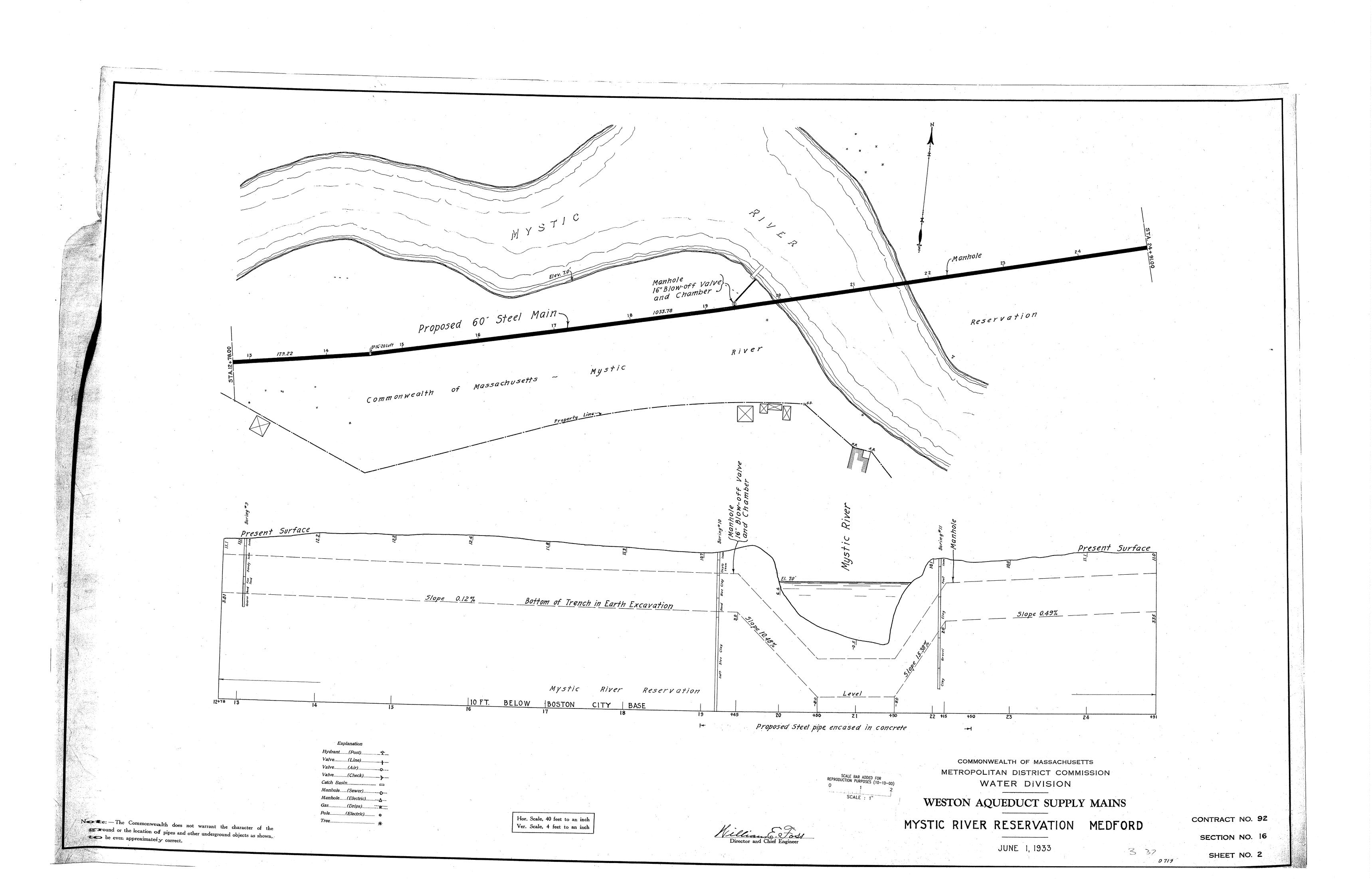

STATE	FED, AID PROJ. NO.	SHEET NO.	TOTA
MASS.	NFA	24	40

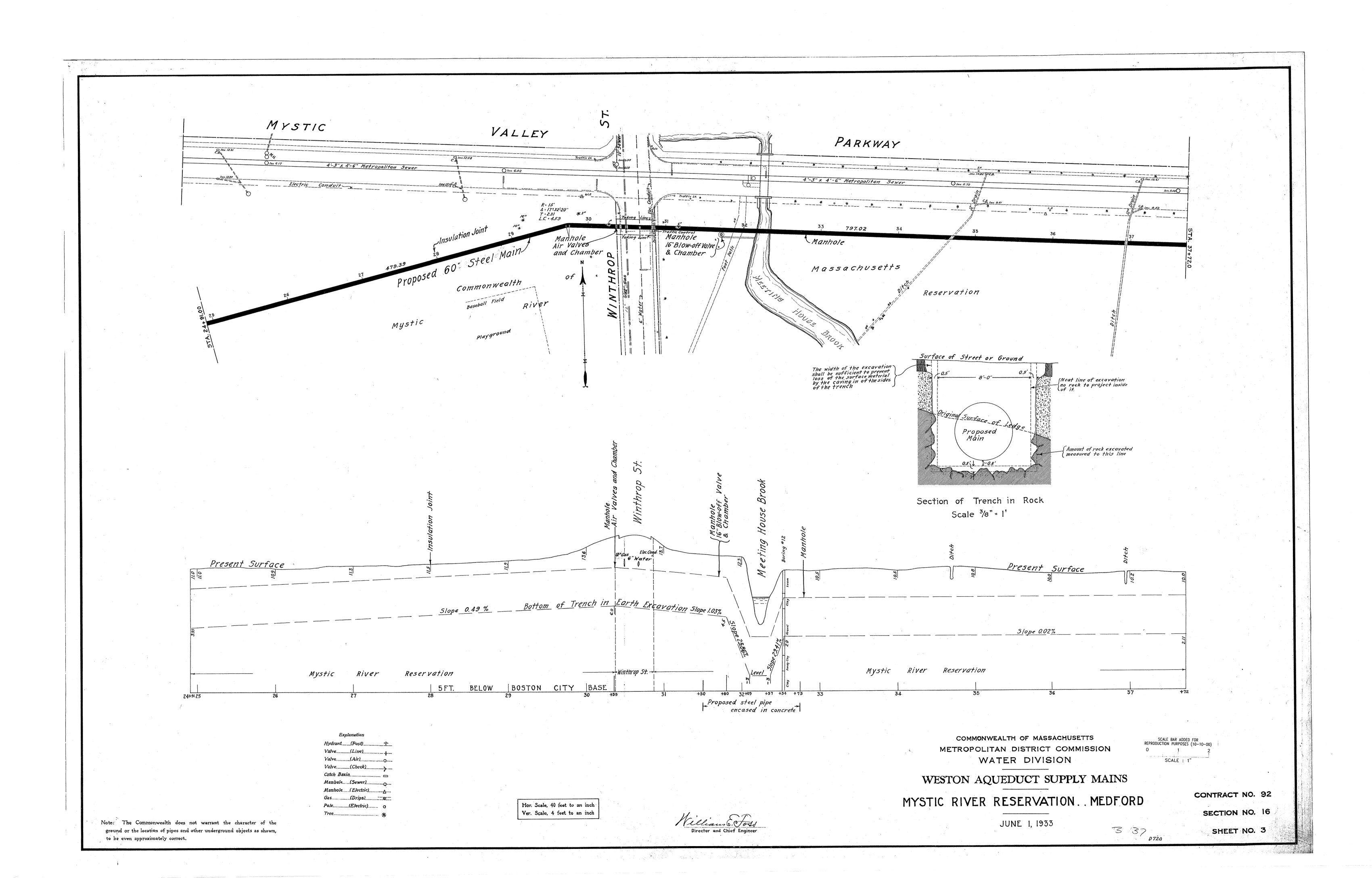
BORING LOGS

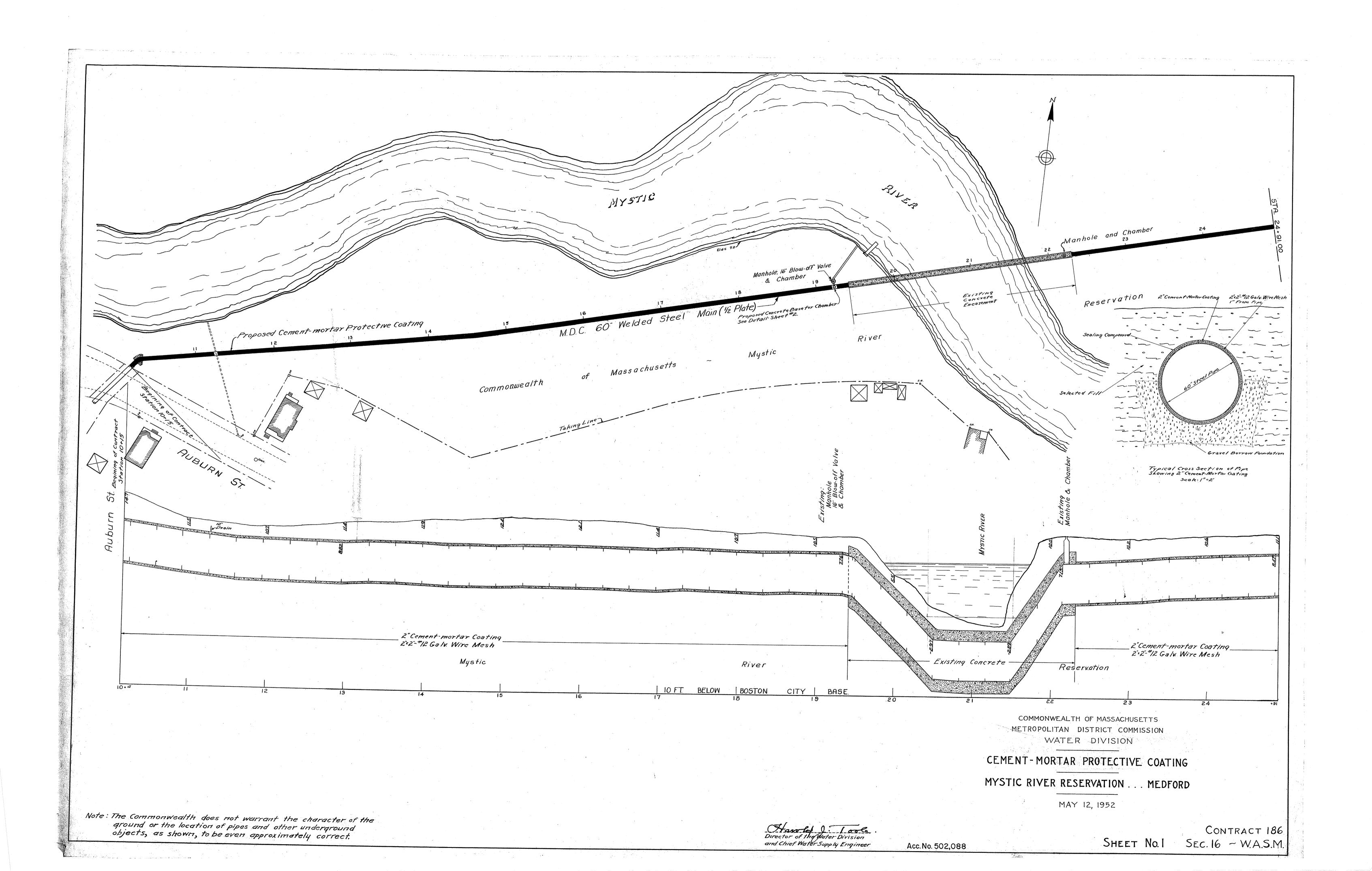

- NOTES:

 1. BORING LOCATIONS ON PLAN ARE SHOWN THUSLY; \$\displays B#5.
- 2. BORINGS ARE TAKEN FOR THE PURPOSE OF DESIGN AND SHOW CONDITIONS AT BORING POINTS ONLY, BUT DO NOT NECESSARILY SHOW THE NATURE OF MATERIALS TO BE ENCOUNTERED DURING CONSTRUCTION.
- 3. FIGURES IN COLUMNS INDICATE NUMBER OF BLOWS REQUIRED TO DRIVE A 1%" ID SPLIT SPOON SAMPLER 6" USING A 140 POUND WEIGHT FALLING 30".
- 4. ALL BORINGS WERE MADE FEBRUARY 2011.
- 5. BORINGS B-5, B-6, B-7, B-8 & B-8A WERE MADE BY GEOLOGIC EARTH EXPLORATION, INC., 7 SHERWOOD DRIVE, NORFOLK, MA 02056.
- 6. THE BOSTON CITY BASE VERTICAL DATUM IS USED ON THE BORING LOGS. TO CONVERT FROM BOSTON CITY BASE VERTICAL DATUM TO NAVD 88, SUBTRACT 6.46 FT FROM THE ELEVATION.
- 7. FOOTING ELEVATIONS ARE BASED ON HISTORIC DRAWINGS.


- 1	
SEPT. 25, 2010	ISSUED FOR CONSTRUCTION
DATE	DESCRIPTION
USE	ONLY PRINTS OF LATEST DATE




MassDOT Winthrop Street Bridge Over Mystic River Project Medford, MA



MWRA WASM 3 Contract Drawings Medford, MA

Capone Construction Co. 1987 Project Belmont, MA

DATE S	TART	1-1	6-87			TEST BORING LOG	s	HEET 1 of 1
DATE FI	NISH		6-87					PROJ. NO.
WEIGHT	OF HA	MMER	1	40	300	AL SHINER TEST BORING, INC	LOCATION	Belmont L-2
HEIGHT	OF FAL	L.		30''	24"	BOX 142	FILE NO.	Beimone
			R OBSER			MELROSE, MASS. 02176 (617) 665-0852	OFFSET	
	-16_	111	ME	DEPT noi	2000	CLIENT	GROUND ELEV	VATION
							HOLE NO. 5	9&62
SAMPLE	R O.D.	211		I.D. 7	-3/8	" Capone Construction Co.	CASII	NG SAMPLER CORE BARR
TYPE O			Mobi		-3/0	850A Providence Highway	TYPE Aug	
						Dedham, Mass.	SIZE I.D.	3" 1-3/8"
SCALE IN FEET	STRATA CHANGE	CASING BLOWS PER FOOT	SAMPLER BLOWS PER 6 INCHES	SAMPLE NUMBER	SAMPLE DEPTH RANGE	FIELD CLASSIFICATION	AND REMARKS	
			_		3'			
	4'		8	S1	3	Fine yellow sand, trace of	silt.	-
5 '	1		9		5'	Medium sand and gravel.		
						realum band and graver.		
								¥.1
					8'			
			11	S2	8	Hard medium to coarse sand	. gravel.	and boulders.
101	10'		14	32	10'	naru medium eo coarse sand	, grayer,	una zouzuozo
-10-	10.		1/		10			
		- 4					1/	
						Depth of borin	g 10'	
,				1				
15							27	a A
				1				
	1							
								lel II
20								
		-						
				1				*
				1				
-25 -				1				
				1				
				1		- , .		-
30'					-			
				Proportio	ons used: I			TOTAL FOOTAGE
DRILLE			iner		-		OVE CONSISTENCY very soft	Earth Boring 10" "
HELPER SOILS E			y		SS Spli	it spoon 4-10 loose 2 disturbed piston 4-10-30 medium compact 4	-4 soft -8 medium stiff	Rock Corings
	IG INSP		1		TP Tes	st Pin 30-50 compact 8-1 disturbed thin wall 50 + very compact 15-3		HOLENO B-59 & 6

MassDOT Pleasant Street (Route 60) 2004 Project Belmont, MA

THE COMMONWEALTH OF MASSACHUSETTS HIGHWAY DEPARTMENT

Ţ

PELMONT

PLEASANT STREET (ROUTE 60)

STATE FED.PROJ. AID NO. | PISCAL | SNEET | TOTAL NO. | SHEETS | NO. | STEP-0018(220)X | 2003 | 1 | 241 |

PROJ. FILE NO. 601790

TITLE SHEET AND INDEX

PLAN AND PROFILE OF

PLEASANT STREET (ROUTE 60)

IN THE TOWN OF

BELMONT MIDDLESEX COUNTY

FEDERAL AID PROJECT NO. STP-001S(220)X

CONCORD AVENUE BEGIN PROJECT STA. 09473-777 MET EXIST. MET EXIST

LOCATION MAP 1: 36,800

NOTE
LENGTH OF PROJECT 3,057,115 METERS = 3.057 KILOMETERS

THE 1995 STANDARD SPECIFICATIONS FOR HIGHWAYS AND BRIDGES, THE DECEMBER 2002 SUPPLEMENTAL SPECIFICATIONS, THE 1996 CONSTRUCTION AND TRAFFIC STANDARD DETAILS, THE APRIL 2003 SUPPLEMENTAL DRAWINGS, "MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES, MILLENNIUM EDITION", THE 1968 STANDARD DRAWINGS FOR TRAFFIC SIGNALS AND HIGHWAY LIGHTING", THE AMERICAN STANDARD FOR NURSERY STOCK (ANSI Z-60.1-1990), AND THE LATEST EDITIONS OF THE MHD WHEELCHAIR RAMP STANDARDS WILL GOVERN.

DESIGN DESIGNATION

DESIGN SPEED = 60 K.I ADT (2001) = 15,856 ADT (2021) = 7,550 K = 9% D = 62% T (PEAK HOUR) = 1.5% DHV = 1,580 DDHV = 980

DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION APPROVED

DIVISION ADMINISTRATOR

MASSACHUSETTS
HIGHWAY DEPARTMENT
RECOMMENDED FOR APPROVAL

THE COMMISSIONER

MASSACHUSETTS
HIGHWAY DEPARTMENT
RECOMMENDED FOR APPROVAL

THE COMMISSIONER

DATE

1/7/04

ASSOCIATE COMMISSIONER

DATE

CONVENTIONAL SIGNS COUNTY, CITY, OR TOWN BOUNDARY COUNTY, CITY, OR TOWN SIDE LINE FENCE LINE BASE LINE OR SURVEY LINE RIGHT OF WAY LINE CULVERT PROPOSED SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE SURFACE

INDEX

DESCRIPTION
TITLE SHEET

BORING LOGS TYPICAL SECTIONS CONSTRUCTION DETAILS

GENERAL PLANS

GRADING PLANS

221-241 · · · · · CROSS SECTIONS-MINOR STREET

KEY PLAN/BORING LOCATIONS LEGEND AND GENERAL NOTES

PROFILES-PLEASANT STREET

DRAINAGE AND UTILITY PLANS TRAFFIC SIGNAL PLANS

ALIGNMENT AND CURB TIE PLANS

PAVEMENT MARKING AND SIGNING PLANS

DRAINAGE CONSTRUCTION STAGING PLANS

PROFILES-MINOR STREETS

TRAFFIC SIGNAL DETAILS

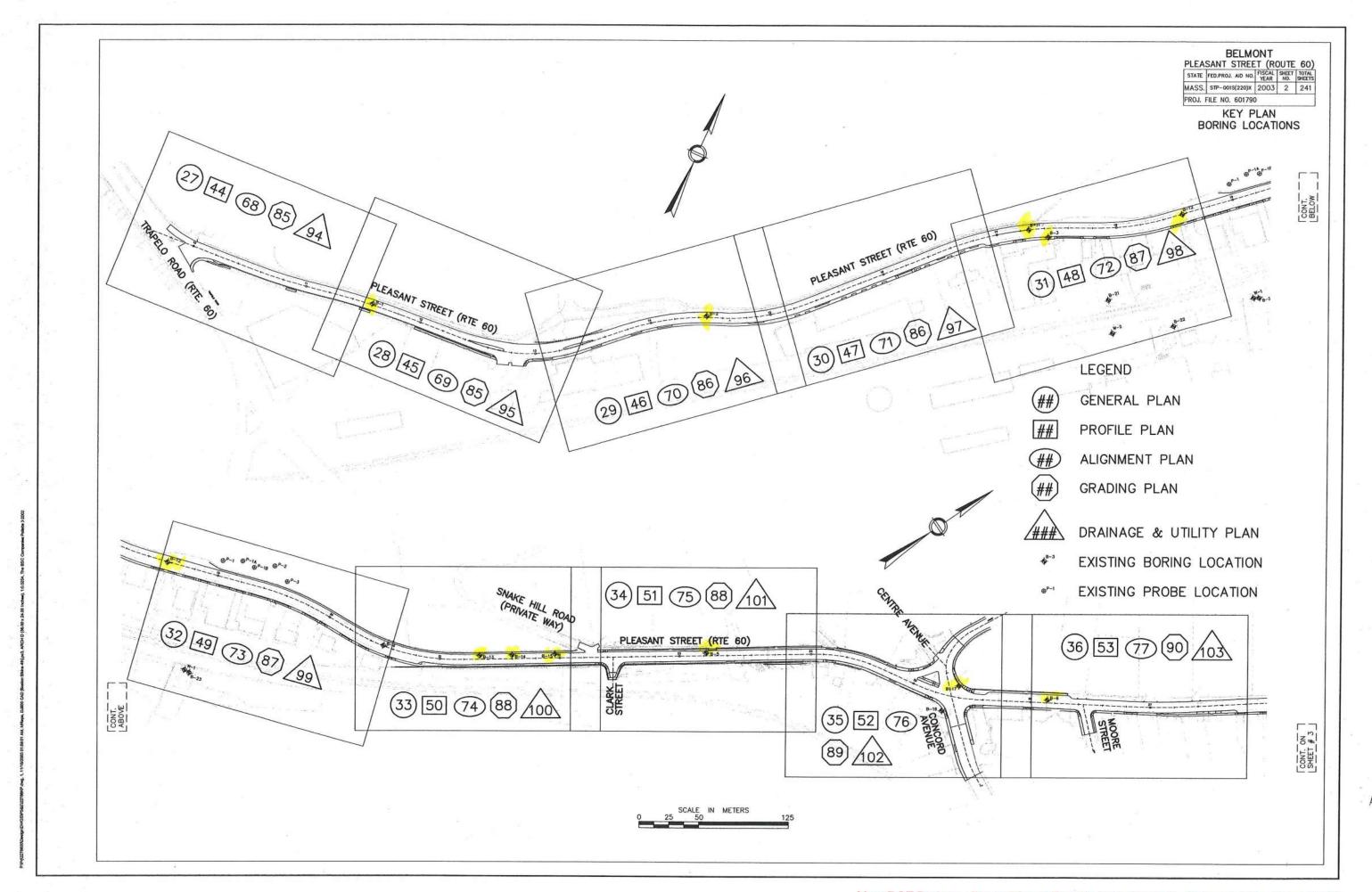
SIGN SUMMARY SHEETS
TRAFFIC MANAGEMENT PLANS

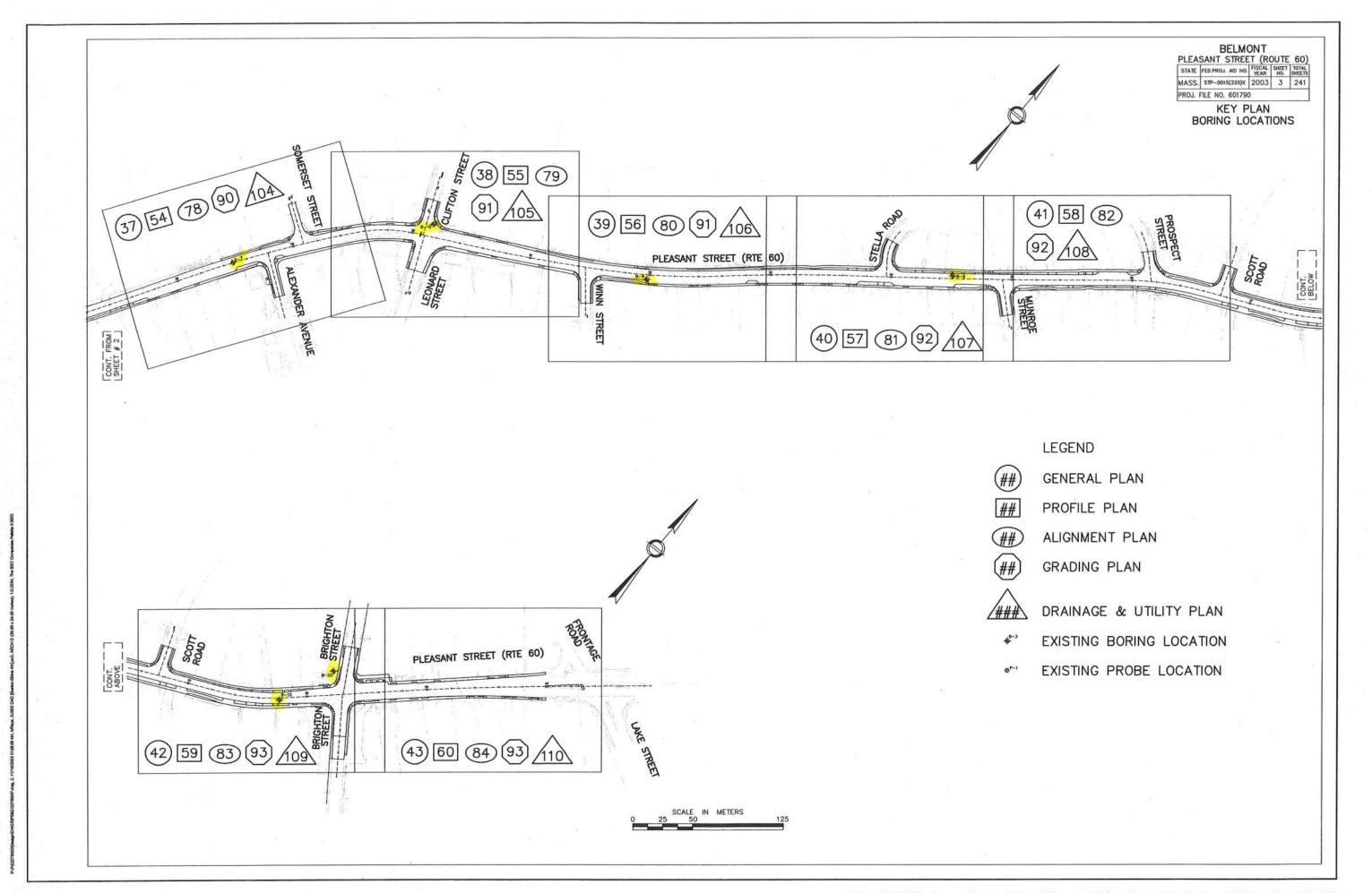
CROSS SECTIONS-PLEASANT STREET

SHEET NO.

16-26 27-43

44-60


61-67


111-116

117-119 120-123

124-125

1.33 - 1.37

LEGEND

STATE FED.PROJ. AID NO. FISCAL SHEET TOTAL NO. SHEETS **EXISTING EXISTING PROPOSED** DESCRIPTION PROPOSED DESCRIPTION MASS. STP-001S(220)X 2003 4 241 PROJ. FILE NO. 601790 ABBREVIATIONS TRAFFIC, PAVEMENT MARKINGS & SIGNING UTILITIES LEGEND AND GENERAL NOTES св 🗆 CIRCULAR RED CATCH BASIN (OR GUTTER INLET) -----CONDUIT CIRCULAR GREEN СВСІП CATCH BASIN WITH CURB INLET CONTROL CABINET - GROUND MOUNTED FLASHING CIRCULAR RED FLASHING CIRCULAR AMBER Å ⊕-cs CURB STOP CONTROL CABINET - POLE MOUNTED RED VERTICAL ARROW Ø 1 GREEN VERTICAL ARROW CONTROLLER PHASE RED LEFT ARROW AMBER LEFT ARROW ODMH CW DRAINAGE MANHOLE CROSSWALK (SEE PAVEMENT MARKING PLAN FOR DETAIL) GREEN LEFT ARROW RED RIGHT ARROW ELECTRIC DUCT DIRECTION OF FLOW AMBER RIGHT ARROW FLECTRIC MANHOLE EMERGENCY CONFIRMATION BEACON WALK - LUNAR WHITE FLASHING DON'T WALK - PORTLAND ORANGE DON'T WALK - PORTLAND ORANGE ☐ HH ELECTRIC HANDHOLE FLASHING BEACON (ALPHA-NUMERIC DESIGNATION NOTED) **ADJUST** + GG GAS GATE INDUCTIVE LOOP DETECTOR ABAN ABANDON BY OTHERS GAS MAIN LIMIT OF VISIBILITY OF OPTICALLY PROGRAMMED SIGNAL HEAD CIT CHANGE IN TYPE DUCTILE IRON PIPE SEWER MAIN MAST ARM, SHAFT AND BASE (ARM LENGTH AS NOTED) FLARED END FRAME AND COVER OSMH SEWER MANHOLE OPTICAL EMERGENCY DETECTOR MAST ARM NOT IN CONTRACT PAINTED BOTH SIDES TELEPHONE DUCT OVERHEAD CABLE PAVED WATERWAY Отмн 三プ TELEPHONE MANHOLE PAVEMENT ARROW AND LEGEND RCP REINFORCED CONCRETE PIPE RETAIN UTILITY PLUG PEDESTRIAN PUSH BUTTON REMOD REMODEL REMOVE & STACK R&S R&R WATER GATE O WG PEDESTRIAN SIGNAL HEAD (ALPHA-NUMERIC DESIGNATION NOTED) REMOVE & RESET R&T REMOVE & TRANSPORT OWMH WATER MANHOLE PULL BOX 300mm X 300mm BROKEN WHITE LANE LINE, 100 mm (3m MARK - 9m SKIP) BROKEN YELLOW CENTER LINE, 100 mm (3m MARK - 9m SKIP) CROSSWALK (SEE PAVEMENT MARKING PLAN FOR DETAIL) WATER MAIN PB PB PULL BOX 200mm X 575mm, 300mm X 600mm BYCL CW 200mm SD SUBDRAIN SIGN AND POST DOUBLE YELLOW CENTER LINE, 100 mm DYCL SL SWCHL STOP LINE, 300 mm SOLID WHITE CHANNELIZATION LINE, 300 mm R1-1 R1-1 SIGN LEGEND SOLID WHITE EDGE LINE, 100 mm SOLID WHITE GORE LINE, 100 mm SWEL SURFACE DETAILS/TOPO SIGNAL POST AND BASE SWLL SOLID WHITE LANE LINE, 100 mm STOP LINE, 300mm WHITE LINE 1.2m BEHIND CW (TYP.) SOLID YELLOW CHANNELIZATION LINE, 300 mm BASE/SURVEY LINE SYEL SOLID YELLOW EDGE LINE, 100 mm VEHICULAR SIGNAL HEAD (ALPHA-NUMERIC DESIGNATION NOTED) SYGL SOLID YELLOW GORE LINE, 300 mm CITY, TOWN OR COUNTY BOUNDARY VEHICULAR SIGNAL HEAD OPTICALLY PROGRAMMED YCL YELLOW CHEVRON LINE, 300 mm CURB (OR BERM) - TYPE NOTED " X " DUCT (CONCRETE ENCASED) EDGE OF ROAD (MEET CEM. CONC.) EDGE OF ROAD (MEET BIT. CONC.) FENCE (SIZE AND TYPE NOTED) nnn 222 III HIGHWAY GUARD (TYPE NOTED) MHB.SB.CB HIGHWAY/PROPERTY BOUND (TYPE NOTED) R.O.W RIGHT OF WAY LINE GENERAL NOTES STATE BOUNDARY 1. ALL NEW GRANITE CURB SHALL BE TYPE VB UNLESS OTHERWISE NOTED. PRIOR TO THE INSTALLATION OF PROPOSED UTILITIES, THE CONTRACTOR 15. ALL EXISTING TREES TO REMAIN SHALL BE PROTECTED FROM DAMAGE 0 SHALL EXCAVATE TEST PITS AT LOCATIONS OF UTILITY CROSSINGS TO VERIFY DEPTHS OF EXISTING PIPES, CONDUITS OR OTHER FACILITIES, AS DIRECTED BY CAUSED BY CONTRACTORS OPERATIONS TREE (SIZE AND TYPE NOTED) 2. ALL GRANITE CURB SHALL BE SET TO HAVE A 150 mm REVEAL ABOVE NOTIFY UTILITY COMPANY OF SCHEDULE OF REQUIRED POLE RELOCATIONS AS SOON AS YOU RECEIVE THE NOTICE TO PROCEED. FINAL PAVEMENT GRADES (UNLESS OTHERWISE NOTED). WHEEL CHAIR RAMP ALL BASELINE TIES FOR CURB CORNERS AND RADII ARE TO THE P.C.'S THE CONTRACTOR SHALL ENSURE THAT ALL ROADWAY RUNOFF SHALL BE THE TOWN OF BELMONT USES A PLOW WITH A 1.30 m WIDE BLADE TO CLEAR SNOW FROM THE EASTERLY SIDEWALK OF PLEASANT STREET. WHEN OR P.T.'S, UNLESS OTHERWISE NOTED. WHERE PROPOSED CURB MEETS DIRECTED TO CATCH BASINS. **MISCELLANEOUS** EXISTING CURB, BERM, ROADWAY, AND/OR DRIVEWAY PAVEMENT EDGES, MINOR FIELD ADJUSTMENTS TO EITHER THE DESIGNATED RADIUS OR THE THE CONTRACTOR SHALL VERIFY ALL OUTLET GRADES OF DRAINAGE CONSTRUCTION IS COMPLETE, THERE MUST BE A 1.40 m CLEAR WIDTH TO ALLOW FOR THIS TO CONTINUE. THE INSTALLATION OF UTILITY POLES, STRUCTURES PRIOR TO CONSTRUCTING THE DRAINAGE IMPROVEMENTS. **⊕**B-# DESIGNATED STATION OF THE P.C. OR P.T. FOR THE PROPOSED CURB OR BERM MAY BE REQUIRED. THESE ADJUSTMENTS SHALL BE MADE IN THE FIELD BY THE CONTRACTOR AS DIRECTED BY THE RESIDENT HYDRANTS, AND SIGN POLES MUST BE ACCOMPLISHED WITH THIS IN MIND. THE CONTRACTOR SHALL SAWCUT TO THE FULL PAVEMENT DEPTH AT BOUNDARIES BETWEEN FULL DEPTH CONSTRUCTION AND EXISTING PAVEMENT. THE CURB CORNERS SHALL BE TYPE 'A' UNLESS SHOWN OTHERWISE ON THE FIRE ALARM BOX EXCEPT AS NOTED, ALL PAVEMENT MARKINGS SHALL BE THERMOPLASTIC. 4. ALL EXISTING MUNICIPAL UTILITY CASTINGS THAT ARE TO REMAIN WITHIN HYDRANT THE CONTRACTOR SHALL PROVIDE PROTECTION TO ALL TREES SCHEDULED TO AREAS TO BE REPAVED SHALL BE ADJUSTED TO LINE AND GRADE BY THE CONTRACTOR UNLESS OTHERWISE NOTED. ALL PRIVATE 11. BASE MAPPING PREPARED BY THE BSC GROUP, INC. ALL AREAS OUTSIDE OF THE LIMIT OF WORK DISTURBED BY THE M MAIL BOX THE CONTRACTOR IS ADVISED NOT TO MOVE VEHICLE ONTO THE ROOF OF THE CISTERN IN THE ISLAND AT THE CONCORD AVENUE INTERSECTION AS IT TELEPHONE, GAS, AND ELECTRICAL CASTINGS SHALL BE ADJUSTED BY CONTRACTOR'S OPERATIONS SHALL BE RESTORED TO THEIR ORIGINAL CONDITION AT THE CONTRACTOR'S OWN EXPENSE. STREET LIGHT MAY COLLAPSE THE LOCATIONS OF EXISTING SUBSURFACE UTILITIES SHOWN ON THE ALL WHEELCHAIR RAMPS SHALL BE CONSTRUCTED TO COMPLY WITH THE LATEST M.H.D. STANDARDS. SEE APPENDIX OF SPECIAL PROVISIONS FOR PLANS WERE COMPILED FROM AVAILABLE RECORD DRAWINGS AND ARE NOT WARRANTED TO BE CORRECT. THE LOCATIONS ARE APPROXIMATE ONLY AND IN SOME CASES MAY BE INCOMPLETE. THE CONTRACTOR 21. THE CONTRACTOR IS ADVISED OF THE EXISTENCE OF A FRAGILE MWRA 1.42M STEEL AQUEDUCT CLOSE TO THE SURFACE FOR THE ENTIRE LENGTH OF TEST PIT ADDITIONAL DETAILS. PLEASANT STREET. WOODEN POLE SHALL NOTIFY ALL AGENCIES REQUIRED AND VERIFY THE LOCATIONS OF THE CONTRACTOR SHALL COORDINATE HIS WORK WITH ALL OTHER ONGOING THE CONTRACTOR SHALL TAKE APPROPRIATE MEASURES TO AVOID DISTURBING THE EXISTING STONE WALLS AT THE EDGE OF THE ROADWAY LAYOUT. ALL EXISTING SUBSURFACE UTILITIES PRIOR TO PERFORMING ANY WORK. PROJECTS, INCLUDING BUT NOT LIMITED TO THE MWRA WATER LINE IN ALEXANDER STREET, THE TOWN RECONSTRUCTION OF CONCORD AVENUE, AND THE PROPOSED REDEVELOPMENT OF 790 PLEASANT STREET.

BELMONT

PLEASANT STREET (ROUTE 60)

| BELMONT | PLEASANT STREET (ROUTE 60) | STATE | FED.PROJ. AID NO. | FISCAL | SHEET | TOTAL | SHEETS | MASS. | STP-001S(220)X | 2003 | 5 | 241 | PROJ. FILE NO. 601790 |

BORING LOGS

BORING # B-1

			SAMPLE		And the second s	n						
Depth (ft)	No.	Depth (ft)	Pen/ Rec. (in)	* Blows Per Six Inches/ RQD (%)	DESCRIPTION OF SAMPLES (Classification)	Remarks	Soil Strata	20	N VAL	.UE (topf) 60	A 80	PID (opm
					6" Asphalt Pavement (2.5" bituminous, 3.5" macadam)		Asphalt	- 1			T	
20 -	S-1	0.5	24/15	18-25-22-22	5-1 Top 4*- Poorly Graded GRAVEL with Sand (GP), ies than 5% fines, gray, molei. Middle 5*- Well Graded SAND with Genvel (SW), fine to medium, 5-10% fines, 35-40% gravel, consps-lowers, molei. Middle 3*- Silpy SAND with Gravel (SM), fine to coarse, 15-20% fines, 15% gravel, gray, molei. Bention 3*- Well Graded SAND with Sitt and		Fill		4	***************************************		
		0.000			Gravel (SW-SM), 10-15% fines, 15-20% gravel, gray, moist.	Λ		1		1	1	
					Boring Terminated at about 2.5 ft.	-1		1		1	1	
1						Ш						1
4.0 -						Ш				1	1	
										1	1	
-								1				
			1			Н	8 1	1		ı	I	
60 -								1				
-								1		1		
-							6 1	-				
2			0.7	-				1			1	1
8.0 -								1				
-								1		1 :		1
									1	I		
								1				
								1				
temuk	S.		-						- 3377			

BORING # B-2

			SAMPLE			1.						
Depth (ft)	No.	Depth (ft)	Pen./ Rec. (in)	* Blows Per Six Inches/ RQD (%)	DESCRIPTION OF SAMPLES (Classification)	Romario	Soil Strata	20	N VAI	LUE (bpf) 60	80	PIE (ppa
- 2		0.4			5.5" Asphalt Pavement (2.5" bitumicous/3" macedam)		Asphalt		1	1	1	
- 20 -	5-1		24/10	35-50-37-37	S-1 Top 5* - Peorly Graded GRAVEL with Sand (GP), fine, 33-40% stack, 3% fines, gray, slightly moist. Bottom 5* - Well Graded SAND with Siz (SW-SM), 10% fines, 3-10% greed, chunks of black organics, herews, moist.				***************************************	***************************************	\$	
-	S-2	2.4	5/4	100/5*	5-2 Top 2" - Peorly Graded GRAVEL with Sand		FiZ			I	100/5**	
-		2.8			(GP), 15-20% sand, 5% fines, gray, moist. Bottom 2" - Silty SAND with Gravel (SM), 20-25% fines, 15% gravel, brown, moist.		Fill					
40 -												
6.0 -	S-3	5.0	24/4	3-4-7-14	S-3 SILT with Gravel (ML), 20% gravel, 5-10% and, non-plattic to slightly platfe, light brown, moint (possible natural soil)		ML	ħ.				
0	-	7.0		-	Boring Terminated at about 7 ft.	-	-		1	1		
-												
8.0 -												
-												
-												
temarks						-1-1	_	- 1	-1	1	1	_

BORING # B-3

			SAMPLE			1.						Т
Depth (ft)	No.	Depth (ft)	Pen/ Rec. (in)	* Blows Per Six Inches/ RQD (%)	DESCRIPTION OF SAMPLES (Classification)	Remarks	Soil Strata	20	N VAI	LUB (bpf) 60	A 60	(ppu
					7.5° Asphalt Pavement (5.5° bitmuinous/2° macadam)		Asphalt			1		
2.0 -	S-I	0.6	240	10-8-5-9	S-I No Recovery, See Note 1,			٥			***************************************	-
4.0 -	S-2	4.6	24/12	5-5-9-7	S-2 Top 5' Silty SAND with Gravel (SM), trace argunics, 15% fines, 25-30% greet, black, wet Middle 2"-Silly SAND (SM), fine no course, 15% fines, 16-15% gravel, gray-horws, wet. Botton 5"-Silly SAND (SM), fine to medium, 20-25% fines, 5-10% gravel, chanks of organics, hrown with dark troven chanks, moint.		Fill	A				
-	S-3	5.0	6/6	120%*	S-3 SILT (ML), 5% sand, 5% gravel, moderately plantic, light brown, wet. (Possibly natural, very soft	11	ML	\dashv	\top	\top	120%	
80 -		,,,			silt. Spoon excountered an obstruction remining in the high blow counts) Boring Terminated at about 5.5 ft.	1						

BORING # B-4

			SAMPLE	5								
Depth (ft)	No.	Depth (ft)	Pen./ Rec. (in)	* Blows Per Six Inches/ RQD (%)	DESCRIPTION OF SAMPLES (Classification)	Remarks	Soil Strata	20	N VAL	UE (bpl) 60	80	PII (ppa
		0.2			2" Asphalt Pavement (biteminous)	_	Asphalt	- 1	- 1		1	П
-	S-1	12	12/12	29-50%*	S-1 Well Graded GRAVEL with Sand (GW), 40-45% sand, 55% fines, brown, moint. (Based on bulk sample obtained in the top 2 ft. below pavement, refusal of sampler possibly occurred on		Fill				79/12**	
-					large piece of gravel)						1	ı
20 -		1 1		1		1.		- 1	1		1	ı
20 7						1	10	1				l
-				1 1				1	1			ı
-		3.0	_		S-2 Silty SAND with Gravel (SM), fine to course,			1				
		20.00			20% fines, 15% gravel, gray, moist.			1				
7			1		CONTRACTOR OF THE STATE OF THE	1		1	1			
4,0 -	S-2	1	24/16	13-19-23-34				1	12	1		1
-		1 3					SM	1		1		
							3.00			1		
7		5.0			S-3 Silty SAND with Gravel (SM), fine to coarse,						T	1
-		3	9		15-20% fines, 20% gravel, gray, moist.			1	1			
60 -	S-3	0	24/12	18-21-28-33				1	1.0			
				09/20/20/20/20		1		1	1 49			
7		1000							1			
-		7.0	-		Boring Terminated at about 7 ft.	- 1		1				
-	9	0							1			
8.0 -				4					1			
				1 1					-1			
1		8 7							1			
-		()										
		8 8			100							
					**			1				

BORING # B-5

			SAMPLE	3		1-					
Depth (fl)	No.	Depth (ft)	Pen/ Rec. (in)	* Blows Per Six Inches/ RQD (%)	DESCRIPTION OF SAMPLES (Classification)	Remeb	Soil Streta			E (bpl) A 60 B	Coop
550		0.5			5" Asphalt Paveroeol (3" bituminous/2" macedam)		Asphalt	I			
- 20 -	5-i	2.5	24/13	42-27-20-20	S-1 Top 2 *- Well Graded GRAVEL with Such (SW), 15-20% used, 5% fines, prej. moint Middle 10* - Poorty Graded SAND with Silt and Gravel (SP-SSI), fine to medium, 10% fines, 13-20% gravel, known, moint. Bottom 1* - Silty SAND (SM), 20% fines, 5-10% gravel, brown, moint.		Fitt		4		
		3.0			S-2 Top 3" - Silty SAND (SM), 30-35% fines, trace organics, 5-10% gravel, brown, slightly moist.						
.0 -	5-2		24/12	6-5-20-40	Bottom 9" - SILT with Sand (ML), non-platfe, 15-20% sand, 10-15% gravel, trace organics and roots, light brown, slightly moist, (possible natural soil.)		ML	A			
5.0 -	S-3	5.0	24/15	12-17-15-38	5-3 Top 2" - Well Graded SAND with Silt and Gravel (SW-SSI), 10% fines, 15% gravel, brown, slightly moist. (possible satural seld). Bottom 8" - Well Graded SAND with General (SW), 5-10% fines, 10-35% gravel, gray, slightly excist. (possible natural soil.)		sw	A			
1		7.0			Boring Terminated at about 7 ft.	\exists					
1.0 -											
-											
emarks		rain-size	analysis	performed on by	alk sample obtained in top one foot below pavement indicat was obtained a few feet from the boring location.	od a hi	aher oercentas	se (about 60%	ofeno	el than	

BORING # B-6

	1		SAMPL	Б	The second secon	1						
Depth (fi)	No.	Depth (ft)	Pen/ Rec. (in)	* Blows Per Six Inches/ RQD (%)	DESCRIPTION OF SAMPLES (Classification)	Remarks	Soil Streta	20	N VAI	.UE (bpl) 60	A 80	PI (pp
20		0.4			5" Asphall Pavement (2" bitumisous/ 3" macadam)		Asplalt		T	1	1	
	s-ı	12	9/8	100-100/3*	S-1 Well Graded SAND with Silt and Gravel (SW-SM), 35-40% gravel, 10% fines, gray-brown, moist.						2005	ł
- 20 -		12			mots.							
-		2.4			S-2 Silty SAND with Gravel (SM), fine to course, 15-20% fines, 15-20% gravel, mixed with organic		Fill			1		
,	S-2		24/12	7-12-11-30	soil, dark brown, slightly moist			A				
4.0 -		4.4		\vdash								
-		5.0			S-3 Well Graded SAND with Silt (SW-SM), 10-15% fines, 20-30% gravel, brown. (pombly natural soil).	1	1	1	1	\dagger	\vdash	
6.0 -	\$-3		23/14	20-40-61-703*			SW-SM			-	101	
-	-	6.9			Boring Terminated at about 7 ft.	1	\dashv	1				
8.0 -												
-											-	
-								-				
temarks												

| BELMONT | PLEASANT STREET (ROUTE 60) | STATE | FED.PROJ. AID NO. | FISCAL | SHEET | TOTAL | SHEETS | MASS. | STP-0015(220)X | 2003 | 6 | 241 | PROJ. FILE NO. 601790 |

BORING LOGS

BORING # B-7

			SAMPLE			l n						
Depth (ft)	No.	Depth (ft)	Pen/ Rec. (in)	* Blows Per Six Inches/ RQD (%)	DESCRIPTION OF SAMPLES (Classification)	Remarks	Soil Strata	20	N VAL	UE (bpf) 60	80	(ppn
		0.4			5" Asphalt Pavement (2" bitaminout/3" macadam)		Asphalt		- 1			
	S-I	1.2	9/9	20-75/3"	S-1 Top 1" - Well Graded GRAVEL with Sand (GW), gray, moint. Middle 3" - Well Graded SAND with Gravel (SW),	1					959	1
- 0.1		55000			55% fines, 15-20% gravel, brown, slightly moint. Bottom 5° - Silry SAND (SM), mostly fine to medium, 155% fines, 5-105% gravel, brown, slightly moist.	1	SW/SM					
-					Auges refusal encountered at about 3 ft., boring terminated.	1						

-												
0 -		- 0										
-												
-												
1												
marks	ID	villers ad	vasced a	ugers through be	ulders from about 1 to 3 feet.			-	-		-	

BORING # B-8

7		- 1	SAMPLI	E		Τ.						\neg
Depth (ft)	No.	Depth (ft)	Pan./ Rec. (ia)	* Blows Per Six Inches' RQD (%)	DESCRIPTION OF SAMPLES (Classification)	Romandos	Soil Strata	. 20	N VA	LUE (bp 60	n ▲ 80	(ppn
					6" Asphali Pavement (4" bituminous/2.5" macadam)		Asphalt		1	-		T
				1 1	Bulk Sample obtained from top 4 inches below	1	Fill		1			
-	1 8				pavement. Bulk sample consisted of Poorly Graded GRAVEL (GP), brown, moint.	1	7.11		1			1
					GRAVEL (GP), STOWN, MOUR.	4		1	1			1
7			8						1	1		
20 -									1	1	1	
									1	1	1	
										1	1	1
-										1		
-			1 1							1	1	
- 1								1	1	1		
4.0 -								1	1		1	1
-						11		1				
			1			П		1			1	
	- 1					П				1	1	1
-	- 1			2.		П				1		1
6.0 -		1		1		П		1	1	1	1	
0.0						11	- 1			1	1	
-	- 1					Ш				1	1	
-						Ш				1	1	1
						Ш	- 1			1	1	
7	1					П				1	1	
8.0 -		- 1				11	- 1			1		1
	- 1			- 1		П	- 1					
						П				1		
-		- 1				П	- 1			1		
			1			11						
7		1				11	- 1	1				1
emarks	_					1				1	1	1_

BORING # B-9

			SAMPL	В	Programme and the second second	10						Т
Depth (ft)	No.	Depth (ft)	Pen/ Rec. (ia)	* Blows Per Six Inches/ RQD (%)	DESCRIPTION OF SAMPLES (Classification)	Remarks	Soil Strata	20	N VAL	UE (bpf) 60	£0	PED (ppm
				00000	4" Arphalt Pavement (2" biteminous/2" macadam)	Т	Asobalt	- 1	1	1	1	T
- 2.0 -	S-I	2.4	2417	75-62-50-50	S-1 Top 5" - Well Graded GRAVEL, with Stand (GPV), 35-40% sand, gray, moist. Madds 3" - Roody Graded SAND with Sits (SF-SN), face to medium, 10-15% Gens, black, slightly moist. (possibly reclained suphabl, Middle 4" - Well Graded SAND (SW), 3% fines, 5-10% gravel, gray-brown, slightly moist. Botton 5" - Well Graded SAND works.		Fill				1112	
40 -	S-2	4.4	24/11	10-8-8-12	Gravel (SW-SSA), 10% fines, 15-20% gravel, brown, shighly mesis. 5-7 Top 5°- Sandy Sill T (ML), too-plastic, 10-25% sand, mixed with optacie and, dark brown, slightly mois. Bettom 6°- Sill "with Sand (ML), 20-25% sand, non-plastic, slight trace of organics (change), light brown, slightly moist.	1	ML	16			***************************************	
-		5.0			S-3 Top 2" - Siley SAND (SM), 35-40% fines, non-plattic, slight trace organics (clumps), light brown, slightly moint.	$\ $	-	-	-	+	-	
60 -	S-3	7.0	24/15	25-21-23-26	Middle 3" - Well Gruded SAND (SW), moetly fine to medium, 5-10% fines, light brown, slightly moist. Botton 10" - Well Gruded SAND with Gravel (SW), 5-10% fines, 15-20% gravel, gray-brown, slightly moist.		sw		A			
		7.0			Boring Terminated at about 7 ft.	11						
- 0.1												
-												
essado	E	_				ш		-1_		1	1	_

BORING # B-10

			SAMPLE	E									
Depth (fl)	No.	Depth (fi)	Pen/ Rec. (in)	* Blows Per Six Inches/ RQD (%)	DESCRIPTION OF SAMPLES (Classification)	Romarks	Soil Strata		20	N VAL	UE (bpf) 60	80	(ppe
					6" Asphalt Pavement (3" bituminous/3" macadam)		Asphalt		T	T	T	T	Т
-	S-1	0.5 0.8	3/2	703*	S-1 Well Graded SAND with Gravel (SW), mostly medium to course, 40-45% gravel, 5% fines, gray,	7"			l			70	3.4
2.0 -	S-2	1.0	24/15	5557	molet. S-T Top 10° - Silty SAND (SM), 25-30% faces. 10-13% gravel, gray-brown, slightly moist. Bottom 3° - Siby SAND (SM), mixed with organics, 23-30% faces, 10-15% gravel, brown, slightly moist.		Fill	đ	-				
4.0 -	S-3	3.0	24/12	7-7-17-66	S-3 Well Graded SAND with Gravel (SW), 5% floss, 20-30% gravel, gray, slightly moint. (possible natural soil).				A				
- 6.0 -	5-4	5.0	24/16	35-52-70-95	5-4 Similar to 5-3, less than 5% fines, 30-40% gravel.		SW					,	224
-	-	7.0			Boring Terminated at about 7 ft.	11			l				
-						11			l				
8.0 -						П				1			
-						П							
-						П			l		1		
-		1								I			

BORING # B-11 (FOPMERLY B-14C)

Depth	Casing			Sample			Visual Identification
Ft	bi/n	No.	In/In	Depth	Blows/6"	Strate	of Soil and / or Rock Sample
,						0.6.	Asphalt - 0'6" Gravel - 1'0"
		1		1'0'-3'2'	27-31-100/2*	1.0,	Dry, very dense, fine to coarse sand, some inorganic silt, trace fine gravel, cobbles and boulders
5		2		5'0*-5'10*	44-100/4*		
10						9.0,	
10							Refusal at 5°10" with split spoon sampler, 100/4" Refusal at 9'0" with hollow stem auger. No water encountered upon completion.
15							*
20							
15							e e
10			A.				
15							
9			uger Size				

BORING # B-12 (FORMERLY B-13B)

Depth Ft.	Cumg		the same of	Sample			Virual Identification
PL.	birt	No.	TETE	Depth	Blows/6"	Strate	of Soil and / or Rock Sample
1						0.6.	Asphalt 0°6" Gravel 1°0"
		1		10.30.	7-15-12-15	1'0"	Dry, medium dense to very dense, fine to coarse sand, some inorganic silt, trace fine gravel, cobbles and boulders
5		2		50*-57*	25-100/1*		
10		3		10'0"-10'0"	100/0*	11'0"	
15							Refusal at 10°0" with split spoon sampler, 100.00" Refusal at 11°0" with hollow stem auger. No water encountered upon completion.
20					S=		*
25							
30							
95							
39				76			

BORING # B-13 (FORMERLY B-4A)

Depth	Chaing	200		Sample		1000000	Visual Identification
PL.	H/H	No.	Pen Rec	Depth	Hlows/6"	Strata	of Soil and / or Rock Sample
1		1		0.00.8.	22-100/2"	3'0"	Dry, very dense, fine to course sand, some fine to course grave and organic silt, trace cobbles.
5		2		50-50	100/0"	6.0.	Dry, very dense, weathered rock
10							Refusal at 5'0" with split spoon sampler, 100'0". Refusal at 6'0" with hollow stem auger. No water encountered upon completion.
15						9	,
20							
25							
90							
35							-
39							B 8

BORING # B-14 (FORMERLY B-12A)

Dopth	Casing	100	War Zaki wa	Sample		1	Visual Identification
R.	1618	No.	Profes	Depth	Blows/6"	Streta	of Soil and / or Rock Sample
1		1		0'0"-0'1"	100/1*	3'0"	Dry, very dense, fine to coarse sand, some fine to coarse grave organic silt, trace cobbles. Weathered rock
5						4'0"	Refusal at 0°1" with split spoon sampler, 100°1". Refusal at 4°0" with hollow stem suger.
10							No water encountered upon completion.
15							
20							
25							
30							
35				-			
39			uger Size				

PROJ. FILE NO. 601790

BORING LOGS

BORING # B-15 (FORMERLY B-5A)

Dopth	Craing	1	Managar Land	Sample	y 100 -		Visual Identification
R.	1618	No.	PayPas	Dopth	Blows/6"	Strata	of Soil and / or Rock Sample
1		1		0'0"-0'1"	100/1*		Dry, very dense, fine to coarse sand, some fine to coarse gravel, organic silt, trace cobbles.
5				18		3'0" 4'0"	Weathered rock
							Refusal at 0'1" with split spoon sampler, 100/1". Refusal at 4'0" with hollow stem auger. No water encountered upon completion.
10							
15				20			
10							
5							
ю							
95							
9							

BORING # B-16 (FORMERLY B-6B)

Depth	Carng		10000	Sample			Visual Identification
Ft.	b)B	No.	fmks	Depth	Blows/6"	Strata	of Soul and / or Rock Sample
1		1		02:-2'2'	10-10-7-7	0.5.	Asphalt - 0°2° Dry, medium dense to loose, fine to medium sand, trace organissilt, fine gravel and cobbles Fill
6		2		50-70	4-3-3-4		
10		3		10'0"-12'0"	21-20-31-27	8'0"	Dry to moist, very dense to medium dense, fine to medium sand some inorganic silt, trace fine gravel.
15		4		15'0"-17'0"	7-10-12-18		
20		5		20'0"-20'3"	100/3*	20:3-	Refusal at 20'3" with split spoon sampler, 100/3". End of boring at 20'3" with hollow stem auger. No water encountered upon completion.
25							To was seconded upon completed.
30							
35							1992
39							62

BORING # B-17 (FORMERLY B-7B)

Depth	Caring		1	Sample			Visual Identification
R	мя	No.	Pactor	Depth	Blows/6"	Strata	of Soil and / or Rock Sample
1		1		0'6*-2'6*	12-22-27-31	0.8.	Asphalt - 0'6" Day, very dense, fine to medium sand, some organic silt, trace fine gravel and cobbles and boulders.
5		2		5'0"-5'8"	27-100/2*	60°	Cored boulders
10		3		10'0"-10'5"	100/5"	80°	Moist, very dense, fine to coarse sand, some inorganic silt, trace fine gravel, cobbles and boulders.
15						14'0"	Corod boulders
20		4		18'0"-20'0"	22-27-30-30	17'0° 20'0°	Morx, very dense, fine to course sand, some inorganic sill, trace fine gravel, cobbles and boulders End of boring at 20'0" with hollow stem auger. No water encountered upon completion.
25							
30							
95							
39							

BORING # B-19 (FORMERLY B-9A)

0'0"-0'5"

50'-5'2"

Notes: Hollow Stem Auger Size - 4-1/4"

100/2"

Refusal at 5'2" with split spoon sampler, 100/2". Refusal at 6'0" with hollow stem auger. No water encountered upon completion.

Depth	Craing			Sample			Visual Identification
Ft.	ыя	No.	Parke	Depth	Blows/6*	State	of Soil and / or Rock Sample
1		1		0'6*-2'6*	10-7-8-15	0.6.	Asphalt - 0'6" Moist, medium dense to very dense, fine to coarse sand, some organic silt, trace fine gravel, cobbles and boulders.
5		2		5'0*-7'0*	14-24-27-14		
					-	8.0.	Cored boulders
10		3		10'0'-10'3'	100/3*	10'0"	Moist, very dense, fine to coarse sand and nested cobbles and boulders, some inorganic silt.
15		4		15'0"-15'1"	100/1"	15'6"	Refusal at 15'1" with split spoon sampler, 100/1". End of boring at 15'6" with hollow stem auger. No water mountered upon completion.
20							Note: Unable to advance through boulders.
25							
30							=
35							
39							

STATE	FED.PROJ. AID NO.	FISCAL	SHEET NO.	TOTAL
MASS.	STP-001S(220)X	2003	8	241

BORING LOGS

BORING # B-20 (FORMERLY B-8)

DEPTH (FEET)	#	TYPE	REC/PEN	PID VALUE (ppm)	BLOW COUNTS 6-12-18-24"	DESCRIPTION	COMMENTS
0 -	1	grab	N/A	0	N/A	Asphalt pavement Dk brown fn(+)-crs SAND, little gravel and silt, dry.	
5 —	2	ss	6/24	1.	12-14-20-51	Brown fn-crs SAND, little gravel, trace silt, dry.	
	3	grab	N/A	0	N/A	Dk brown gravel and fn(+)-crs sand, littl silt, moist.	_ e
10 -	4	ss	18/24	150	27-58-41-43	Gray brown fn(+)-crs SAND, little gravel and silt, dry.	-
	5	ss	3/8	170	65-120+	Gray brown fn(+)-crs SAND, little gravel and silt, dry.	-
15 —	6	grab	N/A	250	N/A	Gray silt and fn(+)- crs sand, trace gravel, moist.	-

BORING # B-21

Depth	Casing	_		Sample			Visual Identification
R	85°#	No.	>m916	Depth	Blows/6"	Strata	of Soil and / or Rock Sample
1		1		0'2"-2'2"	7-8-10-8	0.5.	Asphalt = 0°2° Dry, medium dense to very dense, dry, fine to coarse sand, trac organic silt and fine gravel.
5		2		5'0"-5'7"	25-100/1"		
10		3		10'0"-12'0"	14-15-14-15	80*	Dry to wet, medium dense to very dense, fine to coarse sand, some inorganic silt, trace fine gravel, cobbles.
		4		13'0"-15'0"	15-37-40-51	1000000	
15						15'0"	End of boring at 15'0" with hollow stem auger. Water level at 10'0" upon completion.
20							
25							
30							ag.
15							
9							

BORING # B-22

Depth	Cuing			Sample			Visual Identification
FL	6411	No.	Preffec	Depth	Blows 6"	Streta	of Sail and / or Rock Sample
1		1		0'2"-2'2"	6-5-6-6	0.5.	Asphall = 0'2" Moist, medium dense, fine to medium sand, some organic silt, trace fine gravel
5		2		5'0"-7'0"	8-6-4-4		
10		3		10'0"-12'0"	15-22-31-27	90"	Moist to wet, very dense to medium dense, fine to coarse sand trace inorganic silt and fine gravel
15		4		15'0'-17'0'	7-10-10-14		
20		5		18'0"-20'0"	15-15-21-30	18°0° 20°0°	Wet, dense, very fine to fine sand and inorgenic silt, trace fine gravet.
25							End of boring at 20'0" with hollow stem auger. Water level at 15'0" upon completion
30							
35							
19							

BORING # B-23

Depth	Caring			Sample			Virual Identification
R	14/8	No.	Pm.7ac	Depth	Blows/6"	Struta	of Soil and / or Rock Sample
1		1		0'1"-2'1"	7-10-10-5	0'1"	Asphalt - 0'1" Moist, medium dense, dry, fine to medium sand, some organic silt, trace fine gravel.
5		2		5'0"-7'0"	14-14-23-27	310"	Moist to wet, medium dense to very dense, fine to coarse sand some inorganic silt, trace fine gravel, cobbles.
10		3		10'0"-12'0"	4-6-15-16		
15		4		13'0'-15'0"	92-50-38-27	15'0"	
20							End of boring at 15°0" with hollow stem auger. Water level at 6°0" upon completion
5							
0							= 5
5							
9							

BORING # W-1

Depth	Caring			Sample			Visual Identification
Depth Ft.	55.9	No.	Pet/Rac	Depth	Blows'6"	Strata	of Soil and / or Rock Sample
						0.1.	Asphalt - 0'1"
		1		0'1"-2'1"	8-10-9-9		Moist, medium dense, dry, fine to medium sand, some organic silt
		2		5'0"-7'0"	17-19-21-21	3.0.	Moist to wet, dense, fine to coarse sand, some inorganic silt, trace fine gravel.
0		3		10'0'-12'0"	21-23-17-37		
5						15'0"	End of boring at 15'0" with hollow stem auger. Water level at 60' upon completion. Set well point at 15'0".
0							set well pount at 13 0 .
5							
							D
5							
١							

BORING # W-2

Depth	Castog			Sample			Visual Identification
PL.	bin.	No.	Ten 7ac	Depth	Blows/6"	Strate	of Soil and / or Rock Sample
,		1		10.30	4-5-4-5	1'0"	Bark mulch – 1'0" Moist, loose, fine to medium sand, some organic silt, trace fine gravel.
5		2		5'0"-7'0"	5-3-2-2		gare.
10		3		10'0"-12'0"	16-17-22-14	90,	Dry to wet, dense to medium dense, fine to coarse sand, some trace inorganic silt, trace fine gravel
15		4		15'0"-17'0"	6-9-15-17		
10		5		20'0'-22'0"	17-18-18-17		
15		5		23'0'-25'0"	7-10-15-17	250°	End of boring at 25'0" with hollow stem auger. Water level at 15'0" upon completion. Set well point at 20'0".
0							
5							

PROBES

Number	Depth to Refusal
Pl	4'0"
P1-A	6'0"
P1-B	4'0"
P-2	4'0"
P-3	9'0"

MassDOT Route 2 1964 Project Arlington/Belmont, MA

17.5 HRS.

TEST BORING REPORT RAYMOND

CONCRETE PILE COMPANY

Date JANUARY 8, 1965 UNIVERSAL ENGINEERING CORP+ Location of Borings ROUTE 2. ARLINGTON AND BELMONT, MASSACHUSETTS as a fixed datum. All borings are plotted to a scale of 1"= 4 ft. using Boring No. D 24 Boring No.D 23 Boring No. D 22 Boring No. D 21 45+0 3' RT. FLEV. 287.2' ASPHALT SEE NOTE L 0.0 0.2 1.0 44+0 31 RT. ELEV. 285.51 0.01 CONCRETE ASHPALT SAND CONCRETE 0.51 43+0 6' RT ELEV. 283.0' ASPHALT CONCRETE FIRM 0.07 42+0 31 RT. ELEV. 281.81 MACADAM 1,5 2,5 SAND GRAVEL EILL COMPACT MEDIUM SAND GRAVEL AND BOULDERS DRILLED BOULDER 9' - 10' AND 15' - 20' BOULDER 0.01 SAND 0.21 FIRM
YELLOW
SAND
AND
GRAVEL
AND
BOULDER
FILL 3.01 SAND AND GRAVEL 1.51 5.5 CONCRETE 21 2.5 COMPACT FINE SAND AND GRAVEL 51 LOOSE YELLOW SAND AND GRAVEL FILL 36 8.01 COMPACT GREEN SAND 72 GRAVEL AND BOULDERS 9.0 HARD 6-3 TOP OF ROCK
DRILLED
ROCK FROM
14.0' TO 24.0'
REC-49''
HARD
BROKEN
BROKEN
GRAY
CRYSTALLINE
ROCK 63 COMPACT FINE GREEN 14. TOP OF ROCK
DRILLED
ROCK FROM
12.0' TO 21.0
REC-28:
HARD
BROKEN
GRAY
CRYSTALLINE
ROCK 12,01 SAND GRAVEL AND BOULDERS 13.5 BOULDER TOP OF ROCK

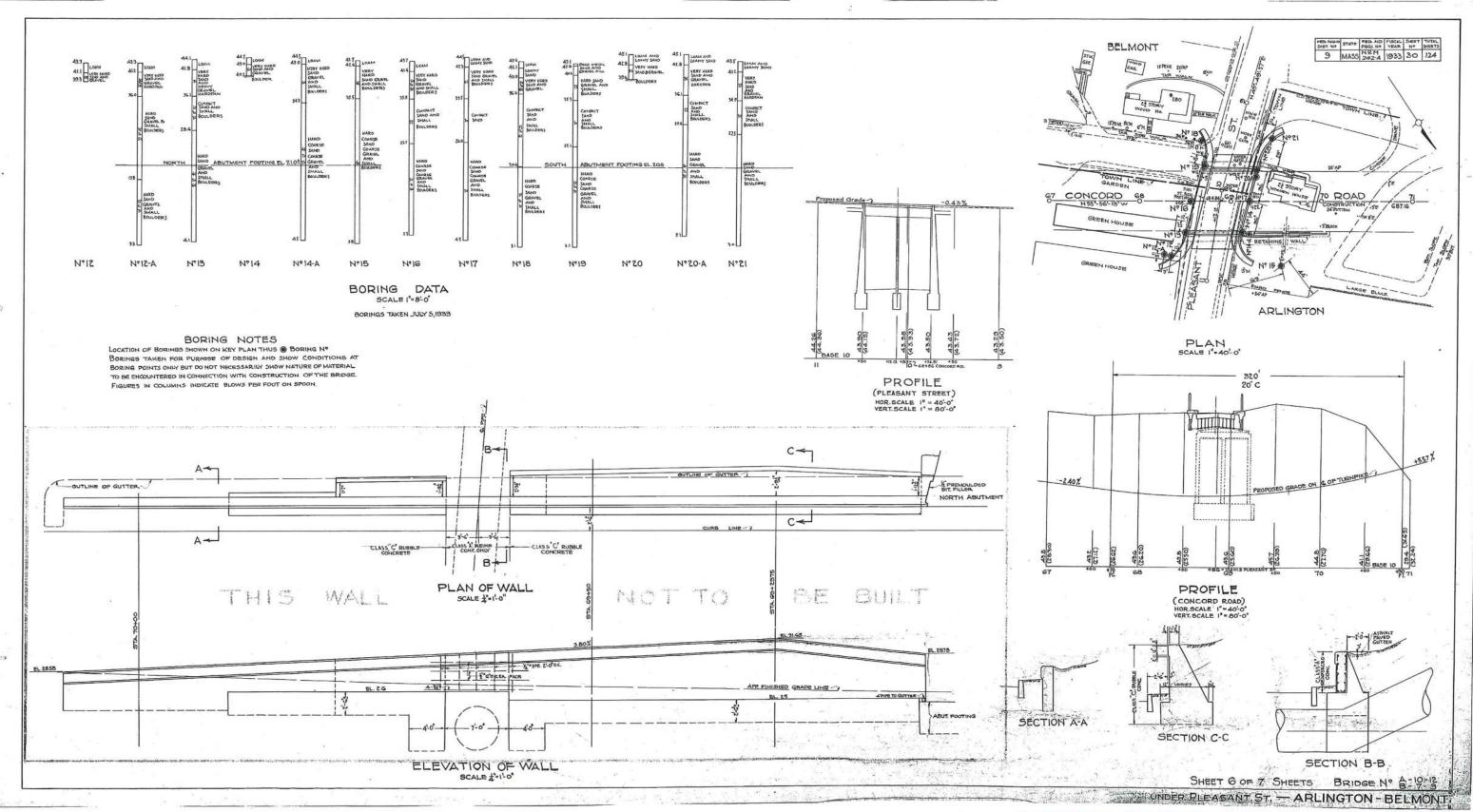
DRILLED
ROCK FROM
22,0' TO 32,0'
REC-3'
HARD
BROKEN
GRAY
CRYSTALLINE
ROCK 22,01 21,01 24 NO WATER NO WATER NOTE I-SAND AND GRAVEL FILL. G. AUGENSTENE START 12/23/64 12.30 PM FINISH 12/23/64 4,30 PM WORKING TIME 4,0 HRS. R. AUGENSTENE START 12/22/64 10.30 AM FINISH 12/22/64 4,30 PM WORKING TIME 5,5 HRS. TOP OF ROCK
DRILLED ROCK
FROM 24'
TO 35.0'
REC-36''
HARD
BROKEN
GRAY
CRYSTALLINE
ROCK 24.01 32.01 NO WATER B RONAN JR, 51ART II/18/64 7,30 AM FINISH II/18/64 4,30 PM WORKING TIME 8,5 HRS. 35.01 NO WATER R AGUENSTENE START II/3I/64 7,00 AM FINISH 12/1/64 4,00 PM WORKING TIME

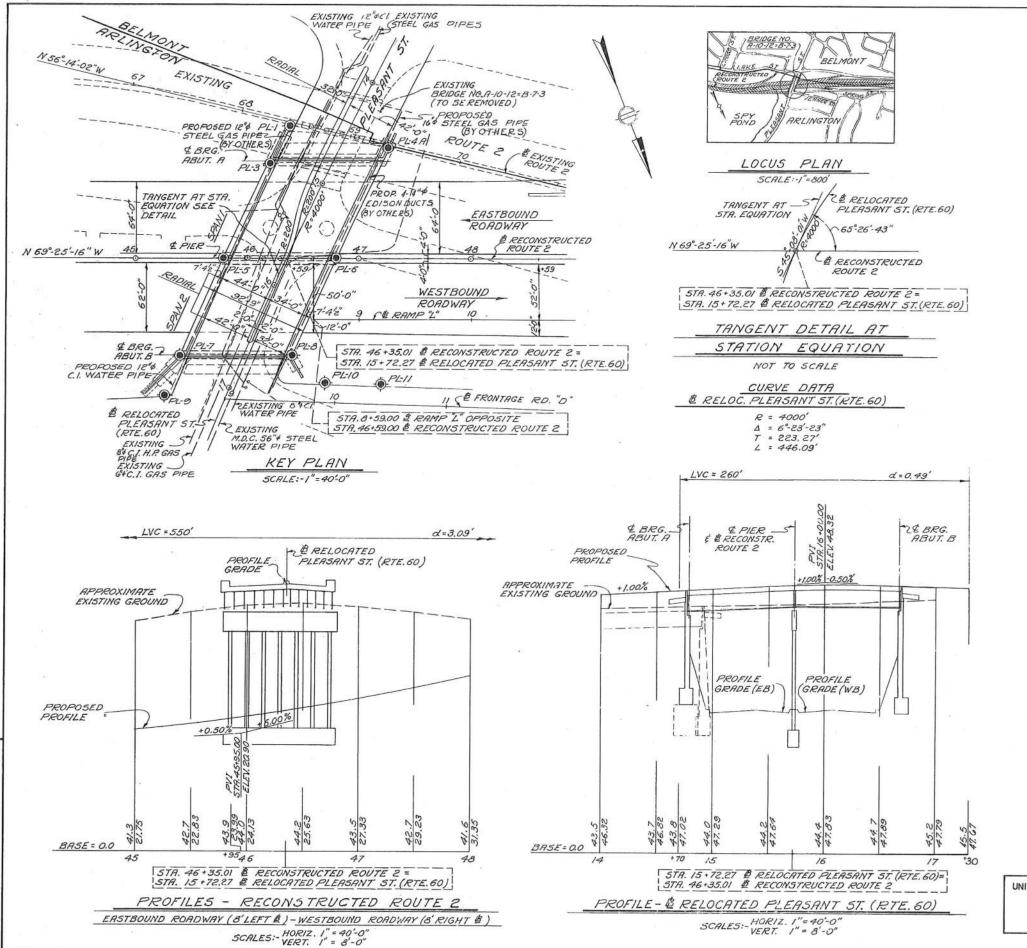
TEST BORING REPORT RAYMOND

CONCRETE PILE COMPANY

A DIVISION OF RAYMOND INTERNATIONAL INC.

ToUNIVE	rsal engineering co	Date.	JANUARY 21, 1965
Location of Borings ROUTE	2, ARLLNGTON AND	BELMONT, MASSACI	HUSETTS
All borings are plotted to a	scale of 1"= 8 ft. using		as a fixed datum.
Boring No. 49	Boring No. 50	Boring No. 51	Boring No. 52
0		DATING TWA	Doring 140.


0+50 200' LT. ELEV. 47,6' 0.6' BROWN LOAMY SAND GRAVEL & BOULDERS 10 2.5'				,
FINE TO COARSE GRAY70 SAND, GRAVEL AND	72+0 45' LT.		72+0 70' RT。	
SEE NOTE	LOAM SAND LOAM SAND AND GRAVEL FINE TO	2,5'	ASPHALT CRUSH ROCK FILL FIRM FINE II	3.01
NO WATER NOTE NO I-VERY COMPACT LIGHT GRAY FINE TO	COARSE COMPACT SAND GRAVEL AND	50	YELLOW SAND HARD MED. YELLOW SAND	6,01
COARSE SAND GRAVEL AND BOULDERS. T. HUNT	SMALL BOULDERS	70	VERY COMPT. YELLOW SAND GRAV.	10,51
START 12/31/64 II.30 AM FINISH 12/31/64 4.30 PM		60	NO WATER	15,01
WORKING TIME 4,5 HRS.	NO WATER T. HUNT	65 20,01	START 12/10/64 10.00 AM	
	START 12/30/ 9.00 AM FINISH 12/30/	treestra.	FINISH 12/10/64 2,30 PM WORKING TIME 4,0 HRS.	1
	2,30 PM WORKING TIN 5,0 HRS.	ME		


63+50 300' R ELEV. 1.2' LOOSE DARK GRAY SILTY SAND	10	0,01
FINE TO COARSE GRA' SAND AND GRAVEL	Y 22	5,01
FIRM FINE TO COARSE DARK GRAY SAND AND GRAVEL	18	10.01
	16	
FIRM FINE TO COARSE BROWN SAND	17	35.0'

BORING REPORT AMERICAN DRILLING & BORING CO., INC. EAST PROVIDENCE, R. I. TO COMMONWEALTH OF MASS. DPW ADDRESS BOSTON, MASS.

SITE LOCATION ROUTE 2 - PEDESTRAIN OVERPASS - ARLINGTON, MASS. REPORT SENT TO _____ RESEARCH & MATERIALS DIV. _____ DATE_____ SAMPLES SENT TO VIA DATE. SCALE 1'' = 8REFERENCE DATUM BORING NO. 1 LINE & STATION: 18 + 43 OFFSET: 47' LT ELEVATION: 8.6' 10.0' 0.0' MOIST MEDIUM DENSE, BROWN FINE TO COARSE SAND, TRACE OF FINE GRAVEL, 17 TRACE OF SILT 3.6' W 6.0' MOIST DENSE, BROWN FINE SAND, 50 2.0' SOME SILT 10.0' 26__ WET MEDIUM DENSE, GRAY FINE TO MEDIUM SAND, SOME SIIT 14.0' -6.0' WET VERY STIFF, GRAY CLAY WITH 20 (2 SAMPLES) SOME FINE SAND LAYERS 20.0' 9 -14.0' WET STIFF, GRAY CLAY WITH TRACE · OF FINE SAND LAYERS -22.0' AT 30' BECOMES WET MEDIUM STIFF (NOTE: CHANGED OFFSET BECAUSE OF HIGH PRESSURE CASOLINE LINE BEING DIRECTLY UNDER OTHER OFFSET - A. CONFALONE) -30.0' 40.0' BOTTOM OF BORING: 40.0' BOTTOM ELEVATION: -31.5' WATER: 6.0' -38.0' STARTED: 6/15/72 FINISHED: 6/15/72 DRILLER: A. GOMES INSPECTOR: A. CONFALONE W = WATER SURFACE BELOW STARTING GRADE IN FEET AT COMPLETION OF BORING. 6.0 FT. IN COMP. NIRSK FT. IN HRS. OR FT. IN HRS. CASING DIA BW INCHES, LENGTH FEET. 2" OD SAMPLER DIAL 3/8"ID INCHES, TYPE SPLIT SPOON += MUD LOST IN THIS LAYER OF SOIL. FOOTAGE OF BORING THIS SHEET 40.0' "
SHEET 1 OF 1 FOREMAN A. GOMES CLASSIFICATION BY AG & LLM JOB NO 71-290

MassDOT Route 60 at Route 2 1967 Project Belmont, MA

PUB RD. OIV. NO. STATE FED.AID PROJ. NO. FISCAL SHEET TOTAL YEAR NO. SHEETS I MASS. U-242(14) 19 182 600

GENERAL NOTES

BENCH MARK

(B.M. *A-44) RIGHT OUTER CORNER OF FIRST STEP(BRICK) HOUSE *17 VENNER ROAD. 240' RT. STA. 48+40 & RECONSTRUCTED ROUTE 2 (ARLINGTON) ELEV. 49.043 (U.S.C.G.S. 1929 DATUM). SURVEY NOTEBOOKS

\$:16918; X-SECTIONS: 25875; DETAIL: 14864, 17018.

FOUNDATIONS

MAY BE ALTERED, IF NECESSARY, TO SUIT CONDITIONS ENCOUNTERED IN CONSTRUCTION.

DATE & SEAL

TO BE PLACED ON THE INSIDE FACE OF THE NORTHWEST AND SOUTHEAST END POSTS A SHEET SHOWING THE SIZE AND CHARACTER OF NUMERALS WILL BE FURNISHED, SEAL WILL BE FURNISHED BY THE COMMONWEALTH AND SET BY THE CONTRACTOR.

IN ACCORDANCE WITH THE 1961 SPECIFICATIONS OF THE AMERICAN ASSOCIATION OF STATE HIGHWAY OFFICIALS AND INTERIM SPECIFICATIONS FOR H20-44 LOADING.

REINFORCEMENT

ALL BARS SHALL HAVE DEFORMATIONS CONFORMING TO A.S.T.M. SPECIFICATION A305. UNLESS OTHERWISE SHOWN ON THE PLANS, REINFORCING BARS SHALL BE LAPPED 20 DIAMETERS TO MAKE A SPLICE, EXCEPT THAT MAIN REINFORCING BARS NEAR THE TOP OF SLABS AND BEAMS HAVING MORE THAN 12 INCHES OF CONCRETE UNDER THE BARS SHALL BE LAPPED 35 DIAMETERS TO MAKE A SPLICE.

BRIDGE RAILINGS

SEE DEPARTMENT STANDARD PLANS, DATED OCT. 1966 FOR DETAILS OF BRIDGE RAILINGS.

UNSUITABLE MATERIAL

ALL UNSUITABLE MATERIAL SHALL BE REMOVED WITHIN THE LIMITS OF THE FOUNDATIONS OF THE STRUCTURE.

SCALES NOTED ON THE PLANS ARE NOT APPLICABLE TO REDUCED SIZE PRINTS, DIVIDE SCALES BY 2 FOR 4 SIZE PRINTS.

ANCHOR BOLTS

ALL ANCHOR BOLTS SHALL BE SET BY TEMPLATE AND PLACED BEFORE THE CONCRETE IS POURED EXCEPT WHERE NOTED ON SHEET 8.

ESTIMATED QUANTITIES

(NOT GUARANTEED)

CLASS B ROCK EXCAVATION _ _ _ _ BRIDGE EXCAVATION _ _ _ _ BRIDGE EALAVATION GRAVEL BORROW FOR BRIDGE FOUNDATIONS CLASS I BITUMINOUS CONCRETE PAVEMENT TYPE I-I. 119: TOUS
CLASS I BEUSE PROTECTIYE BOTTOM COURSE FOR BRIDGES 115 TOUS
METAL BRIDGE RAILING (3 RAILS) OPTION 480 L.F.
REMOVAL OF PRESENT BRIDGE (BRIDGE NO. AID-12=8-7-3) 1 L.S.
BRIDGE STRUCTURE (BRIDGE NO. A-10-12=8-7-3) 1 L.S. ESTIMATED WEIGHT OF REINFORCING STEEL ____ 239,000 LBSI ESTIMATED WEIGHT OF STRUCTURAL STEEL ____ 815,500 LBS.

THESE QUAUTITIES ARE PART OF ITEM 995,01 BRIDGE STRUCTURE (BRIDGE NO. A-10-12=B-7-3) AND ARE NOT GUARAUTEED.

NOTE: PLANS OF EXISTING BRIDGE MAY BE SEEN AT THE M.D.R.W. 100 NASHUA ST. BOSTON, MASS. ROOM 609

UNIVERSAL ENGINEERING CORPORATION DESIGNING ENGINEERS

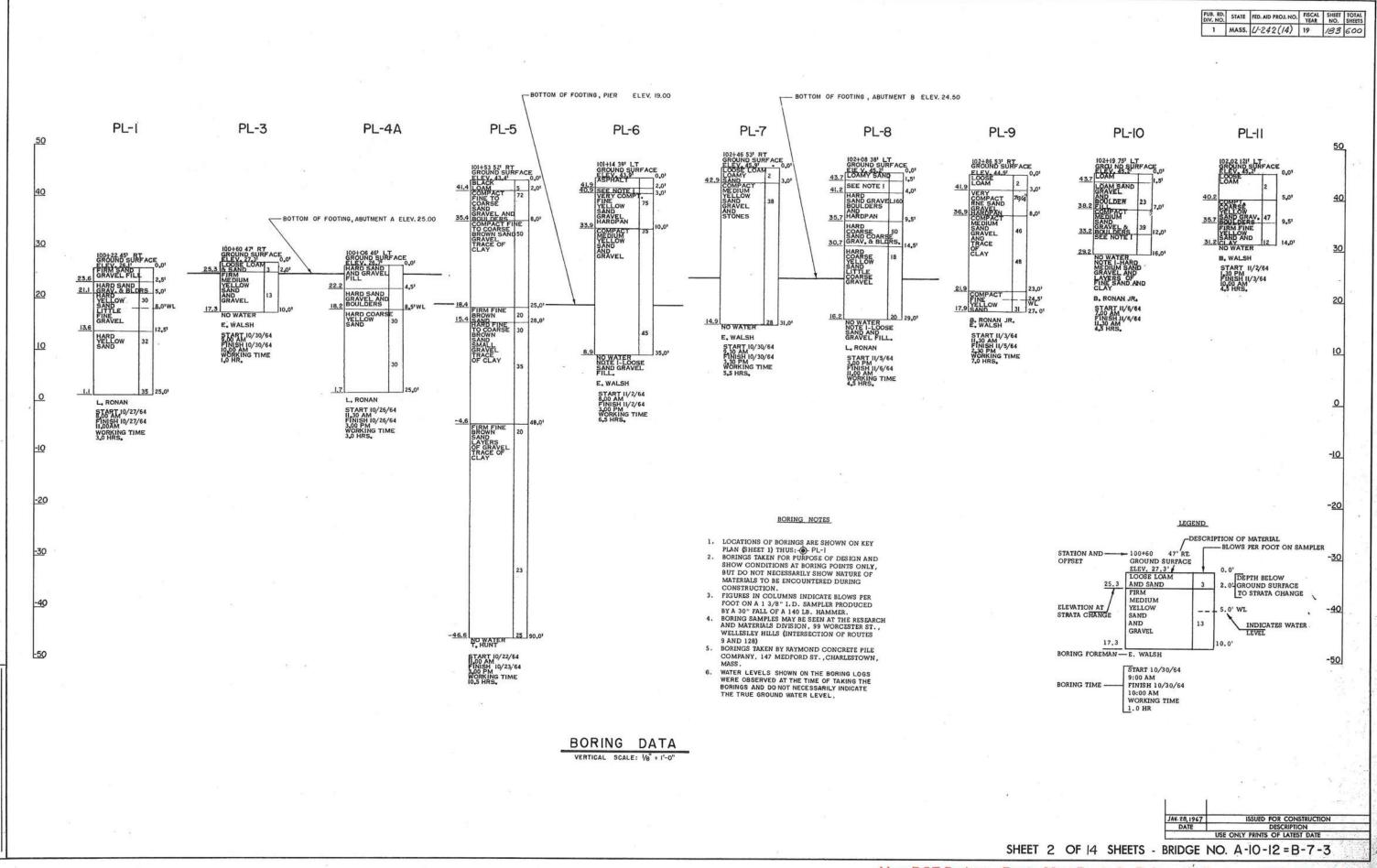
38 CHAUNCY BOSTON II, MASS.

ISSUED FOR CONSTRUCTION THE COMMONWEALTH OF MASSACHUSETTS

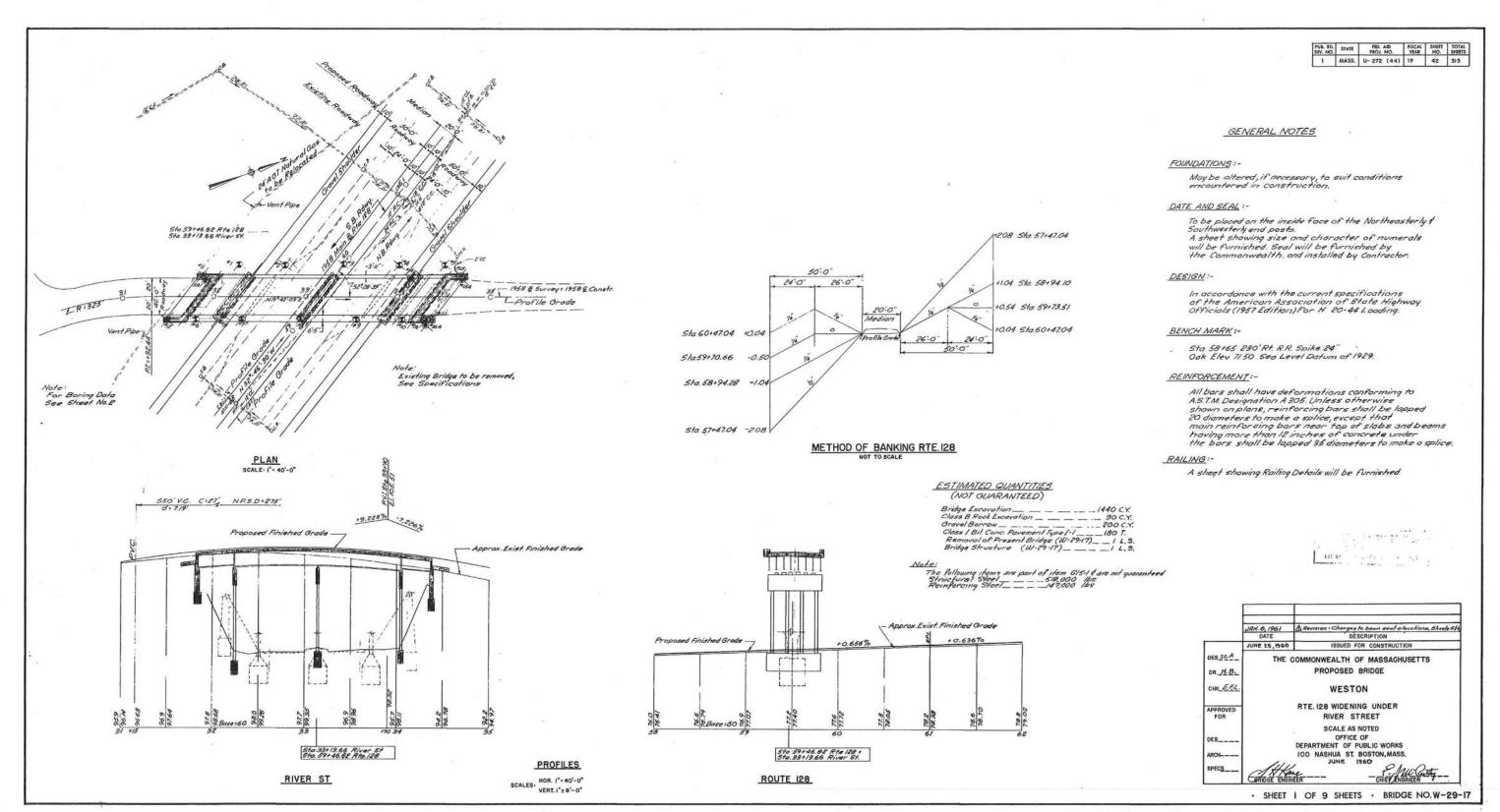
> PROPOSED BRIDGE ARLINGTON - BELMONT

RECONSTRUCTED ROUTE 2 UNDER

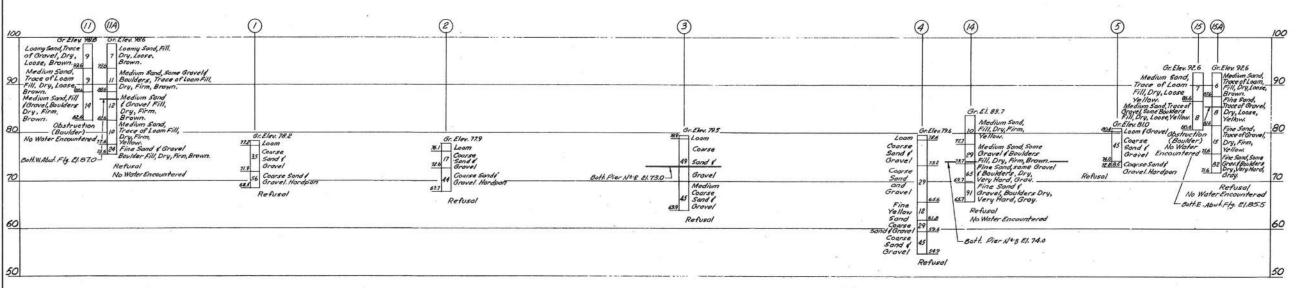
RELOCATED PLEASANT ST. (RTE. 60) SCALES: AS NOTED


OFFICE OF

DEPARTMENT OF PUBLIC WORKS 100 NASHUA ST., BOSTON 14, MASS.

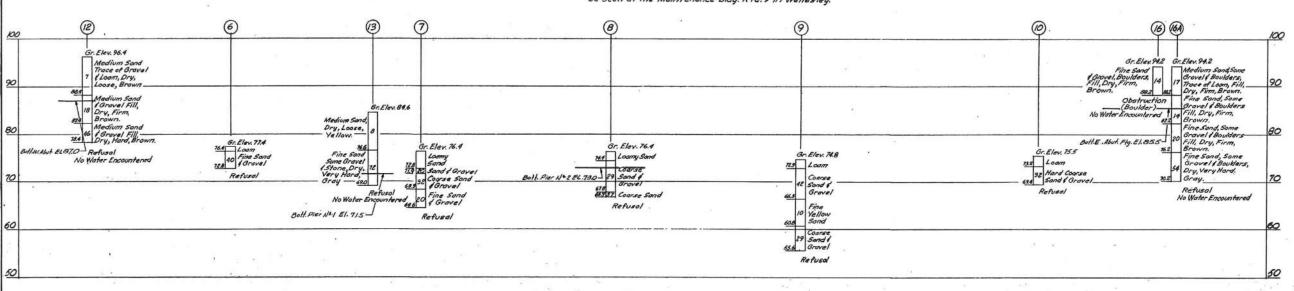


Donuls Boye P.


SHEET I OF 14 SHEETS - BRIDGE NO. A-10-12 = B-7-3

MassDOT Route 128 Widening Under River Street 1960 Project Weston, MA

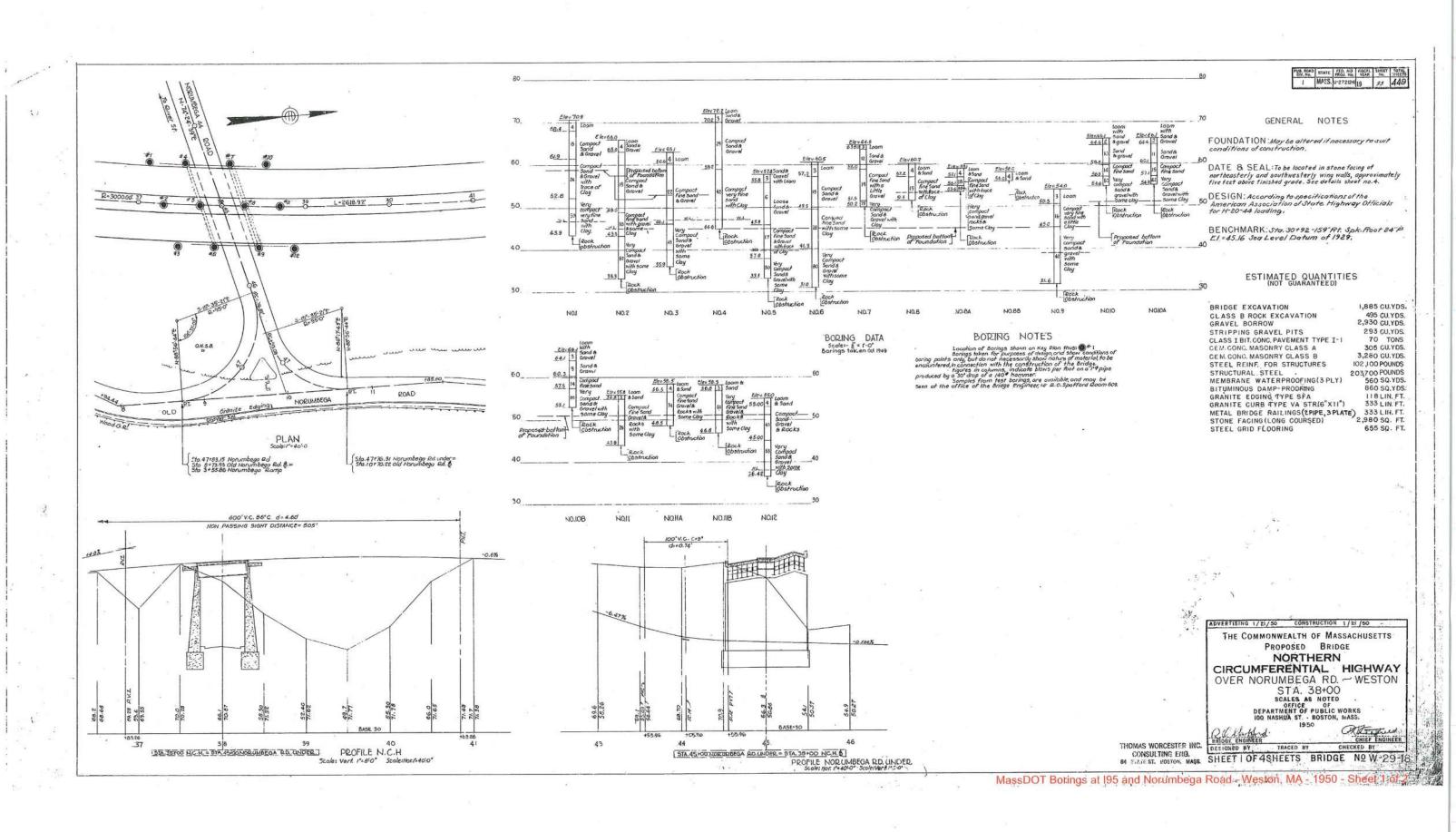
PUB RD. STATE FED. AID FISCAL SHEET TOTAL DIV. NO. STATE PROJ. NO. FISCAL SHEET TOTAL YEAR NO. SHEETS

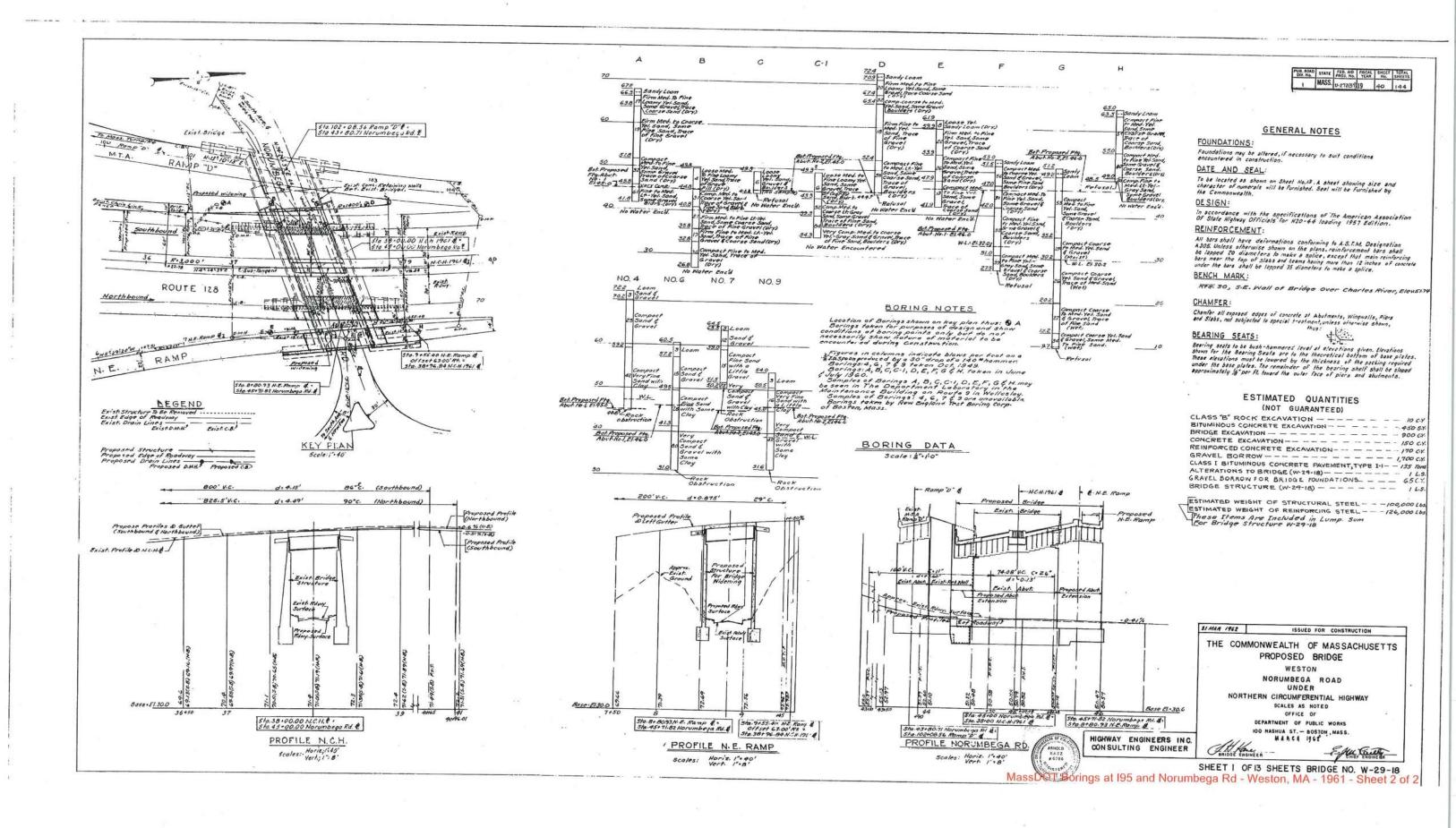


BORING DATA Scale 18":1'-0"

NEW BORINGS TAKEN BY CARR-DEE TEST BORING & CONST. CORP. BOSTON, SEPT. 1958

BORING NOTES


Location of Borings Taken Oct. 1949 Shown on Plan Thus . Location of Borings Taken Sept. 1958 Shown on Plan Thus . Figures in Columns Indicate Blows Per. Ft. on Two Inch & Pipe Produced by 30 "Fall of 140 lb. Hammer, Borings Token For Purpose of Design & Show Conditions at Boring Points Only. But do not Necessarily Show Nature of Materials to be Encountered During Construction, Boring Samples May be Seen at the Maintenance Bldg. Rte. 9 in Wellesley.



DATE DESCRIPTION USE ONLY PRINTS OF LATEST DATE:

SHEET 2 OF 9 SHEETS BRIDGE NO. W-29-17

MassDOT Northern Circumgerential Highway Over Norumbega Rd. 1950 Project Weston, MA

Hager-Richter Geoscience Inc. 1997 Project Weston, MA

Be ELM STREET - HOPKINTON, MASSACHUSETTS 01748 TEL (508) 435-5543 File #: Date Started: Date Completed: 1/6/97 Driller: R. Eastwood HAMMER 300# HAMMER 300# HAMMER 300# TYPE HU Site Rep.: CASING SAMPLER CORE BARREL Groundwater level reading: Date 1/6/97 Date 1/6/97 Size 4" 1-3/8" Groundwater level reading: Date 1/6/97 Date 24" Strata Change ft No. Depth ft No. Depth ft Sample Sample Sample Strata Change ft S1 0.5-2.5 24 22 23-41-39-62 S2 4.0-6.0 S2 4.0-6.0 S3 Very dense brown medium to coarse SAND & silt & cobbles	B Depth _4'2 Depth
B6 ELM STREET HOPKINTON, MASSACHUSETTS 01748 TEL (508) 435-5543 FAX (508) 435-5512 LOCATION: River Road, Weston, Mass.	1 OF B Depth 4'2 Depth
Factor F	1 OF B Depth 4'2 Depth
Date Started: 1/6/97	B Depth 4'2 Depth
Date Stairted:	B Depth _4'2 Depth
Depth ft No. Depth ft SI O.5-2.5 24 22 23-41-39-62 SIZE 4" 1-3/8" Groundwater level reading Date 1/6/97 Date 1/6/97 Date 1/6/97 Date 1/6/97 Date Date Date 1/6/97 Date Date 1/6/97 Date	B Depth 4'2 Depth
Depth Cas Sample Streta Change Streta Streta Change Streta Streta Change Streta Stret	Depth 4'2 Depth
Depth ft	Depth
ft bl/ ft No. Depth ft Pen." Rec." Blows/6" ft Sample Description Sample Description 6" ASPHALT S1 Very dense brown fine to medium SAND & me	
1	
S1 Very dense brown fine to medium SAND & me	
S2 4.0-6.0 24 13 101-21* S2 Very dense brown medium to coarse SAND &	
52 4.0-6.0 24 13 101-21* S2 Very dense brown medium to coarse SAND &	
5 SZ Very dense brown medium to coarse SAND &	
	gravel, some
7	
10 - S3 10.0-11.5 18 12 100-53*-70* S3 Similar to S2	
11,5 Bottom of exploration 11,5'	
-	
15—	
4	
20 —	
25 —	
30	
-	
ound Surface tousedthen	
Cohesive Consistency Cohesionless Density	
Proportions Used Blows/Ft. Blows/Ft. Sample	в Туре
ittle 10 to 20% 3-4 Soft 16-30 V-Stiff 10-30 M-Dense UT - Shell	l Piston
Some 20 to 35% 5-8 M-Stiff 31+ Hard 30-50 Dense OE = Open	End Rod
1. The stratification lines represent the approximate boundary between soil turns. The stratification lines represent the approximate boundary between soil turns.	hammer
2. Water level readings were made in the drill hole during or at the completion of drilling. The water level may fluctuate over	

Trace Little Some And		10 20	to 10% to 20% to 35% to 50%	0-2 3-4 5-8	Very S Soft M-Stif	Soft	9-15 16-30 31+	Stiff V-Stiff Hard		0-10 10-30 30-50	Loose M-Dense Dense V-Dense	UP = Fixe UT = She OE = Ope	d Piston
	oport	ions U				Blows				Cohesionles Blows	/Ft.		Іе Туре
round !	Surfac	e to	u	eed	~~			then		 			
-													
_													
-	1												
30													
-									90				
_							ļ						
25					1								
-							9		1820				
_						1			8				2
-													
 20					2					æ			
_													
-					1								
15													
_							1				3		
_							0.00	12.0		f exploratio	n at 12'		
10		S3	10.0-12.0	24	14	10-14	-28-37		S3 Dens	e brown me k fine sand	dium to coars	e SAND & grave	l, trace
-					1			9.5			1000		
_			E		1								
Б —									some cor	arse gravel &	7118		
<u> </u>		52	4.0-6.0	24	20	21-23	-17-17					AND & fine to n	nedium grev
-	9	S1	0.0-2.0	24	19	3-6-1	0-29				rown fine to m o ooarse gravel	edium SAND & & silt	fine to
ft	bl/ ft	No.	Depth ft		Rec."		/8/6"	ft					·
epth	Cas			Sampl	θ .			Strata Change			Sample Des	orintian	
e Rep.	1		. Martin		FAL		24"		30"		Date		Depth
ate Cor riller:	nplete		. Eastwoo	d	SIZE		300#		40#	•	Date	er level readings	Depth
te Sta		10,000	/3/97 /3/97		TYP	•	<u>HW</u> 4"		SS -3/8"	•			
o#:	1		6228-EE		-		CASING	SA SA		ORE BARRE	L Surface Elev	vation:	
EL (508)			HOPKINTON, M		(508) 43								1 OF
	TOP		IODUNITON N								n, Mass.		PAGE
							PRO.	ECT: L	ocal Wa	ter Main	Improvemen	nts	B10

EA	RT	H EX	(PLORA	rion,	, INC	P.	CLIE	ит: Ј	-lager-Ri	chter Geo	oscience, In	c.	BORING #:
Str. Petrico	- Addison to						PRO.	JECT: _	ocal Wa	ater Main	Improveme	nts	B100
86 ELM 8	STREE	r · + 5543	OPKINTON, M	ASSACHI FAX (USETTS (508) 43	01748 5-5512					on. Mass.		PAGE 1 OF 1
File #:			6228-EE		T		CASIN	0 54	MPLER (CORE BARR	FI Surface Fla	evation:	
Date Sta	rted:	3444	/6/97		TYP		HW		SS		Station:	vacion,	
Date Co		25,500			SIZE		4"		-3/8"	-		ter level readings	
Driller:			. Galvin	1			300#	#1	140#		Date		Depth
Site Rep	. :	0000	. Martin		_ FAL		24"		30"		Date		Depth
Depth	Cas			Sample	- David			Strata					
ft	bl/ ft	No.	Depth ft	Pen."	Rec."	Blows	s/6"	Change ft			Sample De	scription	
-		S1	0.3-2.3	24	13	49-22-	24-18		S1 Very	dense bro	wn fine to med	lium silty SAND	& gravel
-								1					
- -		S2	4.0-5.3	15	0	11-			S2 No	recovery			Ø
-						100	13	6.0					
-	ł								Bottom	of explorati	on at b.		
10-]											•	
-]	1											er er
	1	1 1											
	1	1					548				8		
15 —													
											3		
	-					ſ							
-	1	li							12				
20	1	1 1			1								
20]		9								55	\$	
-	1		18	1									
-	1							341					
25	1							1					
26]				1			-					
	-	1		1		[= = = = = = = = = = = = = = = = = = = =	
-	1				3								
-	1		0/2					1					
30]							1					
_	4							1					
-	1												
	1		L							NO. 11. 11. 11. 11. 11. 11. 11. 11. 11. 1	540 SEC. SEC. SEC. SEC. SEC. SEC. SEC. SEC.		9 965000
Ground	Surfa	ce to	U	sed		pales-are-siz-y-		then					
			Τ'		Cohe	sive Con					ess Density		
Trace		tions U	to 10%	0-2	Very S	Blows/	9-15	Stiff		0-10	ve/Ft. Loose	UP = Fix	ole Type ed Piston
Little		10	to 20%	3-4	Soft		16-30	V-Stif	f	10-30	M-Dense	UT = She	lby Tube
Some And			to 35% to 50%	5-8	M-Stif	t	31+	Hard		30-50 50+	Dense V-Dense		en End Rod O# hammer
Not	es:	1. 1	The stratification	n lines rep lings were	present ti e made is	he approx	dmate hole d	boundary t uring or at	etween soil	types. The	transition may be . The water leve	građual. Il may fluctuate ove	er time.
Rer	nark	3:								65			

_		-							Dec 20 820	//SE 2003	1	BORING #:
EAF	RTH	EX	PLORAT	ION,	INC.		LIEN		ager-Richter Geosc			B99
									ocal Water Main In		s	PAGE
ELM ST	DEET	, μ	OPKINTON, MA	SSACHU	SETTS O	1748 L	OCA	TION: _B	iver Road, Weston	Mass		1 OF
L (608)	435-E		OF KINT ON THE	FAX (5	08) 435	-5512						1 OF
e #:		9	8228-EE				SINC		APLER CORE BARREL	Surface Eleva	tion:	
te Steri			/6/97		TYPE	-	W		SS	Station:		
te Com	plete	d: 1	/6/97		SIZE		4"	_	3/8"	NAME AND DESCRIPTION OF THE PARTY OF THE PAR	level readings	
iller:		B	. Eastwood			MER 3	00#		40# 30"	Date	The second second	pth
e Rep.:		C	. Martin	-	FALL		24"		30	Date	U	pth
epth (Cas bl/			Sample				Strata Change		Sample Desc	ription	
ft	ft	No.	Depth ft	Pen."	Rec."	Blows	6"	ft			U. CAND 9	
		SI	0,5-2.5	24	16	52-47-3	B-61		S1 Very dense brown	tine to mediu	m siity SAND a	grave:
-				100,000	10,000							
-		- 1						4.0		fil.		
_ +		52	4.0-6.0	24	13	94-37*	50*		\$2 Very dense brown fine send & silt	n medium to oc	erse SAND & gr	avel, some
Б									Tine sand of site			
4												
ᅥ											Œ	¥75
						¥ ×	į.		S3 Very dense brow	- * 	im to coorea SA	ND &
10		83	10.0-12.0	24	12	37-42-5	0-71		gravel, cobbles & silt	n to gray mean	um to coates sa	WD W
_	8					1		12.0	Bottom of exploration	n at 12'		
-												
4									-		140	
15 -	*											
_					1	1		1	ř			
-		1				1						
20 -		0.0			1							
20			1.58			1						
-	1			1								
-	20					1			ĺ			
25	j	1		1	ł			Į.				
26						1		1	· ·			
-	1		į			1						
-								2	185			
^^		1	1	1	1			-				
30]	4			1					8		
-	-	1						1				
	1							1				
	1_											
Ground	Surf	noe to		used				then				
					Coh	esive Cor		noy	Cohesionle Blow		. Samp	в Туре
Trace		rtions	Used O to 10%	0-2	Very	Blows/ Soft	9-1		0-10	Loose	UP = Fixe	d Piston
Little		1	0 to 20%	3-4	Soft		16-3 31+			M-Dense Dense	UT = She	n End Rod
Some)		0 to 35% 5 to 50%	5-8	M-St	ul	317	naic	50+	V-Dense		# hammer
14.4					present	the annea	vimat	a houndary	between soil types. The t	rensition may be	gradual. may fluctuate ove	290

Remarks:

MWRA Contract No. 2338 1937 Project Waltham, MA

Form 211-100 Pads-1-55

RAYMOND

CONCRETE PILE COMPANY 304 Park Sq. Building

NEW YORK GOW DIVISION BOSTON 16, Massachusett

To The Commonwealth of Massachusetts Date January 3rd 1956 Job No. 8
ocation of Borings Contract No. 233, S. Charles Relact Sever, WALTHAM, Massachusetts

No. 36		No 37 TB37	ft. using	MILLO LA PERSONA DI LA PERSONA		No. 39 TB39	
ELEV. 145,01	7	ELEY. 146.81	7	ELEY, 146.21	7 	ELEV. 146, 21	
HARD BAND, GRAVEL & CINDERS FILL	or believed T. T. T. T.	VERY COMPACT]	CAUTH CAUTONIO	3.0; 98 WAIER	CINDERS BILL	95
VERY COMPACT COARBE BAND, GRAVEL, BOULDERS &	65	GRAVEL, BOULDERS A LITTLE CLAY.	WATER	CLIVELE CLAY.	5,51		Ý
HARD COARGE	7,51	BOULDER.	98 10.01	Hard Hoarse Sand, Urayel B. Difaya	.20 	COMPACT COARS	49
BOULDERS A		COMPACT COARS		YEBY KOMPACT GOARSE SANC GRAYEL A AUTTHE GUAY.	.93	LITTLE GLAY,	61
COMPACT COARS	941 1711	BAND, GRAVEL BOULDERS & LITTLE CHAY.		LITTLE CLAY.	190	YEAR PURCHE BOOKER ALSO	100
LITTLE CLAY	28 20.01					EMPLOYEE STATES	13.40 13.55 13.55 13.55
		WATER ILEVEL	TAKEN	WATER LIEVEL T	AKEN	WATER JURYEL	AKE
		AFTER COMPLE	TION.	WATER LIEVEL T THREE HOURS A COMPLETION.		AFTER COMPLE	
		FOREMAN REPA BOULDER DRIVE AHEAD OF SAM FROM 181 TO 1	PJ-ER				
						ETTERS NEW	ROYAL ROYAL
							14(1)) 14(1)) 14(1)
		FR PRYERS DIE	GATAD AND		a a trans		
	TE SAMP				AMP.		
18-21-025-11-4							
Figures an e esampling pipe so					it. di	Vito TEXT 1631	

AMOND andivision

o The Commonwest ocation of Borings Co

	borings are plo No. 32		to a sc	ale of 1' ≓8_ No33		No. 434		Nova 35	
F	110.					<mark>TB34</mark>	经 10.00000000000000000000000000000000000	TB35	
1.00								<u> </u>	
			1994				TO PERSONAL PROPERTY OF THE PARTY OF THE PAR		102
			, in						
	ELEY. 146.9	7		ELEV, 147.31		146,41		£,, ev, 145, 1	
1	VERY COMPACT		NW.	HARD BAND, BRAVEL & BOULDERS FIL VERY COMPAC	THE RESERVE			FIRM BAND.	
	BOULDERS FILL		6.01	BAND, GRAVEL	6.01	OINDERS FILL	12 6.5	GRAYEL &	15
1/2	FIRM COARSE	海解	7.01 WATER	VERY COMPAC	WATER	BAND, BRAYEL, CINDERS FILL, LOGBE COARSE BAND, SRAYEL	7.87	LOOSE	
1	BAND, BRAVEL	14	11.5	VERY COMPAC	60		10.8	BAND Film	6_
S. C. C.	LOOSE FINE	10		BOULDERS IS		GOBE FINE	8	YERY	
	LOOSE TINE SAND, TRACE OF CLAY O OLITTLE MICA. SERNS PARS			LITTUE GLAY					N. A.
	(VERY SE MY A)	56	20.0		198 20.0		10 20.0	AAND ORAY	
	CITTLE CLAY.						Ŧ		
	WATER JULYEL THIRTY MINUTE MPIER COMPLE	TAK		WATER LIVEL	TAKES		HER S		
	APTER COMPLE	Tier		AT TER COMPLE	119tu		LVIII.		
1									
							AND THE REAL PROPERTY.	KEROPETROSIA KINGRESIA	加州城
								MARKATAN SALA MARKATAN SALA MARKATAN SALA	
		透	•	eritari kontantantanta Kilinggan sama dan s					
			EAME!					nicest Nacional	
						ANGHESECH Eggs			
1					SEDOMEST WAS A SE	ON A MARK BUSINESS OF SURE	destructed from 114 a		
が必									(ATARA) (AT Y SA

TEST BORING REPORT

RAYMOND

CONCRETE PILE COMPANY 304 PARK SO. Building

TO The Commonwealth of Massachusetts

Location of Borings Contract No. 233, S. Charles Relief Sever. Maintage Massachusetts

	porings are plotted to No. <u>29</u>	No. 29 A		No301		100 31	V.
		TB29A			建 图 克伊州美国	TB31	15
7					A CONTRACTOR		
1							- N W
1		TO THE TOTAL PROPERTY.			44		
Į,	(1) [1] [1] [1] [1] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2			TOOLS WANTED			
	ELEY. 144.91	ELEV. 144.6 7.		FLEV. 11431	7	FHEY, 143.5	
	GOMPACT BANG	\f	4/30,	HARD BAND, GRAVEL A BOULDERS FILL	2.01	The second secon	
	BOULDERS A.			POUL SERVICE	3"0"E"	BLACK LOAMY	2
4		5' BORING NO	5,71		的位 医神经神经炎	LOAMY BAND	
	CRAVEL, PILT 7.	FIVE PEET 51 FROM BORING NO 29. THE	100			LOAMY BAND, SHAYEL FILL.	
1	103			COMPAGE A	76	CONSTRUCTOR OF THE SERVICE	
	WEAT COMPACT COARSE SAND, GRAVEL,	BPTHETWO BERINGS IE.	S MAN THE STATE OF	COMPAND AMA		Property Property and the control of	37313
	LITTLE GLAY 92)		e de la company de la comp de la company de la compa	Track	DATE TO THE TANK OF THE PARTY O	
				±LAV.		BANG GTAYFL BANALA BOULDERB A	
		0	18.0	AND DAY AND		A CHARLES TO A CONTROL	A VALUE AND AND A
	SENT CASING		A 13465 K 465	MANAGARA MANAGARAN	20,01		W. SAMAGE
		A STAN OF THE PROPERTY OF THE		LIKE A REPORT OF A PARTY OF THE	APP		
÷			21.0		NORTH WAR		2013
				A STATE OF THE STA	计算机模型的		(3). 203
							UN
	THE STATE OF THE STATE OF		EN)				OF X
	(《大成以》 产品的经验 网络金河州 医中枢病 医多种性 医多种 医克里耳氏试验 医乳腺		T ()			THE PROPERTY OF	600
		THE STATE OF					
							1773
		294 CVLLTV L.J 4 EU/AD L.J AD P. C. L.					以 以 以 が に に に に に に に に に に に に に
		ETSZAVA CPNKSYAL					
**				All Cardon de la company	A STATE OF THE STA	WARRY N	
	MANUSCRIPTION END						1481

156 1 do 1 do 1 do 1 58 NEW YORK GOW DIVISION BOSTON 16, Massachusette

To The Commonwealth of Massachusetts Date January 3rd 11955 Joh No. B-165174208

Location of Borings Contract No. 233. 8, Charles Relief Sever. WALTHAM, Massachusetts. ft, using All borings are plotted to a scale of 1" **: ______ 601 **TB27** ELEV. 153.6!# ELEV. 153.61 194V. 152.91-7 PAYEMENT 0.51 2.51 WATER 3.51 HARD SAND & NATER GRAVEL FILL **⊒**50' GRAVEL TILL HARD FINE SAND, ORAYEL LITTLE OLAY, 8 18 6,81 7.5 86 VERY COMPACT BAND, GRAVEL & BOULDERS, 181 12.0 VERY COMPACT BAND, GRAVEL BOULDERS & LITTLE CLAY, 81 Printer of WAT 401 12,51 151 181 15.01 0 BENT OABING AT DEPTHE OF 111 AND 15.01. 19,01 83 VERY COMPACT BAND, GRAVEL BOULDERS & 0 TRACE OF CLAY 01 1 301 PRAVEL 149 VERY COMPACT SAND, GRAVEL POVERERS & I TRACE OF CLAY, 29.01 [0] 30.01 FOREMAN REPORTS LOSE OF WASH WATER WHILE CORING BOULDERS AT THE DEPTH OF SO, OI TAKEN WITH DISE 201 MADE THREE TRIALS AT THIS LOCATION, HIT AN PRETRUCTION IN EACH TRAL AT GEPTHS OF TREE, 6.01, AND 13.05 WATER LEVELS INDICATED ARE THOSE DESERVED AT THE COMPLETION OF EACH BORING, OR AS NOTED, AND TO NOT RECESSARILY REPRESENT PERMANENT GROUND WATER LEVELS. -00!TAKEN WITH TWO INCH SPLIT'S 14-14-05; \$7.4 18-27-955, ROT 1X-8-55, R7, F Figures in right hand column dudicate number of blows required to drive Potental. Raten V. Languages and provided to the contraction by the contract of the co

TEST BORING REPORT

RAYNOND

CONCRETE PILE COMPANY 301 Fark Sq. Building

NEW YORK GOW DIVISION BOSTON 16, Massachusetts

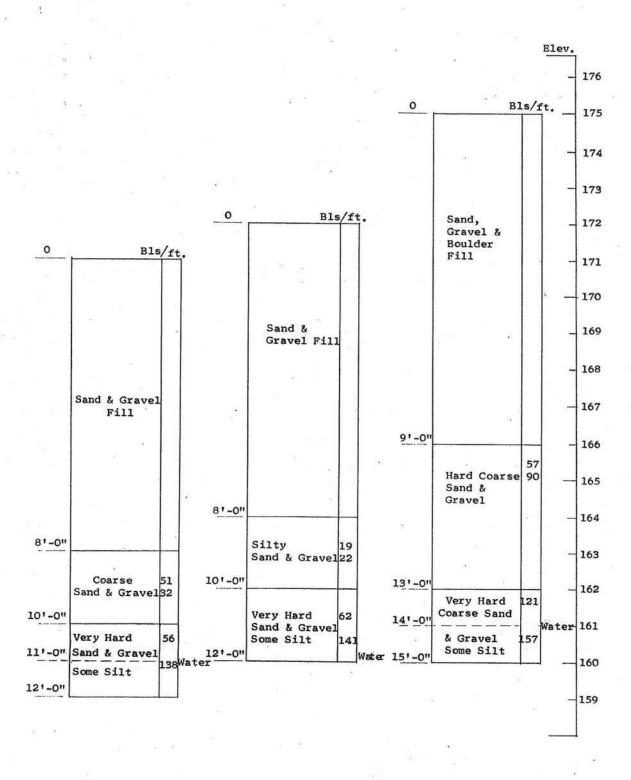
To The Commonwealth of Massachusetts Data January 3rd 10 55 Job No. 8-16517.

Location of Borings Contract No. 233, S. Charles Reliaf Sewer, WALTEAL, Massachusetta.

AI	l borings are plot	ted t	o a sca		đi,	ueing.				ns a fixed dat	um.
1601	No. 23 A			No. 24			No <mark>25</mark> TB25			No. 26 TB26	
							ELEV. 155.517	7		TB20	
	ELEV. 52.31	2		ELEV. 153,21- SAND & GRAVEL FILL.	7	l	FIRM COARSE LOAMY BAND, GRAVEL &			ELEV. 153.01-	7
1501	FIRM COARSE SAND, GRAVEL BOULDERS FILL	.II		COMPACT	38	2.01	BOULDER.	33	6.01 9.01	BOULDERB FILL.	9
	FIRM COARSE SAND, GRAVEL LITTLE CLAY.	7 I5	.51	MEDIUM BAND, GRAVEL & BOULDERS,	62		HARD COARBE BAND, GRAVEL TRACE OF CLAY	20		HARD GAND, GRAVEL & BOULDERS,	16
1401		18	3.01		65	16,01	HARD COARDE BAND, LITTLE GRAVEL,	18	15,01	VERY COMPACT SAND, PRAVEL LITTLE CLAY.	5 1
1301	HARD MEDIUM		I.51	HARD FINE YELLOW SAND, LITTLE FINE GRAVEL S	and desired	21.71 WATER	HARD FINE BAND, TRADE OF CLAY & LITTLE MICA.	220	23.01 WATER	VERY COMPACT BAND, (BRAVEL (BOULDERS & LITTUE (CLAY)	137
	BAND, LITTLE FINE GRAVEL & TRACE OF	22		LITTLE MIOA.	19	28.01		20	29,31	LITTUE , CLAY.	
1201	ÇLAY,	29		VERY DOMPÁCT MEDIUM BAND GRAVEL A BOULDERS	198		HARD COARSE SAND, WHAVEL, BOULDERS A CLAY,		35 51	BOULDERS A	
	VERY COMPACT)18 3	6 . 01	(VERY COMPACT) COARSE BAND, 'BROYELERS'S	210	36.01	VERY COMPACT COARSE SAND WRAYEL SOULDERS A ALITTUE SOLAY	68			
	VERY DOMPACT ODARBE BAND, GRAVEL BOULDERS & LITTLE CLAY.	61 4	0,01	/ERPHEE 186.20 		38,3					
4101	WATER LEVEL TA THIRTY MINUTES AFTER COMPLET	KEN ION.	y y Y y a	WATER LEVEL TA THIRTY MINUTER AFTER COMPLET			WATER LEVEL TO THIRTY MINUTES WETER COMPLET	AKEI			e e
1001		,SA	HERMAN AND THE	S TAKEN W	Out to the	A SE MINISTER	CONTRACTOR SERVICES AND LEAST OF THE PROPERTY				
	E. J. BOUDREAU			The state of the s				AU.	V		Y.

Mass. Dept. of Public Works Research & Materials Section Soils & Foundation Unit. R & M 522

BORING PROFILES:


TB₂

Town: WALTHAM (W-4-23)
Road: WINTER STREET
Dato: June 30, 1966
Vert. Scale: 1"=21-0"

Boring No. 1 Sta. 25+55, 30'Lt. Grnd. Elev. 171.0

Boring No. 2 Sta. 25+92, 26! Lt. Grnd. Elev. 172.0

Boring No. Sta. 26+00 @ R. Grnd. Elev. 175.0

MWRA Contract No. 59 1937 Project Weston, MA

SHEET I SHEETS

managed and

COMMONWEALTH OF MASSACHUSETTS METRIDISTR. WATER SUPPLY COMMISSION

RECORD OF BORINGS CONTRACT NO 58 MIDDLESEX, NORFOLK, SUFFOLK AND WORCESTER COUNTIES

	Work	starte	d April	8 1937 :	1937 to Pen complete	nsylvanic	ber 18	1037	ussburg	P	enn.				-	er Foo	
	11011	TATION	LOCA	TION	SIZE OF CASING	ELEVAT	ION OF	DEPTH	LEDGE CO PENE- RE	ORE COVD	NATURE OF	ITEM	ITEM	B.E.C.IIII	COM	ACTUAL	FE
			N 20404	E		GROUND		LENGE	TRATION	%	LEDGE Bietite Schist	1	2	19	37	HRS, MIH.	IFR
		0+41 204+48	30483	83,405 103,749	Contract to the party of the last	284.88			280.93 9		and Grantle		280,93	4/26		76.55	
				manufactured and and a	WART OF BUT THE POPULO WILL	260.24			THE RESERVE OF THE PERSON NAMED IN		Chlorite Schist	19.22		7/13	7/16	-	
88	THE OWNER LAND.			107,118	***	263.92	204.40			0,1	Granite and Biotite Schiet	59,50			7/10		
8			mich merten de e si nie	117011	ANTON MI SE TIMESTO	200.25	191.16		30.04 66		Biotite Dehist	9.09	**********		5/18	+	
				117,747		217.46			THE RESERVE AND DESCRIPTION OF REAL PROPERTY.	***	Biotite Gnelss	30,42		THE RESERVE	7/21	5-40	-
1		TAXABLE PARTY	DESCRIPTION OF THE PERSON OF	118,508	NAME AND ADDRESS OF THE OWNER, TH	206.69	138.33	68.36	4714	arte.	Gneiss	68.86	1. 1.	B. 100	6/22		-
Y			Manager Street	***********		209.20	171.58	-	an retirement from	ACCRECATE VALUE OF	Blotite Gneiss	87.62		6/22	6/25	7-15 Not	5.
0			31,256	125,558	CHAPTER CHAPTER & BRIDE	175.82	163.82		254.0090			12.00	of the last of the last		5/24	Noted	
			Contractor of	131,040		184.19	**********		31.0084	** * ·	Mica Schist	12.67		4/12	4/14	Total Control of the	100
es m			The second second	133,026		165.80	137.55 83.43	STATE OF THE PERSON NAMED IN		-	Greenstone	28.25		4/12			***
9	Marketon Marketon	THE RESERVE AND ADDRESS.	The second secon	134,113		168.55	100	73.57	30.33 9	4	Chlorite Schist	73.57		4/16	-	2.35	
			Description of the latest Party of the latest	135,224	NAME OF TAXABLE PARTY.	134.10	87.84		31.04 99	-	Mica Schist	80,71	31.04	4/21	A/27	-	-
15	MED	THE PERSON NAMED IN	************	137,061		183.08	THE PERSONNELS OF	100.73	RESIDENCE REAL	-	Muscovite Schist Chlorite Schist	21.28	Residence of the last	4/16	ALC: UNKNOWN	3.06	
2				138703		162.10	9 (8)(5) T 144		32.83 67		* * * * * * * * * * * * * * * * * * *	*** ***	100000	4/20	4/24	3-40	
U.	ZA I	OF REAL PROPERTY.		139,691	THE RESERVE AND PERSONS ASSESSED.	180.5		doned	DESCRIPTION OF THE PERSON NAMED IN		Chlorite Schist depth of 171'	130.20	The second second	1/26	5/1	3-80	_
i	12 A·2		34,872	- HERRICAL STREET	24,44,6	*******	-45.50		Name and Address of the Owner, where		Indiana and Contract of the Co	(EL.9.5		10/28	*** ******	-	led
	1	574+82		140,197		175.50	\$7.00 0 about \$600		THE RESERVE TO STREET	ng 24	Granite	218,55		11/15	1	-	
	Coloredon Inc.	Carlo de Car	33,160	10.11	24,4", 44,6	152.30		doned 218.22	6/8/37 83.29 66	01 (depth of 242.2'			4/28		reach'l	
100	Personal Line	-	33,076		40 4 117 W. America and San	190.06	-49.42	-		<u> </u>	and Granite Chloritic Granite	218.22	1 Mar 4 1 mm 14 5 4 1	5/12	6/1		
	STREET, SQUARE,	Committee of the land	33,325	142,520	CHILD-ST-THE-ST-	189.45					Dlabase and Granite Chioritic Granite ond Didbase Diabase and Greenstone Quartitie ond Diabase	289.48	we	6/5	6/17	****	
	PORCEASOR STATE	City and States and Street World	A committee of the last of the	146,152		183.00	157.00	114,10	407.0079	7.0	Orcenstone Quartitle and	114.10	+ ++ ++ ++	5/4	5/11	5-40	1
			THE PERSON NAMED IN	63,486	A-REAL PROPERTY AND ADDRESS OF THE PARTY AND A	245.00	RIA.40	The state of the s	519.90 92	2	Granité	100000000000000000000000000000000000000	407.00	5/26		111-55	510
16A		95+20		170945		89,90	60,40	THE RESERVE THE PERSON NAMED IN	530,4067	-	Column States of the Column St	THE R. LEWIS CO., LANSING, MICH.	519.90	6/17	7/15	Noted	_
-				171,528;	-	51.60	-6.40	TOTAL PROPERTY.	315.0062		Granodiorite Granodiorite		291.38	7/12	9/8	-	
i		***************************************		172A48;	THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	48.30		STREET, SQUARE, SQUARE,	233.50 AD	-	Volconic Brecela	123,50		5/84		:	
	beelufulkiida Riin	04+70	MAY THE REAL PROPERTY.	171,823	and the same of the same of	43.00	-76.35	A DESCRIPTION OF THE PERSON OF		0.1	Granodiorite and	119.35	State	6/17	6/15		
	PERSONAL PROPERTY SECURE	Autoritation of the Party of th	CELULE PER PER PER PER PER PER PER PER PER PE		21/2,3", 31/2"	56.09	0.92	55.17	THE RESERVE NAMED	-	Volcanic Breccia	55.17			-	10-16	tion)
	10.00	CATALOGUE CONTRACTOR OF		175,514		104.72	84.62	The second second	A0.25 76		Dark Gray Shales	20,10		5/13		12-58 Not	4.0
•				185,213	THE PERSON NAMED IN	112,50	87.50	SHIELDING.	502.50 98		Green Shales		THE RESERVE OF THE PERSON NAMED IN			Noted Noted	.,,
				181,965	STREET, SQUARE, SQUARE	160.80		ACCUPATION AND ADDRESS OF THE PARTY OF THE P	34.48 56		Greenish Shales	120,80	- 100000	6/30	THE REAL PROPERTY.	A STATE OF THE REAL PROPERTY.	7.4
į		STREET, SQUARE, SQUARE	NAME AND ADDRESS OF THE OWNER, WHEN	189,540	THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER, THE PERSON NAMED IN COLUM	161.40			THE RESERVE AND PERSONS NAMED IN		Dark Gray Shales	124.90	* ****** * *	9/7	9/4	4-50 4-05	7.1
	-	Marie		201,072		116.72	87.72				Dark Gray Shales		392.57	4/0	9/16	4-03	7.3
i		E-HILE-IX-WIFE		2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	14, 24, 3%	95.70	15:12				Light Brown Shale	80.58	THE RESERVE OF THE PERSON NAMED IN	6/9			6.0
1	25 18	64+91	37.469	207605	14.24.36.	85.20	-27.60	112.80	725010	16				6/17	7/2	of hole	-4.4
	26 12	86+69	37,423	209.783	24,31.,44	47.50	-83.58	131.08	96.92 37.	2	Conglomerate	181.08	50.75 67.84	7/17	3/59	Not:	5.0
				212217		18.25	-93.41	106.66	60.75 54	0 1	Gray Shale	106.66	51.03	5/10	5/10	Noted	
					14,24,34	81.90	118.60	1 40.50	01.87.31	5.9	Gray Shale	140.50		4/21	6/15	15-30:	6.0
	28A 13	22+92	37,414	213405	21/2 31/2"	38.61	~5.60	44.21	30.18.92	2	Conglomerate	44.81		6/10	6/25	10-30	0.5 9 B
į							antiti				Forward	871 72	1702 64	9 17	-()	10.91	170
ļ					total k	by Que	ontitie	AA.KI	carrie		Conglomerate Corward	4 4.8 1 871.72	30.18 4792.64	6/19	6/25	10-31	2
	Eleva	ntiens	tes: N	ton C	ity Bae elt Syst	0,		- To								i	
	LOCA	TION	OF	BORI	NGSI						•						
100	:11	terno	tive	Dress	ine Time	el Line	: Nos	. 1 to	17, 10	el.		1 1 1 1		W.W.	AL YER		×.
		oth L	ine o	t Pres	seure 7	nnel L	POP! N	06. 17	A to A	1-B	incl, and 58. 4 to 60, Incl	. 1					
	AVE	wth	Brone	ch 77 v	resure il	mner L	D FI	OS DE	A, DR.	7, 5	4 to 60, Incl	1					
		plore	mion.	in No	rthhoroi	Intil No	10 . 11	1.0	and a.	Q 11							
	A	plora	tion !	in Fa	st Bost olsea:	oni No	5, 43	43.A	and 4	9-6	3,						
		plore	ation	in Ch	e/sea!	No. 45,			j-1., *								
	5	plera	rion	at No	rtli, rnd	of Lake	e Goa	rituai	ei Nos	, 12	A.1, 12.A-2.						
	.A.Y		9 1/0	0500	d: AE, A	4, 40,4	1,40	الله والا			*		445 (4)	#1.	• " !!!!!	*	
	Drawi	N. E.W	S. CII	Ka. Ook	46	2 1	4.1	1 . K. P		1	A 20 - 1 - 1				1 Show		
-				kd, 00,4 kd./2/0		· · · · · · · · · · · · · · · · · · ·					FILE: CON	r 58 .s	3.36		400	35.04	i

Appendix B

Boring and Monitoring Well Installation Logs

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 28 River Rd., Weston, MA Northing: 2950924.3547 Easting: 719979.0651

Drilling Date: Start: 11/29/2017 **End:** 11/29/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Reviewed by:

Surface Elevation (ft.): 85.68

Total Depth (ft.): 16

Depth to Initial Water Level (ft): Depth

Date ΝE 11/29/2017 09:35

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-1

Elev. Depth (ft) 85.7 O SS S-1 24 7 12 13 Strate Begoneral Description Material Description Moist, medium dense, brown, fine to medium SAND, little silt, little fine gravel Moist, very dense, light brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt	
SS S-1 24 5 6 Topsoil Moist, medium dense, brown, fine to medium SAND, little silt, little fine gravel Moist, very dense, light brown, fine to coarse SAND and fine to coarse GRAVEL trace silt	Remarks
SAND, little silt, little fine gravel 15	
34 SAND and fine to coarse GRAVEL trace silt	
- SS S-2 24 42 14 76 5 5 5 5 5 5 5 5 5	
80.7 SS S-3 24 16 8 34 SAND, some fine to coarse gravel, trace silt	Analytical sample (4'-6')
SS S-4 24 24 12 51 Wet, very dense, gray-brown, fine to coarse SAND, little fine gravel, trace silt	
SS S-5 24 9 10 19 Wet, medium dense, gray-brown, fine to coarse SAND, little fine gravel, trace silt	
Wet, medium dense, gray-brown, fine to coarse SAND, little fine gravel, trace silt	Coarse gravel in spoon tip.
Test boring B-1 terminated at 16' bgs and backfilled with soil cuttings.	
65.7	
	ırmister Classification
AS - Auger/Grab Sample CS - California Sampler SG - 1.5" Rock Core GP - Geoprobe V - Vac Ex/Grab Sample Sample S - Split Spoon ST - Shelby Tube GP - Geoprobe V - Vac Ex/Grab Sample S - Split Spoon ST - Shelby Tube GP - Geoprobe V - Vac Ex/Grab Sample S - Split Spoon ST - Shelby Tube GP - Geoprobe Granular (Sand): V - Loose: 0-4 Dense: 30-50 Loose: 4-10 V Dense: >50 M. Dense: 10-30 Fine Grained (Clay): V - Soft: <2 Stiff: 8-15 Soft: 2-4 V . Stiff: 15-30 M. Stiff: 4-8 Hard: >30 m	and 35-50% some 20-35% little 10-20% trace <10% noisture, density, color

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 44 River Rd., Weston, MA **Northing:** 2951336.9957 **Easting:** 720113.614

Drilling Date: Start: 12/11/2017 **End:** 12/11/2017

Surface Elevation (ft.): 80.15

Total Depth (ft.): 16

Depth to Initial Water Level (ft):DepthDateTime10.912/1112:40

Abandonment Method: Backfilled with soil cuttings

VE V-1	J									Logged By: A. Smith
42" Topsol: Moist, brown, fine to coarse SAND and fine to coarse GRAVEL, trace fine gravel, trace of bgs. SS S-1 24 76 76 14 >100 25 76 76 14 >200 25 76 76 14 >200 25 76 76 14 >200 25 76 76 76 14 >200 25 76 76 76 14 >200 25 76 76 76 14 >200 25 76 76 76 14 >200 25 76 76 76 76 76 76 76 76 76 76 76 76 76	Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description Remarks
Moist, brown, fine to coarse SAND and fine to coarse GRAVEL, trace to little silt SS		VE	V-1					\(\frac{1}{2}\frac{1}{	Topsoil	SAND, some silt, trace fine gravel, trace boring from the ground surface
SS S-1 24 76 14 >100 SS S-1 24 8 48 12 >100 SS S-1 24 8 8 48 12 >100 SS S-1 24 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8										
SS S-2 18 48 12 >100 Top 8": Moist, very dense, brown, fine SAND, little silt Bottom 4": Moist, very dense, brown, fine to coarse gravel, trace silt Bottom 4": Moist, very dense, brown, fine to coarse gravel, trace silt Bottom 4": Moist, very dense, brown, fine to coarse gravel, trace silt Bottom 4": Moist, very dense, brown, fine to coarse gravel, trace silt Test boring B-2 terminated at 16' bgs and backfilled with soil cuttings. Sample Types	5 -	- SS	S-1	24	76 76	14	>100			Moist, very dense, brown, fine to coarse GRAVEL and fine to coarse SAND, little silt (6'-8')
Moist, very dense, brown, fine to coarse SAND, some fine gravel, little silt Test boring B-2 terminated at 16' bgs and backfilled with soil cuttings. Test boring B-2 terminated at 16' bgs and backfilled with soil cuttings. Consistency vs Blowcount/Foot Burmister Classificates and sample Sample Sample Sample SS - California Sample SS - Split Spoon ST - Shelby Tube SD - 1.5' Rock Core NQ - 2' Rock Core NQ - 2' Rock Core Moist, very dense, brown, fine to coarse SAND, some fine gravel, little silt Test boring B-2 terminated at 16' bgs and backfilled with soil cuttings. Consistency vs Blowcount/Foot Burmister Classificates Simple SS - Split Spoon Some 20-35% Some 20-35% Ittle 10-20% Trace - 10' No Dense: 30-50 M. Stiff: 4-8 Hard: >30 M. Stiff: 4-8 Hard: >30 Moist, very dense, brown, fine to coarse SAND, some fine gravel, little silt Test boring B-2 terminated at 16' bgs and backfilled with soil cuttings.		SS	S-2	18	30 48	12	>100		and and Gravel	little silt Bottom 4": Moist, very dense, brown, fine to coarse SAND, some fine to coarse gravel, trace silt Rollerbit through boulder from 9.5
backfilled with soil cuttings. Sample Types Consistency vs Blowcount/Foot Sample CS - California Sampler BQ - 1.5" Rock Core NQ - 2" Rock Core NQ - 2" Rock Core Sample Types Consistency vs Blowcount/Foot Scandle (Clay): V - Vac Ex/Grab Sample Sample Sample Sample Shelby Tube GP - Geoprobe Consistency vs Blowcount/Foot Scandle (Clay): V. Loose: 0-4 Dense: 30-50 V. Loose: 4-10 V. Dense: 30-50 N. Soft: 2-2 Stiff: 8-15 Soft: 2-4 V. Stiff: 15-30 Ittle 10-20% M. Stiff: 4-8 Hard: >30 M	. <u>65.2</u> _	- SS	S-3	24	56 60	10	>100		8	
Sample Types AS - Auger/Grab Sample CS - California Sample BQ - 1.5" Rock Core NQ - 2" Rock Core NQ - Geoprobe Consistency vs Blowcount/Foot Consistency vs Blowcount/Foot Scannel (Clay): Scannel (Clay): Sample Sample Sample Sample Sample Sample Shift Spoon ST - Shelby Tube GP - Geoprobe Consistency vs Blowcount/Foot Scannel (Clay): Scome 20-35% Iittle 10-20% Iittle 10-20% Trace <10% M. Dense: 10-30 M. Stiff: 4-8 Hard: >30 Moisture, density, columnia for the control of t	- - - -							A OLO		Test boring B-2 terminated at 16' bgs and backfilled with soil cuttings.
AS - Auger/Grab Sample CS - California Sampler BQ - 1.5" Rock Core NQ - 2" Rock Core ROCK CORE CGP - Geoprobe V - Vac Ex/Grab Sample Sample Sample SS - Split Spoon ST - Shelby Tube GP - Geoprobe O - 4 Dense: 30-50 V. Soft: <2 Stiff: 8-15 little 10-20% Soft: 2-4 V. Stiff: 15-30 trace <10% moisture, density, column for the control of	60.2	<u> </u>	ample Tv	nes						Consistency vs Blowcount/Foot Burmister Classificat
	CS - Califo BQ - 1.5"	er/Grab S ornia Sa Rock Co	Sample ampler ore	V - Vac San SS - Spli ST - She	nple t Spoor lby Tul	n ne	Loose:	se: (anular ()-4 D -10 V	Sand): Fine Grained (Clay): and some 20-35% ense: 30-50 V. Soft: <2
Reviewed by: Date: Boring Number: B-2	Revie	wed k								Date: Boring Number: B-2

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

 $\textbf{Drilling Contractor/Driller:} \ \ \text{GeoLogic - Earth Exploration, Inc. / P. Fisher}$

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 60 River Rd., Weston, MA **Northing:** 2951934.5782 **Easting:** 720192.6396

Drilling Date: Start: 12/6/2017 **End:** 12/6/2017

Surface Elevation (ft.): 81.82

Total Depth (ft.): 14

Depth to Initial Water Level (ft):

Depth Date Time 5.2 12/6/2017 13:00

Abandonment Method: Backfilled with soil cuttings

										Logged	By: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		Material Desc	ription		Remarks
0							:47: · · ·		2" Topsoil				Vacuum excavate
	-									n, SILT, some	e fine sand		boring from the ground surface to 6' bgs.
	VE	V-1						Gravel		n to gray, fine o coarse sand	to coarse GRAVE , trace silt	EL,	Analytical sample (2'-2.5') 2 to 4' bgs is composed of 20% cobbles. Rollerbit through cobbles and boulders from 4 to 6' bgs.
	SS	S-1	10	15 100/4"	5	>100		Sand and	Moist, very of SAND and	dense, brown fine to coarse	, fine to coarse GRAVEL, trace si	lt	5 1 1 1 1 1 1 1 1 1 1
								S					Rollerbit through cobbles and
	- SS	S-2	24	25 24 30 24	10	54					, fine to coarse GRAVEL, little silt		boulders from 6.9 to 8' bgs.
	-							WR					Rollerbit through weathered rock or possible bedrock from 12 to 14'
_ <u>66.8</u>	- \$\$	\$3	0	50/0"	0	>50	-, 1777			B-3 terminate ith soil cutting	d at 14' bgs and s.		bgs.
61.8 AS - Auge													
[<u>Sa</u>	mple Ty							Consistency vs I	Blowcount/Foo	<u>t</u>		ster Classification
AS - Auge CS - Calife BQ - 1.5" NQ - 2" Re	ornia Sa Rock Co	mpler ore S	V - Vac San S - Spli T - She GP - Ged	nple t Spoor Iby Tul	n ne	V. Loos Loose: M. Den	se: 0 4-)-4 E	(Sand): Dense: 30-50 '. Dense: >50	Fine Gr V. Soft: <2 Soft: 2-4 M. Stiff: 4-8	V. Stiff: 15-30	so lit ti	nd 35-50% ome 20-35% ttle 10-20% race <10% ture, density, color
Revie	wed b	y:							Date:		Boring Numb	er: B	-3

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number: 101038-102170**

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: River Rd./Prescott Ln., Weston, MA Northing: 2952499.7577 Easting: 720002.1819

Drilling Date: Start: 12/6/2017 **End:** 12/6/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Reviewed by:

Surface Elevation (ft.): 79.01

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

Depth Date Time 9.0 12/6/2017 10:00

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-4

Dillilling	j Date.	Start: 1.	2/0/201	/ []	u. 12/	0/201	,		Logged By: A. Smith	v
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0							12 77 12.		12" Topsoil	Vacuum excavate boring from the
-										ground surface to 6' bgs.
-	VE	V-1							Moist, brown, fine to medium SAND, some silt, trace fine gravel	Analytical sample (2.5'-3')
74.0	-									
<u>74.0</u> 5	VE	V-2							Moist, brown, fine SAND, little fine to coarse gravel, trace to little silt	Analytical sample (5'-5.5')
-	- ss	S-1	24	16 30 21 16	12	51		avel	Moist, very dense, brown, fine to coarse SAND, some fine to coarse gravel, trace silt	
▼ .	- SS	S-2	24	20 16 20 23	12	36		Sand and Gravel	Moist, dense, light brown, fine SAND, some silt	
10 - -	-									
64.0 15	- ss	S-3	24	17 21 19 17	10	40			Wet, dense, brown, fine to coarse SAND, trace fine gravel, trace silt	
-							*****		Test boring B-4 terminated at 16' bgs and backfilled with soil cuttings.	
-	-									
59.0	92	mple Ty	nes						Consistency vs Blowcount/Foot Burm	lister Classification
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	er/Grab S fornia Sa Rock Co	Sample mpler ore	V - Vac Sam SS - Spli ST - She SP - Ged	nple t Spoor lbv Tuk	ו	V. Loo Loose: M. Der	se: 0	nular -4 C	(Sand): Fine Grained (Clay): Dense: 30-50 V. Soft: <2 Stiff: 8-15 Inches: >50 Soft: 2-4 V. Stiff: 15-30	and 35-50% some 20-35% ittle 10-20% trace <10% sture, density, color

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 85 Sauyer Rd., Weston, MA Northing: 2953296.8164 Easting: 719957.4358

Drilling Date: Start: 12/4/2017 **End:** 12/4/2017

Surface Elevation (ft.): 79.23

Total Depth (ft.): 16

Depth to Initial Water Level (ft): Depth Date ΝE 12/4/2017 12:30

Abandonment Method: Backfilled with soil cuttings

VE V-1										Logged By: A. Smith
VE V-1	Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description Remarks
WE V-1								74.18. 74		
Corrosion same same same same same same same same	-		V 1					。 。)		ground surface 6' bgs.
Corrosion same silt, trace silt SS S-1 24 12 16 8 28 30 30 30 22 10 1000/4" 6 >100 20 20 20 20 5 43 20 5 43 20 5 43 20 20 5 43 20 20 5 43 20 20 5 43 20 20 5 20 20 20 20 20 20 20 20 20 20 20 20 20	-	VE	V-1					© 0 0 0		
SS S-1 24 16 8 28	74.2 5	VE	V-2				-); ; ; ; ; ; ; ; ;		Moist, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt
Moist, very dense, brown, fine to coarse GRAVEL and fine to coarse SAND, little silt Test boring B-5 terminated at 16' bgs and backfilled with soil cuttings. SS - Auger/Grab Sample SS - California SS - Califo	-	- SS	S-1	24	12 16	8	28		ravel	
Moist, very dense, brown, fine to coarse GRAVEL and fine to coarse SAND, little silt Test boring B-5 terminated at 16' bgs and backfilled with soil cuttings. SS - Auger/Grab Sample SS - California SS - Califo	-	SS	S-2	10		6	>100); 	d and G	Moist, very dense, brown, fine to coarse GRAVEL and fine to coarse SAND, little silt
GRAVEL and fine to coarse SAND, little silt Test boring B-5 terminated at 16' bgs and backfilled with soil cuttings. Sample Types Consistency vs Blowcount/Foot Sample V - Vac Ex/Grab Sample CS - California Sample	10 - -									
backfilled with soil cuttings. Sample Types Consistency vs Blowcount/Foot Burmister Classification As - Auger/Grab Sample V - Vac Ex/Grab Sample Sample Sample Sample Sample Sample V - Vac Ex/Grab V - Vac Ex/Grab Sample V - Vac Ex/Gra	64.2 15	- SS	S-3	24	23 20	5	43	0 0 0 0 0		Moist, very dense, brown, fine to coarse GRAVEL and fine to coarse SAND, little silt
Sample Types Consistency vs Blowcount/Foot Burmister Classificate AS - Auger/Grab Sample Sample Sample Source S	-	-								Test boring B-5 terminated at 16' bgs and backfilled with soil cuttings.
AS - Auger/Grab Sample	59.2									Consistence of Blown and Foot
NQ - 2" Rock Core GP - Geoprobe M. Dense: 10-30 M. Stiff: 4-8 Hard: >30 moisture, density, color	CS - Califo	r/Grab S ornia Sa	Sample Impler ore	V - Vac San SS - Spli ST - She	nple t Spoor lby Tub	n l	_oose:	se: 0 4-	nular 1-4 [10 \	(Sand): Fine Grained (Clay): and some 20-35% Dense: 30-50 V. Soft: <2

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 139 River Rd., Weston, MA Northing: 2953595.3338 Easting: 719974.3851

Drilling Date: Start: 12/1/2017 **End:** 12/1/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 76.21

Total Depth (ft.): 16

NE

Depth to Initial Water Level (ft): Depth Date

12/1/2017 Abandonment Method: Backfilled with soil cuttings

12:40

	,		_, .,_• .			.,	-				Logge	ed B	y: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material De	escri	iption		Remarks
0 -							1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		18	3" Topsoil					Vacuum excavate boring from the ground surface to 6' bgs.
	VE	V-1									n, fine to co ravel, trace s		e SAND, some fi	ne	Analytical sample (2'-2.5')
- 71.2 -	-			20				ravel	M	oist verv	dense brow	vn f	îne to coarse		
	- ss	S-1	24	20 54 18	12	74		Sand and Gravel	S	AND, son	ne fine to coa	arse	e gravel, trace silt		
- <u>66.2</u> -	SS	S-2	24	35 28 26	16	63							ine to coarse e gravel, trace silt		
	-														
	- SS	S-3	24	9 12 11 12	12	23		Silty Sand		loist, med ome silt	ium dense, t	brov	vn, fine SAND,		
							p. 44. 144				B-6 termina vith soil cuttir		at 16' bgs and		
56.2															
	<u>Sa</u>	ample Ty	pes						Consi	stency vs	Blowcount/Fo	oot		Burm	ister Classification
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	Rock Co	ampler S	V - Vac Sam SS - Spli ST - She SP - Geo	nple t Spoor lbv Tul	n ne	V. Loos Loose: M. Der	se: 0	-4 D	(Sand) Dense: /. Dens	30-50	V. Soft:	Grai <2 2-4 4-8	ned (Clay): Stiff: 8-15 V. Stiff: 15-30 Hard: >30	S li	nd 35-50% ome 20-35% ttle 10-20% trace <10% sture, density, color
Revie	wed b	oy:								Date:			Boring Numb	er: B	i-6

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

 $\textbf{Drilling Contractor/Driller:} \ \ \text{GeoLogic - Earth Exploration, Inc. / M. Ferreira}$

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: Gate House Ln., Weston, MA **Northing:** 2954140.7322 **Easting:** 720062.8788

Drilling Date: Start: 11/27/2017 End: 11/28/2017

Surface Elevation (ft.): 60.77

Total Depth (ft.): 24.7

Depth to Initial Water Level (ft):

Depth Date Time 11.1 11/28/2017 13:20

Abandonment Method: Backfilled with soil cuttings

											Lo	gged E	By: A. Smith							
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material	Desci	ription			Remarks				
60.8				2			74 14. ° 18		3	6" Topso	ı					Analytical sample				
	SS	S-1	24	5 7 6	15	12	<u> </u>			o ropso	I					(0'-2')				
	ss	S-2	10	10 100/4"	4	>100	11:11													
	SS	S-3	16	22 33 100/4"	10	>100							ne to coars l, some silt	e SAN	ID,	Rollerbit through boulder from 3 to 4' bgs.				
	SS	S-4	18	14 28 100	10	>100	。 。 () ()						ne to coars I, some silt	e SAN	ID,	Corrosion sample (6'-7.5')				
-	SS	S-5	6	100/6"	3				_v	Vet verv	lense hro	wn fi	ne to coars	e SAN	חו					
	33	3-3	+ 6	100/0	3	 	٥. · · · ·	_					EL, little silt	COAN						
- <u>50.8</u> - - <u>\\</u>								Sand and Gravel												
- 45.8 15	SS	S-6	3	100/3"	3): ø o ()						ne to coars EL, little silt	e SAN	ID					
100200 CTD - 10000		0.7		100/4"				Silty Sand		Nat		5								
40.8 AS - Auge	SS	S-7	1	100/1"	1			S		Vet, very o SAND, little		own, fi	ne to mediu	ım						
	Sa	mple Ty	pes	-		-	10.45 35.5	1		istency vs		t/Foot			Burmi	ster Classification				
AS - Auge CS - Califo BQ - 1.5" NQ - 2" Ro	ornia Sa Rock Co	mpler ore S	V - Vac San SS - Spli ST - She SP - Geo	nple it Spoor elby Tul	n ne	V. Loos Loose: M. Den	se: 0 4-	·10 \	(Sand Dense: /. Dens	30-50	Fil V. Soft: Soft: M. Stiff:	<2 2-4	V. Stiff: 1	3-15 5-30 >30	aı sc lit tı	nd 35-50% ome 20-35% ttle 10-20% race <10% ture, density, color				
Revie	wed b	y:							Reviewed by: M. Dense: 10-30 M. Stiff: 4-8 Hard: >30 moisture, density, color											

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Elev. Depth (ft) 40.8	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
_ 20 	-							Silty Sand		
	SS	S-8	8	26 100/2"	8	>100			Wet, very dense, brown, fine to medium SAND, little silt Test boring B-7 terminated at 24.7' bgs and	
 	-								Test boring B-7 terminated at 24.7' bgs and backfilled with soil cuttings.	
 	_									
30.8 -	-									
35	-									
20.8 40										
 	-									
- 	-									
 - <u>15.8</u> -	-									
									Boring Number: B	-7

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / D. Jacobs

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 800 South St., Waltham, MA **Northing:** 2954553.6435 **Easting:** 720278.0534

Drilling Date: Start: 12/27/2017 **End:** 1/11/2018

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Reviewed by:

Surface Elevation (ft.): 57.99

Total Depth (ft.): 5

Depth to Initial Water Level (ft):

Depth Date Time

NE NE NE

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-8

	,								Logged By: D. Abt	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0	VE	V-1						Gravel	3" Topsoil: Dry, brown, fine to coarse SAND, some fine gravel, trace silt Dry, brown, fine to coarse SAND, some fine to coarse gravel, little silt	Vacuum excavate test boring from the ground surface to 4.2' bgs.
 - <u>- 53.0</u>	VE	V-2						Sand and Gravel	Dry, brown, fine to coarse SAND, some fine to coarse gravel, little silt	Analytical sample (3'-4')
- <u>55.0</u>									Rollerbit refusal at 5.1' bgs. The field crew determined that the obstruction could be an unmarked utility and offset to boring location B-8A.	
- <u>48.0</u> - 10	-									
- 43.0 15 -	-									
38.0	Sa	ample Ty	rpes						Consistency vs Blowcount/Foot Burm	ister Classification
AS - Auge CS - Califo BQ - 1.5" NQ - 2" R	er/Grab S ornia Sa Rock Co	Sample Impler ore	V - Vac San SS - Spli ST - She GP - Geo	nple t Spooi lby Tul	n \	V. Loo Loose: M. Der	se: 0	-4 [10 \	Dense: 30-50 V. Soft: <2 Stiff: 8-15 V. Dense: >50 Soft: 2-4 V. Stiff: 15-30	and 35-50% some 20-35% ittle 10-20% trace <10% sture, density, color

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / D. Jacobs Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 800 South St., Waltham, MA Northing: 2954553.6435 Easting: 720278.0534

Drilling Date: Start: 1/24/2018 **End:** 1/29/2018

Surface Elevation (ft.): 57.99

Total Depth (ft.): 16

Depth to Initial Water Level (ft): Depth Date Time 1/29/2018 10:25

Abandonment Method: Backfilled with soil cuttings

										Logged	By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		Material Desc	ription	Remarks
0							7,1	Topsoil	9" Topsoil			Vacuum excavate
- - - 53.0 5	VE	V-1						TO	to coarse g Moist, brow fine to coars	ravel, little silt		throughout
_									000 0010 10	g for descripti	511	
- - 48.0	NX	C-1	60		28		28282	Sand and Gravel				
48.0 10	SS	S-1	4	100/4"	3	>100			\ \ / - \	L	fine to coarse SAN	ID.
-	-	0-1			3	7100			and fine to	coarse GRAV	EL, little silt	
▼ -				12			P		Wet, dense	e. brown. fine S	SAND, trace silt	
43.0 15	SS	S-2	24	15 25 28	16	40			,	, ,	,	
- - -										B-8 terminate vith soil cutting	d at 16' bgs and s.	
38.0					<u> </u>							
		mple Ty	vpes V - Vac	Fy/Gra	h		C=-		Consistency vs			Burmister Classification and 35-50%
AS - Auge CS - Califo 3Q - 1.5"	r/Grab S ornia Sa Rock Co ock Core	mpler s	V - Vac Sam SS - Spli ST - She SP - Geo	nple t Spoor Iby Tub	n ,	V. Loos Loose: M. Den	se: 0	10 V.	Sand): ense: 30-50 Dense: >50	Fine Gr V. Soft: <2 Soft: 2-4 M. Stiff: 4-8	V. Stiff: 15-30	some 20-35% little 10-20% trace <10% moisture, density, color
NQ-2 R			Ji - OCC	phone								moisture, acrisity, color

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / D. Jacobs

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 800 South St., Waltham, MA Northing: 2954553.6435 Easting: 720278.0534

Drilling Date: Start: 1/24/2018 **End:** 1/29/2018

Surface Elevation (ft.): 57.99

Total Depth (ft.): 16

Depth to Initial Water Level (ft): 1/29/2018 10:25

Abandonment Method: Backfilled with soil cuttings

											99			
Elevation Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Recovery (%)	RQD (%)	Drill Rate (min/ft)	Down Press. (psi)	Graphic Log	Strata	N	Material Descri	ption		Remarks
5.0	NX	C-1	60	47	0	NR	NR		Cobbles and Boulders	Hard, extremely fra white, coarse grain	ctured, slightl ed, GRAVEL	y weathered and COBBL	, gray to ES	Core run consists of fractured cobbles and boulders.
10.0 - – - –										Continue split spoo	n sampling at	10' bgs.		
<u>43.0</u> − 15.0 − − −														
38.0 _ 20.0														
33.0 Bed	ding ((mm)		J	loint S	Spacir	ng (mr	m)		Continuity (mm)	Attitude	Angle	Apertu	ure (mm)
Extremel Very Thir	y Thin	<: 20	20 -60	Ex Ve	tremely	y Close se	20	<20 0-60	E	dremely <25	Horizontal Shallow	0° - 5° 5° - 35°	Very Tight Tight	< 0.1 0.1 - 0.25

Bedding (mm)	Joint Spacing (mm)	Continuity (mm)	Attitude Angle	Aperture (mm)
Extremely Thin <20	Extremely Close <20 Very Close 20-60 Close 60-200 Mod Close 200-600 Wide 600-2000 Very Wide 2000-6000 Extremely Wide >6000	Extremely <25 Moderately 25-100 Slightly 100-200 Sound >200	Horizontal 0° - 5° Shallow 5° - 35° Moderate 35° - 55° Steep 55° - 85° Vertical 85° - 90°	Very Tight < 0.1

-3/8/21	33.0													
.GPJ	Beddi	ng (mm)		Joint Sp	oacing	g (mm	<u>1)</u>	<u> </u>	Continuit	<u>y (mm)</u>	Attitud	le Angle	<u>Apertu</u>	ure (mm)
A WASM 3 20180220.GP	Extremely Tory Thin Thin Medium Thick Very Thick Extremely	20-6 60-2 200-6 600-2 2000-6	60 600 600 6000	Extremely (Very Close Close Mod Close Wide Very Wide Extremely \		20- 60- 200- 600- 2000-	20 -60 200 -600 2000 -6000	Mo Sli	tremely oderately ightly ound	<25 25-100 100-200 >200	Horizontal Shallow Moderate Steep Vertical	0° - 5° 5° - 35° 35° - 55° 55° - 85° 85° - 90°	Very Tight Tight Partly Open Open Mod. Wide Wide	< 0.1 0.1 - 0.25 0.25 - 0.5 0.5 - 2.5 2.5 - 10 >10
MWRA	<u>Field</u>	<u> Hardness</u>	<u> </u>	<u> </u>	Weath	hering	1							
SDO7.	Very Hard Hard	Knife Can't Scratches Difficulty	Fresh Slight		Discolo	ible sig oration s fresh	indica	ted weathe	l weathering ring. All the	; slight to no rock materia	discoloration. Il may be disco	oredand may b	pe weaker externally	
BIN	Med. Hard	Scratches		Moderate						erial is decom			to a soil. Fre	sh or discolored rock is
	Medium	Grooves w Difficulty		Severe		More th	han hali	f of the	e rock mate	erial is decon	nposed and/	or disintegrated	to a soil. Fres	sh or discolored rock is
CORE ONLY	Soft Very Soft	Grooves R Carves wit		Complet Residual	te I Soil	All rock	k mater k mater	ial is o	decompose converted t	o soil. The n	ntegrated to nass structu	soil. The origin		ture is largely intact. royed. There is a large
30CK	Review	ed by:							Date	∋ :		Boring N	umber: B	-8A

Sheet 1 of 1

Boring Number: B-9 (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher **Drilling Method/Casing/Core Barrel Size:** Drive and Wash / 4 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: South St./Charles River Rd., Waltham, MA **Northing:** 2954994.4460 **Easting:** 720460.624

Drilling Date: Start: 11/30/2017 **End:** 11/30/2017

Surface Elevation (ft.): 53.56

Total Depth (ft.): 21

Depth to Initial Water Level (ft):

Depth Date Time 9.0 11/30/2017 10:00

Abandonment Method: Monitoring well installed

											Logged I	By: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		ŗ	Material Desc	ription		Remarks
53.6 0									5'	' Asphalt				Vacuum excavate
_							ø. O					n, fine to coarse GRAVEL, trace si	it /	boring from the ground surface to
_	VE	V-1				-	∘ ()		ı ~			ic SILT, trace san	<u> </u>	6' bgs.
-).		tr	ace fine gra	vel			Analytical sample (2'-2.5')
_	VE	V-2				-	φ. (·)				vel, some silt	se SAND, some fii :	ne	(= =)
48.6 5): ()							
_				13			.°O		l v	et, medium	dense, brov	vn, fine to coarse		Corrosion sample
_	SS	S-1	24	21 2	6	23	· (\)		S	AND, some		nic silt, some fine		(6'-8')
_				5 10); .o		-		•	vn, fine to medium	,	
<u> </u>	ss													
43.6 10				16			0.0	Sand and Gravel		ganic fibers	•			
38.6 15	SS	S-3	24	10 13 36 52	10	49		Š			brown, fine to GRAVEL, to	o coarse SAND ar race silt	nd	
33.6 20	SS	S-4	24	18 38 33 22	8	71			aı	nd fine to co	arse GRAVI	,		
-									a	est boring B nd converte	3-9 (MW) terr d into a mon	ninated at 21' bgs itoring well.		
28.6														
		mple Ty		Ev/Ora	h						owcount/Foot	-		ister Classification nd 35-50%
AS - Auge CS - Califo BQ - 1.5" I NQ - 2" Ro	ornia Sa Rock Co	mpler s	V - Vac San SS - Spli ST - She SP - Geo	nple t Spoor lby Tul	n l	V. Loos Loose: VI. Den	se: 0)-4 E -10 V	(Sand) Dense: /. Dens	30-50	Fine Gra V. Soft: <2 Soft: 2-4 M. Stiff: 4-8		so li t	nd 35-50% ome 20-35% ttle 10-20% race <10% tture, density, color
Revie	wed b	y:								Date:		Boring Numb	er: B	-9 (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 52 Charles River Rd., Waltham, MA

Northing: 2955208.8030 **Easting:** 720983.944

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Reviewed by:

Drilling Date: Start: 11/27/2017 **End:** 11/27/2017

Surface Elevation (ft.): 58.1

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

 Depth
 Date
 Time

 NE
 11/27/2017
 10:35

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-10

Drilling	Date:	Start: 1	1/2//20	1/ EI	1a: 11	1/2//2	017		Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0				3			74.18. 74		8" Topsoil	
-	SS	S-1	24	8 13 10	15	21			Bottom 7": Moist, medium dense, brown, fine to coarse SAND, some fine to coarse gravel, trace silt	
-	- SS	S-2	24	6 27 35 100	8	62		≣	Moist, very dense, brown, fine to coarse SAND, some fine to coarse gravel, trace silt	
53.1 5	SS	S-3	24	20 18 17 9	6	35			Wet, dense, brown-gray, fine to coarse SAND, some fine gravel, trace silt	Analytical sample (4'-6')
-	SS	S-4	24	9 15 14 22	8	29			Wet, medium dense, brown, fine to medium SAND, trace silt, trace fine gravel	
48.1 10	SS	S-5	24	22 16 30 31	3	46		d Gravel	Wet, dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little silt	
10 - -	-							Sand and Gravel		
43.1	- SS	S-6	24	16 22 20 60	5	42			Wet, dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little silt	
- -							· reate (Test boring B-10 terminated at 16' bgs and backfilled with soil cuttings.	
=										
38.1									Constitution Bloom with the	
		mple Ty	pes V - Vac	Fx/Gra	h		0			rmister Classificatio and 35-50%
S - Auge S - Califo Q - 1.5" IQ - 2" R	ornia Sa	mpler ore S	Sam SS - Splii T - She P - Geo	iple t Spoor lby Tuk	ן פו	V. Loo Loose: M. Dei	se: 0	-4 [10 \	(Sand): Fine Grained (Clay): Dense: 30-50 V. Soft: <2	some 20-35% little 10-20% trace <10% loisture, density, color

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 98 Charles River Rd., Waltham, MA Northing: 2955519.2640 Easting: 721477.3143 **Drilling Date: Start:** 11/14/2017 **End:** 11/14/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Reviewed by:

Surface Elevation (ft.): 59.1

Total Depth (ft.): 16

Depth to Initial Water Level (ft): Depth Date Time ΝE 11/14/2017 13:20

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-11

J9	, Dute.	Start: 1	1/ 14/20	/1/ L I	iu. 1	1/ 1-1/2	017		Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0				3			74 1× 1/4		6" Topsoil	
	ss	S-1	24	7 8 13	12	15			Bottom 6": Moist, medium dense, brown, fine to coarse SAND, some fine gravel, trace silt	
-	SS	S-2	24	15 14 8 10	8	22		Gravel	Moist, medium dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt	Attempted 3 in spoon on samples S-2 and S-3 with little to no
54.1 5	SS	S-3	24	8 10 9 12	6	19		Sand and Gravel	Moist, medium dense, brown, fine to coarse GRAVEL and fine to coarse SAND, trace silt	recovery.
	- SS	S-4	24	19 14 12 12	4	26			Moist, medium dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt	Corrosion sample (6'-8')
49.1 10	SS	S-5	24	8 9 7 8	12	16		Sand	Moist, medium dense, brown, fine to medium SAND and SILT, trace fine gravel	Analytical sample (8'-10')
10								Silty (
44.1 15	- SS	S-6	24	15 15 16 14	3	31		Sand and Gravel	Wet, dense, gray, fine to coarse SAND, some fine to coarse gravel, trace silt	
- - - -							0		Test boring B-11 terminated at 16' bgs and backfilled with soil cuttings.	
39.1										
	Sa	ample Ty	pes	•		•	•		Consistency vs Blowcount/Foot B	urmister Classification
AS - Auge CS - Califo BQ - 1.5" NQ - 2" Ro	fornia Sa Rock Co	sample impler ore S	V - Vac Sam SS - Spli T - She GP - Ged	nple t Spoor lby Tub	n ne	V. Loo: Loose: M. Der	se: 0	-4 [10 \	(Sand): Fine Grained (Clay): Dense: 30-50 V. Soft: <2	and 35-50% some 20-35% little 10-20% trace <10% moisture, density, color

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 110 Angleside Rd., Waltham, MA Northing: 2955956.5908 Easting: 721803.1967

Drilling Date: Start: 11/29/2017 **End:** 11/29/2017

Surface Elevation (ft.): 61.1

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

 Depth
 Date
 Time

 NE
 11/29/2017
 13:30

Abandonment Method: Backfilled with soil cuttings

											Logg	jed By	/: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material D	escri	ption		Remarks
0							2,00,0		2	" Asphalt					Vacuum excavate
- - - -	VE	V-1	6							Moist, brow o coarse gr			e SAND, some fii	ne	boring from the ground surface to 6' bgs. Analytical sample (2'-2.5')
56.1 5 -	SS	S-1	24	16 15 14	10	29		avel	N S	∕loist, medi SAND and t	um dense, fine to coa	brov rse G	vn, fine to coarse RAVEL, trace si	e It	
				10 12				D D	١,	1-i-tdi		ما سام	hanne fina to		
<u>51.1</u> _	SS	S-2	24	12 12 14 16	16	26		Sand and Gravel					brown, fine to ace fine gravel		
- - - - - - - - - - - -	· SS	S-3	24	15 23 21 14	10	44				Vet, dense ome fine to			coarse SAND, trace silt		
- - -										est boring ackfilled w			d at 16' bgs and		
41.1															
	<u>Sa</u>	mple Ty		F /0	.					istency vs I					ister Classification
CS - Califo	AS - Auger/Grab Sample CS - California Sampler 3Q - 1.5" Rock Core QC - 2" Rock Core SS - Split Spoon ST - Shelby Tube GP - Geoprobe								(<u>Sand</u>)ense: /. Dens	30-50	Fine V. Soft: Soft: M. Stiff:	Graii <2 2-4 4-8	ned (Clay): Stiff: 8-15 V. Stiff: 15-30 Hard: >30	Si li t	nd 35-50% ome 20-35% ttle 10-20% race <10% tture, density, color
		y:													

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 85 Suyer Rd., Waltham, MA Northing: 2956567.2811 Easting: 722088.8573

Drilling Date: Start: 12/12/2017 **End:** 12/12/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Reviewed by:

Surface Elevation (ft.): 71.39

Total Depth (ft.): 16

Depth to Initial Water Level (ft): Depth Date Time ΝE

12/12/2017 Abandonment Method: Backfilled with soil cuttings

Boring Number: B-13

11:55

29	, 24.0.	Start. 12	L/ 12/20		14. 12	-/ 12/20	, , ,		Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
71.4 0	SS	S-1	24	14 100/4"	18	>100	<u> </u>		12" Topsoil	
								Ē	Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little silt	
	- SS	S-2	24	32 25 26 26	10	51			Dry, very dense, brown, fine to medium SAND and SILT, trace fine gravel	Analytical sample (2'-4')
66.4 5	- SS	S-3	24	45 66 30 23	10	96			Dry, very dense, brown, fine to medium SAND and SILT, trace fine gravel	Analytical sample (4'-6')
	- SS	S-4	24	35 34 18 33	8	52		Silty Sand	Dry, very dense, brown, fine to coarse SAND, some fine gravel, some silt	Corrosion sample (6'-8')
 - <u>61.4</u> _	SS	S-5	24	25 18 16 18	12	34			Dry, dense, brown, fine to medium SAND and SILT, trace fine gravel	
10 										
 - <u>56.4</u> 15	- SS	S-6	24	44 40 66 66	10	>100		Sand and Gravel	Moist, very dense, brown, fine to coarse SAND, some fine to coarse GRAVEL, trace silt	No monitoring well installed due to not encountering water in the
 	-								Test boring B-13 terminated at 16' bgs and backfilled with soil cuttings.	borehole.
51.4										
		ample Ty		F.//O:						ermister Classification
BBQ - 1.5" Rock Core ST - Shelby Tube Loose: 4-10 V. Dense: >50 So						V. Soft: <2 Stiff: 8-15 V. Dense: >50 Soft: 2-4 V. Stiff: 15-30	and 35-50% some 20-35% little 10-20% trace <10% noisture, density, color			

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D. Bore Hole Location: Stanley Ave./Lt. L. Duffy Ave., Waltham, MA

Northing: 2957004.6964 Easting: 722143.7997

Drilling Date: Start: 11/7/2017 **End:** 11/8/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 73.63

Total Depth (ft.): 16

Depth to Initial Water Level (ft): Depth Date Time 12.0 11/08/2017 08:30

Abandonment Method: Backfilled with soil cuttings

Diming	, Date.	Start.	1/1/201	, <u>L</u> II	u. 11/	0/201	•				Logged	By: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material Des	cription		Remarks
0				4			74 18 - 74		8	' Topsoil				
-	SS	S-1 S-2	24	8 38 55 100	12 6	46	∘ () • ()		tr	oarse SAN ace silt	ND and fine to	gray-brown, fine to coarse GRAVEL,)	
-		3-2	0		0		, O . O		S	loist, very AND and	dense, browr fine to coarse	n, fine to coarse e GRAVEL, little silt		
68.6 5	- ss	S-3	24	24 26 30 32	12	56) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;				ense, brown, o coarse grav	fine to coarse SAN el, little silt	ID,	Analytical sample (4'-6')
-	SS	S-4	6	100	5). O					n, fine to coarse		
-	-						ў :O:	el	8	AND, son	ne fine to coa	rse gravel, little silt		
_							· ()	Grav						
-	SS	S-5	24	15 22 26	8	48) Ø O	Sand and Gravel			e, brown, fine o coarse grav	e to coarse SAND, rel, little silt		
63.6 10				19			. O	S						
-							D							
_							٥ · ٠							
▼ .	1):):							
-	-						Ο·							
_							ο. · · · · ·							
E0 6				100 52			ب. ا					n, fine to coarse rse gravel, little silt		
58.6 15	SS	S-6	24	72	16	>100	O:			7 (1 1 D, 3011	10 11110 10 000	oc graver, intic on		
-				100			i A			eet horing	R_1/I termina	ited at 16' bgs and		
_											rith soil cutting			
-														
-														
53.6														
	Sa	ample Ty	pes						Consi	stency vs	Blowcount/Fo	<u>ot</u>	Burm	ister Classification
BQ - 1.5" Rock Core ST - Shelby Tube Loose: 4-10 V.							-4 D	(Sand) Dense: /. Dens	30-50	V. Soft: < Soft: 2-	4 V. Stiff: 15-30	S:	nd 35-50% ome 20-35% ttle 10-20% trace <10%	
GP - Geoprobe IVI. Dense: 10-30						M. Stiff: 4-8 Hard: >30 moisture, density, color			sture, density, color					
Reviewed by:						Date: Boring Number: B-14				-14				

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher
 Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA
 Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Howe Ave./Lt. L. Duffy Ave., Waltham, MA **Northing:** 2957384.4010 **Easting:** 722328.183

Drilling Date: Start: 11/21/2017 **End:** 11/21/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Reviewed by:

Surface Elevation (ft.): 77.96

Total Depth (ft.): 16

Depth to Initial Water Level (ft):DepthDateTimeNE11/21/201709:30

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-16

Drilling	j Date:	Start: 1	1/21/20	1/ EI	1a: 11	1/21/2	017		Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0				3			7,11.		Top 6": Topsoil	
-	SS	S-1	24	7 7 12	14	14		Ē	Bottom 8": Moist, medium dense, brown, fine to medium SAND, little silt, little fine gravel	
-	- SS	S-2	24	13 14 16 22	10	30			Moist, medium dense, brown, fine to coarse GRAVEL and fine to coarse SAND, little silt	
73.0	- SS	S-3	24	12 14 14 8	8	28			Moist, medium dense, brown, fine to coarse SAND, some fine to coarse gravel, little silt	Analytical sample (4'-6')
<u>-</u>	- SS	S-4	24	9 6 7 100	14	13		-	Moist, medium dense, dark brown, fine to medium SAND, trace silt	
<u>-</u>	SS	S-5	24	25 19 38 30	10	57		Sand and Gravel	Wet, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little silt	
10 - -	-			7				S	Wet, medium dense, brown, fine to coarse	
63.0 15	ss	S-6	24	8 11 11	4	19			SAND and fine to coarse GRAVEL, little silt	
-	-								Test boring B-16 terminated at 16' bgs and backfilled with soil cuttings.	
50.0]									
58.0	Sa	ımple Ty	pes						Consistency vs Blowcount/Foot Burn	│ nister Classificatio
AS - Auge CS - Calif BQ - 1.5" IQ - 2" R	er/Grab S fornia Sa	Sample mpler ore	V - Vac Sam SS - Spli T - She GP - Geo	iple t Spoor lby Tuk	ן אַ	V. Loo Loose: M. Der	se: 0	nular -4 [10 \	(Sand): Fine Grained (Clay): Dense: 30-50 V. Soft: <2 Stiff: 8-15 V. Dense: >50 Soft: 2-4 V. Stiff: 15-30	and 35-50% some 20-35% little 10-20% trace <10% sture, density, color

Sheet 1 of 1

Boring Number: B-17 (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Clark Ave./Howe Ave., Waltham, MA

Northing: 2957827.8270 Easting: 722931.809 Drilling Date: Start: 11/6/2017 End: 11/7/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 75.26

Total Depth (ft.): 21

Depth to Initial Water Level (ft):

Depth Date Time 8.4 11/07/2017 07:00

Abandonment Method: Monitoring well installed

	,					.,					Logged	By: A. Smith		
Elev. Depth (ft)	Samp Samp Numbb Samp Samp Numbb Samp Numbb Samp Recover. Samp Ginch Graphic Graphic Graphic										Material Des	cription		Remarks
0				12			74 18. 14		Т	op 6": Top	osoil			
-	ss	S-1	24	16 20 33	15	36			E	ottom 9": BRAVEL a	Dry, dense, b nd fine to coa	rown, fine to coars arse SAND, trace s		
-	SS	S-2	8	35 100/2"	4	>100				ory, very de GRAVEL a	ense, brown, t and fine to coa	fine to coarse arse SAND, trace s	silt	
70.3 5	SS	S-3	24	10 38 50 60	12	88						fine to coarse arse SAND, trace s	silt	Analytical sample (4'-6')
-	SS	S-4	4	100/4"	2				a	ory, very dender to	ense, gray, fin coarse SAND	ie to coarse GRAV), trace silt	/EL	
▼ 65.3	- SS	S-5	24	8 15 25 14	4	40		Gravel	G)ry, very do GRAVEL a	ense, brown, t and fine to coa	fine to coarse arse SAND, trace s	silt	Corrosion sample (8'-10')
60.3 15	- SS	S-6	24	13 16 16 18	11	32		Sand and			e, brown, fine gravel, trace si	to coarse SAND, ilt		
55.3 20	SS	S-7	24	15 27 39 39	10	66					lense, brown, avel, trace silt	fine to coarse SA	ND,	
- - -	-			03			 • • • • • • • • • • • • • • • • • • •				B-17 (MW) to ted into a mo	erminated at 21' b nitoring well.	gs	
50.3	1													
	Sa	mple Ty	pes						Cons	istency vs	Blowcount/Foo	<u>ot</u>	Burm	ister Classification
AS - Auge CS - Calif 3Q - 1.5" NQ - 2" R	ornia Sa Rock Co	mpler Sore S	V - Vac Sam SS - Spli T - She GP - Geo	nple t Spooi lby Tul	n ,	V. Loos Loose: M. Der	se: 0	10 V	(Sand Dense: /. Dens	30-50	Fine G V. Soft: <2 Soft: 2- M. Stiff: 4-	-4 V. Stiff: 15-30	S I	and 35-50% some 20-35% ittle 10-20% trace <10% sture, density, color
Reviewed by:						Date: Boring Number: B-17 (MW)								

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 415 South St., Waltham, MA **Northing:** 2958168.8310 **Easting:** 722741.199 **Drilling Date: Start:** 12/15/2017 **End:** 12/15/2017

Tatal Bandle (60) 44

Total Depth (ft.): 14

Depth to Initial Water Level (ft):DepthDateTime1.512/15/201712:15

Surface Elevation (ft.): 87.85

Abandonment Method: Backfilled with soil cuttings

									Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
87.9 0					_				4" Asphalt	
- <u>*</u> -	SS	S-1	12	56	8	>75		≣	Moist, very dense, brown, fine to coarse	
	SS	S-2	18	75 85 48 100	16	>100		_	SAND and fine to coarse GRAVEL, little silt Moist, very dense, brown, fine to coarse SAND, little fine to coarse gravel, trace silt	
82.9 5	SS	S-3	9	66 100/3"	5	>100		Sand and Gravel	Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt	Analytical sample (4'-6')
	SS	S-4	2	100/2"	2			San	Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt	
	SS	S-5	18	86 48 100	12	>100		Silty Sand	Moist, very dense, brown, fine to coarse SAND, some silt, little fine to coarse gravel	
	-							Weathered Rock	Test boring B-18 terminated at 14' bgs and	Rollerbit from 12 to 14' bgs. Possible boulders or bedrock.
- <u>72.9</u>	-								backfilled with soil cuttings.	
67.9 AS - Auge										
	Sample Types								Consistency vs Blowcount/Foot Burm	ister Classification
AS - Auger/Grab Sample CS - California Sampler BQ - 1.5" Rock Core NQ - 2" Rock Core QF - Geoprobe					n ne	V. Loos Loose: M. Den	se: 0 4-	-4 E	ense: 30-50 V. Soft: <2 Stiff: 8-15 Soft: 2-4 V. Stiff: 15-30 Soft: 2-4 V. Stiff:	nd 35-50% ome 20-35% ittle 10-20% trace <10% sture, density, color
Reviewed by:									Date: Boring Number: B	-18

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

 $\textbf{Drilling Contractor/Driller:} \ \ \text{GeoLogic - Earth Exploration, Inc. / M. Ferreira}$

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NX **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: Brandeis University, Waltham, MA Northing: 2958306.2240 Easting: 723000.451

Drilling Date: Start: 12/14/2017 **End:** 12/14/2017

Surface Elevation (ft.): 82.01

Total Depth (ft.): 14

Depth to Initial Water Level (ft):

 Depth
 Date
 Time

 9.3
 12/14/2017
 14:20

Abandonment Method: Backfilled with soil cuttings

Elev. Depth (ft) 82.0	Sample Type	er er	<u> </u>	_	Ē		g				
0	Sa	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Descrip	otion	Remarks
									3" Asphalt		
				34			XXX		Moist, very dense, brown, fir	ne to coarse	
_	ss	S-1	18	66	10	>100	\ggg		SAND and fine to coarse Gl		
_				60			XXX				
				40			XXX		Moist, very dense, brown, fir	ne to coarse	Analytical sample
-	SS	S-2	16	95	10	>100	XXX		SAND and fine to coarse G	RAVEL, little silt	(2'-4')
				100/4"			XXX	Ē			
_				50			XXX		Moist, very dense, brown, fir	no to coarso	
77.0				33			XXX		SAND and fine GRAVEL, lit	ttle silt	
77.0 5	SS	S-3	24	40	8	73	XXX		Critic and into Critical, in	ttio oiit	
Ü				50			\ggg				
_	SS	S-4	6	100	4		\ggg		Moist, very dense, brown, fir	ne to coarse	Rollerbit from 6.5
								중	SAND and fine GRAVEL, lit	ttle silt	to 9' bgs. Possibl
								Veathered Rock			boulder or bedrock.
₹ 72.0 10									See core log for description		
10											
_	NX	C-1	60		40			Bedrock			
_								m			
_											
07.0									Boring B-19 terminated at 1	4 pgs and	
67.0 15									backfilled with soil cuttings.		
13											
_	-										
_											
_											
_											
62.0		_			\longrightarrow						
	<u>Sa</u>	mple Ty				Consistency vs Blowcount/Foot Burm					
AS - Auge	r/Grab S	Sample	V - Vac		b		Gra	nular	Sand): Fine Grain	ed (Clay):	and 35-50% some 20-35%
CS - Califo RO - 1 5" !	S - Auger/Grab Sample S - California Sampler S - California Sampler S - Split Spoon S - 2" Rock Core S - Split Spoon S - Shelby Tube					V. Loos			ense: 30-50 V. Soft: <2	Stiff: 8-15	little 10-20%
NQ - 2" R	ock Core	, ,	T - She P - Geo	lby Tub	e L	Loose: M. Den			Dense: >50 Soft: 2-4 M. Stiff: 4-8	V. Stiff: 15-30 Hard: >30 m	trace <10% oisture, density, color
	wed b		GeC	hione	— I.					Boring Number:	

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller:GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NX

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Brandeis University, Waltham, MA Northing: 2958306.2240 Easting: 723000.451

Drilling Date: Start: 12/14/2017 **End:** 12/14/2017

ROCK CORE ONLY GINT LOGS MWRA WASM 3 20180220.GPJ - 4/27/23

Surface Elevation (ft.):82.01

Total Depth (ft.): 14

Depth to Initial Water Level (ft):

Depth 9.3 12/14/2017 14:20

Abandonment Method: Backfilled with soil cuttings

Elevation Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Recovery (%)	RQD (%)	Drill Rate (min/ft)	Down Press. (psi)	Graphic Log	Strata	Ma	aterial Description		Remarks
72.0 10.0						1:00 1:00		××× ××× ×××	ø.	Hard, slightly weath GRANITE, very clo	ered, fine grained, gray se jointing	,	
	NX	C-1	60	67	7	2:00 3:00		× × × × × × × × × × × × × × × × × × ×	Granite				
						3:00		***		Test boring B-19 te	rminated at 14' bgs.		
- 62.0 - 20.0 -													
- <u>57.0</u> - <u>25.0</u>													
Bod	dina	(mama)			- : 4 6	Snaoi.				Continuity (mm)	Attitudo Anglo	Anarti	uro (mm)

Bedding (mm)	Joint Spacing (mm)	Continuity (mm)	Attitude Angle	Aperture (mm)		
Extremely Thin <20	Extremely Close	Extremely <25 Moderately 25-100 Slightly 100-200 Sound >200	Horizontal 0° - 5° Shallow 5° - 35° Moderate 35° - 55° Steep 55° - 85° Vertical 85° - 90°	Very Tight < 0.1 Tight 0.1 - 0.25 Partly Open 0.25 - 0.5 Open 0.5 - 2.5 Mod. Wide 2.5 - 10 Wide >10		

Field	Hardness	Weat	thering	•	·
Very Hard	Knife Can't Scratch	Fresh		material weathering; slight to no	
Hard	Scratches with Difficulty	Slight	its fresh condition.	ŭ	al may be discoloredand may be weaker externally tha
Med. Hard	Scratches Readily	Moderate			or disintergrated to a soil. Fresh or discolored rock is
Medium	Grooves with Difficulty	Severe	More than half of the ro		or disintegrated to a soil. Fresh or discolored rock is
Soft Very Soft	Grooves Readily Carves with Knife	Complete		tinuous framework or as coresto composed and/or disintegrated to	one. soil. The original mass structure is largely intact.
Voly con	Carves warrams		All rock material is con	verted to soil. The mass structu the soil has not been significantl	re and material fabric are destroyed. There is a large
Reviewe	ed by:			Date:	Boring Number: B-19

Boring Number: B-20 (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 250 South St., Waltham, MA **Northing:** 2958679.1419 **Easting:** 723407.2716 **Drilling Date: Start:** 12/12/2017 **End:** 12/13/2017

lb / 30 in /2 in O.D. Depth to Initial Water Level (ft):

 Depth
 Date
 Time

 4.1
 12/13/2017
 07:45

Surface Elevation (ft.): 76.95

Abandonment Method: Monitoring well installed

Total Depth (ft.): 14

	,		-,,_0	–		_,			Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0				46			74 1. 1/4		Top 6": Moist, very dense, gray, fine to coarse	9
	ss	S-1	24	55 44 36	18	99			SAND and fine to coarse GRAVEL, little silt Bottom 12": Moist, very dense, brown to gray fine SAND, little silt trace organic fibers	
	ss	S-2	24	55 40 28 33	24	68		Silty Sand	Moist, very dense, brown to gray, Slightly Organic SILT and fine to medium SAND, trace fine gravel, trace organic fibers	Analytical sample (2'-4')
- <u>¥</u> - <u>72.0</u> 5	- ss	S-3	24	20 38 72 50	12	>100		ïS	Moist, very dense, brown, fine SAND, trace si	Corrosion sample (4'-6')
	- SS	S-4	24	14 80 76 80	12	>100			Moist, very dense, brown, fine to coarse SAND, some fine to coarse gravel, trace silt	
-	SS	S-5	4	100/4"	4			Gravel	Moist, very dense, brown, fine to coarse	
- <u>67.0</u> 10								Sand and	SAND, some fine to coarse gravel, trace silt	
								Weathered Rock		Rollerbit from 12 to 14' bgs. Possible boulder, weathered rock, or bedrock.
62.0 15	-							8	Test boring B-20 (MW) terminated at 14' bgs and backfilled with soil cuttings.	
Z0180Z20.GPJ - 3/8/Z										
ဂ										
57.0	57.0								Consistency vs Blowcount/Foot	Burmister Classification
g CS - Calif BQ - 1.5"	CS - California Sampler Sample BQ - 1.5" Rock Core SS - Split Spoon V. Loc NO - 2" Rock Core ST - Shelby Tube Lock					V. Loos Loose: M. Den	se: O	anular ()-4 C -10 V	Sand): Fine Grained (Clay): ense: 30-50 V. Soft: <2 Stiff: 8-15 Soft: 2-4 V. Stiff: 15-30 M. Stiff: 4-8 Hard: >30	and 35-50% some 20-35% little 10-20% trace <10% moisture, density, color
Reviewed by:									Date: Boring Numbe	r: B-20 (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Number: 101038-102170 Project Location: Massachusetts

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 190 South St., Waltham, MA Northing: 2958896.4760 Easting: 723754.5903

Drilling Date: Start: 12/15/2017 **End:** 12/15/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Reviewed by:

Surface Elevation (ft.): 82.47

Total Depth (ft.): 15

Depth to Initial Water Level (ft): Depth Date Time 12 12/15/2017

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-21

14:40

Diming	j Dale.	Start: 1	2/13/20	1/ 6	11 u . 12	2/13/20) I <i>I</i>		Logged By: A. Smith
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description Remarks
0	SS	S-1	9	100 100/3"	9	>100	<u>7,17</u> .7 <u>7</u>		48" Topsoil: Moist, very dense, dark brown, fine to coarse SAND, little fine gravel, little silt, (2'-4')
-								soil	trace organic fibers
-	SS	S-2	24	17 15 12 16	12	27		Topsoi	Moist, very dense, dark brown, fine to coarse SAND, little fine gravel, little silt, trace organic fibers
77.5 5	- SS	S-3	24	10 85 36 11	6	>100			Moist, very dense, dark brown, fine to medium SAND and fine to coarse GRAVEL, little silt, trace brick and mortar
-	- SS	S-4	24	10 10 11 44	8	21		Ē	Moist, medium dense, dark brown, fine to medium SAND and fine to coarse GRAVEL, little silt, trace brick and mortar
72.5 10	- SS	S-5	24	4 7 16 36	8	23		ш.	Moist, medium dense, dark brown, fine to coarse SAND and fine to coarse GRAVEL, little silt, trace brick and mortar
. IO .								Gravel	
67.5	- ss	S-6	24	86 80 56 38	18	>100		Sand and Gravel	Wet, very dense, brown, fine to coarse SAND, little fine to coarse gravel, trace silt
15									Test boring B-21 terminated at 15' bgs and backfilled with soil cuttings.
62.5									
	Sa	ample Ty		F/O					Consistency vs Blowcount/Foot Burmister Classificat
AS - Auge CS - Calif BQ - 1.5" IQ - 2" R	fornia Sa Rock Co	ampler ore	V - Vac Sam S - Spli T - She GP - Ged	nple t Spoor lby Tub	n ne	V. Loos Loose: M. Der	se: 0	-4 C	(Sand): Fine Grained (Clay): and 35-50% some 20-35% some

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NX Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 99 Hope Ave., Waltham, MA Northing: 2959021.3215 Easting: 724037.4743

Drilling Date: Start: 12/13/2017 **End:** 12/13/2017

Surface Elevation (ft.): 96.12

Total Depth (ft.): 16.5

Depth to Initial Water Level (ft):

Depth Date Time 7.8 12/13/2017 12:50

Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Des	cription	Remarks
0				26			·, · , · , · , · , · , · , · , · , · ,		4" Topsoil		
-	SS	S-1	24	80 82 78 100/6"		>100		Ē	Bottom 4": Moist, very de to medium SAND, some little silt Moist, very dense, gray-b	fine to coarse grav	rel, (2-4)
-	SS	S-2	6	100/0	6	>100	*		SAND, some fine to coal		uiii
91.1 5	SS	S-3	18	76 80 100	12	>100		ravel	Moist, very dense, brown SAND, some fine to coal		
-	SS	S-4	3	100/3"	3	>100		D Dr	Moist, very dense, browr	fine to coarse	
▼ .	33	<u> </u>			3	7100		Sand and Gravel	SAND, some fine to coal		
-	SS	S-5	3	100/3"	1	>100		×	No Recovery		Fractured piece of
86.1 10	-	-						Weathered Rock	,		coarse gravel in spoon tip. Rollerbit through boulder or weathered rock
81.1 15	- NX	C-1	60		95			Bedrock W	See core log for descript		from 9.2 to 11.5' bgs.
- - 76.1	-								Test boring B-22 termina backfilled with soil cutting		nd
70.1	Sa	ample Ty	pes	<u> </u>					Consistency vs Blowcount/Fo	<u>ot</u>	Burmister Classification
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	er/Grab S ornia Sa Rock Co	Sample Impler ore	V - Vac San SS - Spli ST - She	nple t Spoor	n l	V. Loos Loose: M. Den	se: 0	-4 [·10 \	Sand): Fine G ense: 30-50 V. Soft: <;	rained (Clay): 2 Stiff: 8-15	and 35-50% some 20-35% little 10-20% trace <10%

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

 $\textbf{Drilling Method/Casing/Core Barrel Size:} \quad \text{Drive and Wash / 3 in / NX}$ Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 99 Hope Ave., Waltham, MA Northing: 2959021.3215 Easting: 724037.4743

Drilling Date: Start: 12/13/2017 **End:** 12/13/2017

Surface Elevation (ft.): 96.12

Total Depth (ft.): 16.5

Depth to Initial Water Level (ft): 7.8 12/13/2017 12:50

Abandonment Method: Backfilled with soil cuttings

Elevation Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Recovery (%)	RQD (%)	Drill Rate (min/ft)	Down Press. (psi)	Graphic Log	Strata	Material Description	Remarks
 - <u>81.1</u> -	NX	C-1	60	95	50	1:30 1:30 1:30 1:30		######	Granodiorite	Hard, slightly weathered, fine grained, gray, GRANODIORITE; primary joint set very close, steep	
15.0 -						1:30		-#- -#- -#-		Test boring B-22 terminated at 16.5' bgs.	
- <u>76.1</u> - 20.0											

Bedding (mm)	Joint Spacing (mm)	Continuity (mm)	Attitude Angle	Aperture (mm)
Extremely Thin <20	Extremely Close <20 Very Close 20-60 Close 60-200 Mod Close 200-600 Wide 600-2000 Very Wide 2000-6000 Extremely Wide >6000	Extremely <25 Moderately 25-100 Slightly 100-200 Sound >200	Horizontal 0° - 5° Shallow 5° - 35° Moderate 35° - 55° Steep 55° - 85° Vertical 85° - 90°	Very Tight < 0.1 Tight 0.1 - 0.25 Partly Open 0.25 - 0.5 Open 0.5 - 2.5 Mod. Wide 2.5 - 10 Wide >10

-3/8/21	30.0														
.GPJ	Bedo	ling (mn	<u>1)</u>		Joint S	Spacir	ng (mi	<u>m)</u>	2	Continuit	ty (mm)	Attitud	le Angle	<u>Aperti</u>	ure (mm)
A WASM 3 20180220.	Extremely Very Thin Thin Medium Thick Very Thick Extremely	60 20	<20 20-60 60-200 00-600 00-2000 00-6000 >6000	N N V	xtremel lery Clos lose lod Clos Vide ery Wid xtremel	se se e	20 20 600 200 200	<20 0-60 0-200 0-600 0-2000 0-6000 6000	M _S	ktremely oderately ightly ound	<25 25-100 100-200 >200	Horizontal Shallow Moderate Steep Vertical	0° - 5° 5° - 35° 35° - 55° 55° - 85° 85° - 90°	Very Tight Tight Partly Open Open Mod. Wide Wide	< 0.1 0.1 - 0.25 0.25 - 0.5 0.5 - 2.5 2.5 - 10 >10
MWRA	<u>Fiel</u>	d Hardn			Wea	therin	g								
SDO1.	Very Hard Hard		Can't Scra hes with	atch	Fresh Slight		Disco	sible signoration	indica	ited weath	al weathering ering. All the	; slight to no rock materia	discoloration. Il may be disco	loredand may l	pe weaker externally
GINT	Med. Hard	Scrato	hés Reac	lily	Modera	ate								d to a soil. Fre	sh or discolored rock is
	Medium	Crooves with							alf of the	e rock mat		nposed and/	or disintegrated	to a soil. Fres	sh or discolored rock is
CORE ONLY	Soft Very Soft	Groov	es Readil s with Kni		Compl Residu	ete ıal Soil	All ro	ck mate ck mate	erial is o erial is o	decompose converted t	o soil. The n	integrated to nass structu	soil. The origin		ture is largely intact. royed. There is a large
30CK	Review	ed by:								Date	e:		Boring N	umber: B	-22

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher **Drilling Method/Casing/Core Barrel Size:** Drive and Wash / 4 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 11 Bellevue St., Waltham, MA **Northing:** 2959921.0834 **Easting:** 724730.7697 **Drilling Date: Start:** 10/11/2017 **End:** 11/22/2017

Surface Elevation (ft.): 55

Total Depth (ft.): 21

Depth to Initial Water Level (ft):DepthDateTime14.511/22/201711:00

Abandonment Method: Backfilled with soil cuttings

											Log	ged B	sy: D. Abt / A. Smith	ı	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material I	Descr	iption		Remarks
0									6	" Asphalt					Vacuum excavate
	VE	V-1	6					≣	N.	" Cobble S Noist, brow ttle fine gra	n, fine to	coars	e SAND, some s	ilt,	boring from the ground surface to 4.8' bgs. Analytical sample (2'-2.5')
50.0 5	VE	V-2	6							/loist, brow ttle fine gra		coars	e SAND, some s	ilt,	Analytical sample (4.5'-5') Rollerbit through boulder or cobbles
	- SS	S-1	24	30 26 36 39	0	62		vel	3 n		Λoist, very		se, brown, fine to to coarse gravel,		from 4.8 to 8' bgs. Corrosion sample (8'-10')
	- SS	S-2	24	95 24 27 44	5	51		Sand and Grave					fine to coarse GRAVEL, trace si	ilt	
	- SS	S-3	24	79 72 63 88	6	>100							wn, fine to coarse arse sand, trace s		
	-						10.0(.0(.0		T b	est boring ackfilled w	B-24 tern ith soil cut	ninate ttings	ed at 21' bgs and		
30.0	<u> </u>	ımple Ty	nes						Cone	istency vs I	Blowcount	/Foot		Burm	ister Classificatio
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	er/Grab S ornia Sa Rock Co	Sample Impler ore	V - Vac San SS - Spli ST - She SP - Ged	nple t Spoor lby Tul	ן הב	V. Loos Loose: M. Den	se: 0	nular 1-4 [10 \	(Sand Dense:	<u>):</u>			ined (Clay): Stiff: 8-15 V. Stiff: 15-30 Hard: >30	a si li	and 35-50% ome 20-35% ittle 10-20% trace <10% sture, density, color
Revie	wed b	y:								Date:			Boring Numb	er: B	3-24

Boring Number: B-25 (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

 $\textbf{Drilling Contractor/Driller:} \ \ \text{GeoLogic - Earth Exploration, Inc. / M. Ferreira}$

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NX **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 45 Sun St., Waltham, MA Northing: 2960373.8970 Easting: 725100.683

Drilling Date: Start: 10/23/2017 End: 10/23/2017

Surface Elevation (ft.): 49.64

Total Depth (ft.): 15

Depth to Initial Water Level (ft):

Depth Date Time

8.5 10/23/2017 10:00

Abandonment Method: Monitoring well installed

											Log	ged B	By: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material	Descr	ription		Remarks
0							***		4	" Asphalt					
 	VE	V-1						E.			brown, fir coarse S <i>A</i>		coarse GRAVEI little silt	L	Analytical sample (2'-2.5')
44.6	VE	V-2					₩.(\) σ O				brown, fir o coarse g		coarse SAND, l, little silt		Analytical sample (4.5'-5')
	SS	S-1	24	32 15 8 100	5	23	∘ ()) .ø: • • •		S	/et, mediu AND and ace orgar	fine to coa	brow arse (n, fine to coarse GRAVEL, little s	e ilt,	
39.6	SS	S-2	24	19 10 8 20	2	18		Sand and Gravel	G	Vet, mediu RAVEL a ace wood	nd fine to	brow coars	n, fine to coarse se SAND, trace	e silt,	
- 34.6 - 15	SS	S-3	12	95 100	10	>100			a T	nd fine to est boring	coarse GF B-25 (MV	RAVE V) ter	ne to coarse SA EL, little silt minated at 15' k toring well.		
29.6 AS - Auger/0 CS - Califor BQ - 1.5" Roc NQ - 2" Roc	Grab S nia Sai ock Co	mpler sre	pes V - Vac Sam SS - Split T - She	elar	n l	V. Loos Loose:	se: 0	anular)-4 [-10 \	(Sand		V. Soft: Soft:	e Gra <2 2-4	ined (Clay): Stiff: 8-15 V. Stiff: 15-30		nister Classification and 35-50% some 20-35% little 10-20% trace <10%
Review			SP - Geo	probe		ivi. Deli	ise: 10	J-3U		Date:	M. Stiff:	4-8	Hard: >30 Boring Num		B-25 (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

 $\textbf{Drilling Contractor/Driller:} \ \ \text{GeoLogic - Earth Exploration, Inc. / M. Ferreira}$

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 5 Fern St., Waltham, MA **Northing:** 2960688.6660 **Easting:** 725293.7979

Drilling Date: Start: 10/12/2017 **End:** 10/12/2017

Surface Elevation (ft.): 53.01

Total Depth (ft.): 15

 Depth to Initial Water Level (ft):

 Depth
 Date
 Time

 8.0
 10/12/2017
 13:45

Abandonment Method: Backfiled with soil cuttings

											Logi	geu 🗅	sy: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material [Descr	iption		Remarks
0							XXX		3	" Asphalt					
48.0	VE	V-1			-1			Fill		∕loist, browi BRAVEL, lit		ND a	and fine to coarse	e	Analytical sample (2'-2.5')
5	VE	V-2							N	noist, browi	n, fine to d	coars	e SAND and fine	e	Analytical sample
-	SS	S-1	9	60 100/3"	9	>100	: O		0	SRAVEL, tr	ace silt		gray, fine to coar		(5.5'-6')
-				100/3) .o.		S	SAND and f	fine to coa	rse (GRAVEL, little sil	se It	
. ▼ -	-						φ. · · · ·								
43.0 10	SS	S-2	9	90 100/3"	9	>100		Sand and Gravel	N S	Moist, very o	dense, bro fine to coa	wn-q arse (gray, fine to coar GRAVEL, little sil	se It	
- - 38.0	SS	S-3	12	100/3" 50/9"	10	>100		Sa	N.	Moist, very o	dense, bro	own-ç	gray, fine to coar GRAVEL, little sil	se It	50/9" blow count with 300 lb
15									Т	est boring	B-26 term	inate	ed at 15' bgs and		hammer.
-									, ,	ackfilled wi	ur son cut	ungs			
33.0	Sa	mple Ty	pes						Cons	istency vs E	Blowcount/	<u>Foot</u>		Burn	ister Classification
AS - Auge CS - Califo BQ - 1.5" NQ - 2" Ro	r/Grab S ornia Sa Rock Co	ample mpler re	V - Vac Sam SS - Spli ST - She SP - Geo	nple t Spoor lby Tul	n l	V. Loos Loose: M. Den	se: 0	anular (0-4 D -10 V	(Sand ense:	<u>):</u> 30-50			ined (Clay): Stiff: 8-15 V. Stiff: 15-30 Hard: >30		and 35-50% some 20-35% little 10-20% trace <10% sture, density, color
	wed b									Date:			Boring Num	har I	2 26

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 146 Felton St., Waltham, MA **Northing:** 2961016.6280 **Easting:** 725613.5234

Drilling Date: Start: 10/16/2017 **End:** 10/16/2017

Surface Elevation (ft.): 50.08

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

Depth Date Time 6.5 10/16/2017 14:30

Abandonment Method: Backfilled with soil cuttings

_									Logged By: A. Smith
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description Remarks
50.1 0									4" Asphalt
-	ss	S-1	18	30 22 32	4	54	∘ () }		Moist, very dense, brown, fine to coarse SAND, some fine gravel, little silt
-	- SS	S-2	21	18 92 98 100/3"	3	>100			Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little silt (2'-4')
45.1 5	SS	S-3	10	80 100/4"	10	>100	ο Ο ο (\)		Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little silt (4'-6')
<u> </u>	SS	S-4	3	100/3"	3) ø o O	avel	Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little silt cobbles from 6.2 to 8' bgs.
- 40.1	SS	S-5	4	100/4"	4			Sand and Gravel	Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little silt
10	- SS	S-6	24	100/6" 14 14	18				Wet, very dense, gray, fine to coarse SAND, some fine gravel, little silt Blows from 14.5 to 16' bgs with 300 lb hammer.
-	-			15					Test boring B-27 terminated at 16' bgs and backfilled with soil cuttings.
30.1	Sa	ample Ty	pes						Consistency vs Blowcount/Foot Burmister Classificat
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	ornia Sa Rock Co	impler ore S	V - Vac San SS - Spli ST - She GP - Ged	nple t Spoor lby Tub	n ne	V. Loos Loose: M. Den	se: 0	-4 C	Sand): Fine Grained (Clay): and 35-50% some 20-35% Dense: 30-50 V. Soft: <2 Stiff: 8-15 little 10-20% Dense: >50 Soft: 2-4 V. Stiff: 15-30 trace <10% moisture, density, color
Revie	wed k	y:							Date: Boring Number: B-27

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 100 Felton St., Waltham, MA
Northing: 2961222.6986 Easting: 726042.7302

Drilling Date: Start: 10/16/2017 **End:** 10/16/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 54.8

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

Depth Date Time

14.5 10/16/2017 10:00 **Abandonment Method:** Backfilled with soil cuttings

	,									Lo	ogged I	By: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		Materia	l Desc	ription		Remarks
0									3	.5" Asphalt				
-	SS	S-1	15	10 50 100/3"	8	>100	. · · · · · · · · · · · · · · · · · · ·		N	Moist, very dense, be AND and fine to c				
-	ss	S-2	18	70 82 100	9	>100			N S	Moist, very dense, b SAND and fine to c	orown, oarse	fine to coarse GRAVEL, little silt		Analytical sample (2'-4')
49.8 5	SS	S-3	8	85 100/2"	6	>100). Ø O		N S	Moist, very dense, b SAND and fine to c	orown, oarse	fine to coarse GRAVEL, little silt		Analytical sample (4'-5')
-	-							Sand and Gravel						Rollerbit through boulder from 5 to 8' bgs.
44.8 10	SS	S-4	10	54 100/4"	9	>100		Sand	V a	Vet, very dense, br nd fine to coarse 0	own, f GRAVI	ine to coarse SAN EL, little silt	ID	
39.8 15	- SS	S-5	24	56 62 54 60	5	>100				Vet, very dense, br nd fine to coarse C			ID	
-									T b	est boring B-28 te ackfilled with soil c	rminat uttings	ed at 16' bgs and s.		
- 24.0														
34.8	Sa	ample Ty	pes						Cons	istency vs Blowcou	nt/Foot	<u>t</u>	Burmi	ster Classification
AS - Auge CS - Calif 3Q - 1.5" NQ - 2" R	er/Grab S ornia Sa Rock Co	Sample ampler ore	V - Vac San SS - Spli ST - She SP - Geo	nple t Spoor lby Tub	n ne	V. Loos Loose: M. Den	se: 0	nular (1-4 D 1-10 V) <u>:</u> <u>F</u> 30-50 V. Soft	ine Gra : <2 2-4	ained (Clay): Stiff: 8-15 V. Stiff: 15-30	ar sc lit tr	
Revie	wed k	oy:								Date:		Boring Numb	er: B	-28

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 62 Felton St., Waltham, MA Northing: 2961354.6919 Easting: 726508.8779

Drilling Date: Start: 10/13/2017 **End:** 10/13/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Reviewed by:

Surface Elevation (ft.): 47.8

Total Depth (ft.): 16

6.6

Depth to Initial Water Level (ft): Depth Date Time

10/13/2017 Abandonment Method: Backfilled with soil cuttings

Boring Number: B-29

13:30

(ft)			y: A. Smith	Logged By:			SS S-1 18 42 12 64 - SS S-2 24 28 14 73 - SS S-3 15 58 14 >100 - SS S-4 3 100/3" 3 - SS S-5 24 80 - SS S-6 24 90 15 >100													
3.5" Asphalt SS	arks	Rema	ption	Material Descrip		Strata	Graphic Log	N-Value	Sample Recovery (in)	Blows per 6 inches	Sample Length (in)	Sample Number	Sample Type	Depth (ft)						
SS S-1 18 42 12 64				lt	3.5" Aspha															
SS S-2 24 45 28 14 73 3		D,	e to coarse SAND, little silt	dense, gray, fine o coarse gravel, l	Moist, very some fine t	Ē		64	12	42	18	S-1	SS	_						
SS S-3 15 58 14 >100	l sample							73	14	45 28	24	S-2	SS	_						
SAND and fine to coarse GRAVEL, trace silt Wet, very dense, brown, fine to coarse GRAVEL and fine to coarse SAND, trace silt Wet, very dense, gray, fine to medium SAND, some fine to coarse gravel, little clay Test boring B-29 terminated at 16' bgs and	and .	Corrosion						>100	14	58		S-3	SS	42.8 5						
SAND and fine to coarse GRAVEL, trace slit Wet, very dense, brown, fine to coarse GRAVEL and fine to coarse GRAVEL, trace slit Wet, very dense, gray, fine to medium SAND, some fine to coarse gravel, little clay Test boring B-29 terminated at 16' bgs and			ine to coarse	dense, brown, fir	Moist, very				3	100/3"	3	S-4	SS	_						
Wet, very dense, gray, fine to medium SAND, some fine to coarse gravel, little clay Test boring B-29 terminated at 16' bgs and		t	RAVEL, trace silt	fine to coarse GF	SAND and				-											
Wet, very dense, gray, fine to medium SAND, some fine to coarse gravel, little clay Test boring B-29 terminated at 16' bgs and		t				ind and Grave		- SS S-5 24 80 18 >100 0												
Test boring B-29 terminated at 16' bgs and		Э,						32.8												
27.8														27.8						
		Burmister Class	<u> </u>	Blowcount/Foot	Consistency vs	9					<u>oes</u>	nple Typ	<u>Sar</u>							
AS - Auger/Grab Sample Sample Sample SS - Split Spoon SS - Split Spoon ST - Shelby Tube ST - Shelby Tube ST - Shelby Tube Some ST - Shelby Tube ST - Sh	35% 20% 0%	some 20-39 little 10-20	Stiff: 8-15 V. Stiff: 15-30	V. Soft: <2 Soft: 2-4	Dense: 30-50	-4 D	se: 0 4-	Auger/Grab Sample California Sampler SS - Split Spoon ST - Shelby Tube												

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

 $\textbf{Drilling Contractor/Driller:} \ \ \text{GeoLogic - Earth Exploration, Inc. / M. Ferreira}$

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 42 Felton St., Waltham, MA **Northing:** 2961499.8980 **Easting:** 726877.4759

Drilling Date: Start: 10/13/2017 **End:** 10/13/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 44.87

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

Depth Date Time

5.2 10/13/2017 09:30 **Abandonment Method:** Backfilled with soil cuttings

											Logge	ed B	y: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material De	escr	iption		Remarks
44.9 0									-	5" Asphalt					Vacuum excavate
 	-							E			5 044				boring from the ground surface to 6' bgs.
 30 0	VE	V-1								/ioist, drow	n, fine SAN	ID, t	race slit		Analytical sample (3'-3.5')
- -	VE	V-2					。):		8	SAND, trac	e fine grave	el	and fine to coarse		Analytical sample (5'-5.5')
	ss	S-1	14	42 80 100/2"	12	>100	, O		y s	Vet, very d ome silt, tr	ense, gray, ace fine gra	tine avel	to medium SAN	D,	
	SS	S-2	5	100/5"	5): 		V	Vet. vervid	ense, grav-	brov	wn, fine to coarse	<u> </u>	
	- 50	02					, O.	<u>.</u>					GRAVEL, little silt		
- <u>34.9</u>	-							Sand and Gravel							
 - <u>29.9</u> - 15	SS	S-3	24	72 38 52 58	9	90) Ø () Ø ()				ense, brow coarse GRA		ne to coarse SAN L, little silt	ND	
 24.9											B-30 terminivith soil cutti		ed at 16' bgs and		
24.5	Sa	ample Ty	pes					<u> </u>	Cons	istency vs	Blowcount/F	oot		Burm	ister Classification
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	er/Grab S ornia Sa Rock Co	Sample ampler ore	V - Vac Sam SS - Spli ST - She SP - Geo	nple t Spoor lby Tub	ו	V. Loose: Loose: M. Den	se: 0	anular)-4 C -10 V		<u>):</u> 30-50	Fine V. Soft: Soft:		ned (Clay): Stiff: 8-15 V. Stiff: 15-30 Hard: >30	a s li	and 35-50% ome 20-35% ttle 10-20% trace <10% sture, density, color
Revie	wed b	oy:								Date:			Boring Numb	er: B	3-30

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 8 Felton St., Waltham, MA Northing: 2961592.0985 Easting: 727250.3929

Drilling Date: Start: 10/12/2017 **End:** 10/12/2017

Surface Elevation (ft.): 51.73

Total Depth (ft.): 19.8

Depth to Initial Water Level (ft):

Depth Date Time 6.0 10/12/2017 10:20

Abandonment Method: Backfilled with soil cuttings

											Logge	d By: A. Smith	1		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		N	aterial De	scription			Remarks
0									8" As	sphalt Pa	vement				Vacuum excavate
-	-						0 0000		6" Sı	ubbase: [ry, browr	n, fine to coar			boring from the ground surface to
	\/-	1/4					0					arse gravel, li		_/	6' bgs.
· -	VE	V-1							SAN	t, brown, D, little co	SILT and parse grav	fine to mediu el	ım		Analytical sample (2'-2.5')
46.7 5 ▼	SS	S-1	6	100/6"	6				Maia	f		··· fina CANE			O
_	33	<u> </u>	0	100/6	0				silt, s	i, very de ome fine	to coarse	n, fine SANE gravel), some	,	Corrosion sample (8'-10')
-				58 62		400					nse, brow to coarse	n, fine SANE), some	•	
417	SS	S-2	24	66 70	18	>100		ravel	Siit, 3	OTTIC TILLC	to coarse	graver			
41.7 -	-							Sand and Gravel							
								Ø							
 36.7	SS	S-3	9	80 100/3"	9	>100			Mois	t, very de	nse, brow	n, SILT and ine gravel	fine to		
36.7 15 -									medi	um OAN	o, ilacci	nic gravei			
	-														
<u>31.7</u> _	SS	S-4	10	95 100/4"	10	>100			Mois trace	t, very de fine grav	nse, gray el	fine SAND,	some s	silt,	
20									Test	boring B		ated at 19.8' igs.	bgs an	nd	
· -															
26.7	-														
	<u>Sa</u>	mple Ty								ncy vs Blo	wcount/F			_	ster Classification
AS - Auge CS - Califo BQ - 1.5" I NQ - 2" Ro	ornia Sa Rock Co	mpler s	V - Vac San SS - Spli ST - She SP - Ged	nple t Spoor lby Tul	n ,	V. Loos Loose: M. Den	se: C)-4 E -10 V	(Sand): Dense: /. Dense:	30-50 >50	V. Soft:	Grained (Clay): <2 Stiff: 2-4 V. Stiff: 4-8 Hard:	8-15 15-30 >30	so lit t	nd 35-50% ome 20-35% ttle 10-20% race <10% ture, density, color
Dovio	wed b	v:							Da	ite:		Boring	Numb	er: B	-31

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Number: 101038-102170 Project Location: Massachusetts

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 85 Central St., Waltham, MA Northing: 2961885.9469 Easting: 728253.0253

Drilling Date: Start: 11/30/2017 **End:** 11/30/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Reviewed by:

Surface Elevation (ft.): 67.25

Total Depth (ft.): 16

Depth to Initial Water Level (ft): Depth Date NE 11/30/2017

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-32

13:30

	,								Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0							1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		36" Topsoil	
							·715.7			
	VE	V-1	6				<u>1</u> 2. <u>3.12</u> .			
 - <u>62.3</u> -	-							Ē	Moist, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt	Analytical sample (2'-2.5')
	SS	S-1	4	100/4"	4				Moist, very dense, brown, fine to coarse	Corrosion sample
									SAND and fine to coarse GRAVEL, trace silt	(6'-6.3')
 	SS	S-2	24	18 38 66 60	10	>100		Ь	Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt	
- <u>57.3</u>	-							Sand and Gravel		
<u>52.3</u> 15	- SS	S-3	24	14 90 48 60	9	>100			Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt	
 									Test boring B-32 terminated at 16' bgs and backfilled with soil cuttings.	
47.3	1									
41.3	Sa	ample Ty	pes	l					Consistency vs Blowcount/Foot Burn	nister Classification
AS - Auge CS - Califo BQ - 1.5" NQ - 2" Ro	ornia Sa Rock Co	ampler S	V - Vac Sam SS - Spli ST - She SP - Geo	nple t Spooi lby Tul	1	V. Loos Loose: M. Den	se: 0	-4 [10 \	Dense: 30-50 V. Soft: <2 Stiff: 8-15 / Dense: >50 Soft: 2-4 V. Stiff: 15-30	and 35-50% some 20-35% little 10-20% trace <10% sture, density, color

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D. Bore Hole Location: 58 Central St./ 40 Appleton St., Waltham, MA

Northing: 2961982.2488 Easting: 728675.3252

Drilling Date: Start: 10/17/2017 **End:** 10/17/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 65.84

Total Depth (ft.): 16

Depth to Initial Water Level (ft): Depth Date Time NE 10/17/2017 13:50

Abandonment Method: Backfilled with soil cuttings

										Lo	gged E	By: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		Materia	l Desci	ription		Remarks
05.6									4" Asp	halt				
-	SS	S-1	18	36 36 52	8	88		Fill	Moist,	very dense, b		fine to coarse se gravel, little silt		
-	SS	S-2	24	38 96 64 70	15	>100						fine to coarse se SAND, trace sil	lt	Analytical sample (2'-4')
60.8	ss	S-3	10	79 100/4"	10	>100			Moist, GRAV	very dense, b EL and fine to	rown, o coars	fine to coarse se SAND, trace si	lt	
-	SS	S-4	6	100/6"	6	>100			Moist, GRAV	very dense, b EL and fine to	rown, o coars	fine to coarse se SAND, trace sil	lt	
55.8 10	SS	S-5	18	54 76 100	10	>100		Sand and Gravel	Moist, GRAV	very dense, b EL and fine to	rown, o coars	fine to coarse se SAND, trace sil	lt	
50.8 15	- SS	S-6	24	50 100 100 100	0	>100			GRAV	EL and fine to	o coar	fine to coarse se SAND, trace sil	lt	
- - -	-									oring B-33 ter led with soil c		ed at 16' bgs and		
45.8														
CS - Calif 3Q - 1.5"	S - California Sampler Q - 1.5" Rock Core Q - 2" Rock Core GP - Geoprobe Sample V. Loose: 0 Loose: 4 M. Dense: 11								Sand): ense: 30	y vs Blowcour	ine Gra : <2 2-4	ained (Clay): Stiff: 8-15 V. Stiff: 15-30	ar sc lit tr	ster Classification and 35-50% ane 20-35% atle 10-20% ace <10% acre, density, color
Revie	wed b	oy:							Date	e:		Boring Numb	er: B	-33

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 41 Central St./Cross St., Waltham, MA

Northing: 2962009.9284 Easting: 728929.5735 **Drilling Date: Start:** 10/17/2017 **End:** 10/17/2017 Surface Elevation (ft.): 65.67

Total Depth (ft.): 16

Depth to Initial Water Level (ft): Depth Date NE 10/17/2017

Abandonment Method: Backfilled with soil cuttings

09:45

	,		-,,								Log	ged B	sy: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material [Descr	iption		Remarks
0									8	" Asphalt					Vacuum excavate
	VE	V-1									n, fine to o		e SAND, some fi	ne	boring from the ground surface to 6' bgs. Analytical sample (2'-2.5')
60.7	- VE	V-2							, c	∕loist, brow oarse GR	n, fine to o	coars ce silt	e SAND and fine	to	
	SS	S-1	18	72 75 100	12	>100		avel	N S	Moist, very SAND and	dense, bro fine to coa	own, arse (fine to coarse GRAVEL, trace si	ilt	Corrosion sample (6'-7.5')
	SS	S-2	18	45 66 100	14	>100		Sand and Gravel	N S	loist, very SAND and	dense, bro fine to coa	own, arse (fine to coarse GRAVEL, trace s	ilt	
- 55.7 50.7	20	6.2	24	80 90	12	>100							fine to coarse GRAVEL, trace s	ilt	
50.7	SS	S-3	24	100	13	>100			T b	est boring ackfilled w	B-34 term	ninate tings	ed at 16' bgs and		
45.7 AS - Auge	Se	ımple Ty	pes						Cons	istency vs	Blowcount	/Foot		Burm	ister Classification
2 CS - Calif BQ - 1.5" NO - 2" R	er/Grab S ornia Sa Rock Co	Sample mpler ore	V - Vac Sam SS - Spli ST - She SP - Ged	nple t Spoor lby Tub	n ne	V. Loos Loose: M. Den	se: 0	anular)-4 C -10 V		<u>):</u> 30-50			ined (Clay): Stiff: 8-15 V. Stiff: 15-30 Hard: >30	a Si li	nd 35-50% ome 20-35% title 10-20% trace <10% sture, density, color
Revie	wed b	y:								Date:			Boring Numb	er: B	-34

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Number: 101038-102170 Project Location: Massachusetts

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 4 Central St./Newton St., Waltham, MA

Northing: 2962067.6581 Easting: 729417.6995 **Drilling Date: Start:** 10/19/2017 **End:** 10/19/2017 Surface Elevation (ft.): 66.47

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

Depth Date Time ΝE 10/19/2017 11:45

Drilling	Date.	Start: 10	0/ 19/20	17 6	iu. it	J/ 19/20) /		Logged E	By: A. Smith	, and the second
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Desci	ription	Remarks
0									6" Asphalt		
	SS	S-1	18	60 40 34	12	74			Moist, very dense, brown, SAND, some fine to coars	e gravel, little silt	
	SS	S-2	18	60 98 100	12	>100			Moist, very dense, brown- SAND and fine to coarse	gray, fine to coars GRAVEL, trace si	Se Analytical sampl ilt (2'-3.5')
61.5 5	SS	S-3	2	100/2"	1				Moist, very dense, brown- SAND and fine to coarse (gray, fine to coars GRAVEL, trace si	se ilt
- 	SS	S-4	9	66 100/3"	8	>100		ravel	Moist, very dense, brown-SAND and fine to coarse	gray, fine to coars GRAVEL, trace si	Se Corrosion sample (6'-6.75')
_ <u>56.5</u> _ 10	SS	S-5	4	100/4"	4			Sand and Gravel	Moist, very dense, brown- SAND and fine to coarse of	gray, fine to coars GRAVEL, trace si	se ilt
 - <u>51.5</u> - 15	- SS	S-6	24	40 45 38 28	18	83			No Recovery 3 in: Moist, very dense, bro coarse SAND and fine to o	own-gray, fine to coarse GRAVEL,	Drove 3" spoon.
 	-						, •, •[•)		Test boring B-35 terminate backfilled with soil cuttings	ed at 16' bgs and	
46.5											
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	er/Grab S ornia Sa Rock Co	mpler ore S	V - Vac San SS - Spli ST - She SP - Geo	nple t Spoor lby Tul	n ne	V. Loos Loose: M. Den	se: 0	nular (1-4 D 1-10 V	Consistency vs Blowcount/Foot Sand): Fine Gra ense: 30-50 V. Soft: <2	stiff: 8-15 V. Stiff: 15-30 Hard: >30	and 35-50% some 20-35% little 10-20% trace <10% moisture, density, color
Revie	wed b	y:							Date:	Boring Numb	per: B-35

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Number: 101038-102170 Project Location: Massachusetts

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 22 Townsend St., Waltham, MA Northing: 2962336.1513 Easting: 729714.3343 **Drilling Date: Start:** 10/19/2017 **End:** 10/19/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 66.06

Total Depth (ft.): 15.3

Depth to Initial Water Level (ft): Depth Date Time

10/19/2017 Abandonment Method: Backfilled with soil cuttings

14:00

ΝE

Dillilling	J Date.	Start: 10	0/ 19/20	17 6	ilu. it	J/ 19/20	J17			Logged E	By: A. Smith	, and the second
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Ma	terial Desc	ription	Remarks
0							XXXX		4" Asphalt			
-	SS	S-1	18	16 16 10	8	26		≣	Moist, medium SAND, some fir	dense, gra ne gravel, t	y, fine to coarse race silt	
-	- ss	S-2	24	8 4 5 5	12	9			Moist, loose, bro trace silt	own, fine t	o medium SAND,	Analytical sample (2'-4')
61.1 5	- ss	S-3	24	5 3 11 21	14	14		Sand	Moist, medium SAND, trace fin		own, fine to coarse race silt	
-	- ss	S-4	24	31 34 34 38	16	68			Moist, very dens SAND, trace sil		fine to medium	
<u>56.1</u> 10	- SS	S-5	24	54 46 42 46	5	88		ıvel	Moist, very dens SAND and fine little silt	se, brown, to coarse	fine to coarse GRAVEL, trace to)
-								Sand and Grave				
<u>51.1</u> 15	SS	S-6	15	36 36 100/3"	5	>100			Moist, very dens SAND and fine little silt		fine to coarse GRAVEL, trace to	1
									_	6 terminate oil cuttings	ed at 15.3' bgs and	d
-	1											
-	4											
46.1						L						
	Sa	ample Ty							Consistency vs Blow	/count/Foot		Burmister Classification
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	fornia Sa Rock Co	ampler S	V - Vac San SS - Spli ST - She SP - Ged	nple t Spooi lby Tul	n ne	V. Loose: Loose: M. Der	se: 0	1-4 D 10 V	. Dense: >50 S	Fine Gra . Soft: <2 oft: 2-4 1. Stiff: 4-8		and 35-50% some 20-35% little 10-20% trace <10% moisture, density, color
Revie	wed k	y:							Date:		Boring Numb	er: B-36

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 99 Chamberlain Terrace, Waltham, MA

Northing: 2962447.3562 Easting: 730136.9483 **Drilling Date: Start:** 10/18/2017 **End:** 10/18/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 65.28

Total Depth (ft.): 16

Depth to Initial Water Level (ft): Depth Date

10/18/2017 Abandonment Method: Backfilled with soil cuttings

14:00

ΝE

									Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
00.0							XXXX		4" Asphalt	Vacuum excavate
]						\bowtie	≣	Moist, brown, fine to coarse SAND, some fi	ne boring from the ground surface to
									to coarse gravel, little silt	6' bgs.
-	VE	V-1							Moist, brown, fine to medium SAND, little fir	ne Analytical sample
-									to coarse gravel, trace silt	(2'-2.5')
- -										
60.3										
5	1							1		
-				34					Moist, very dense, gray to brown, fine to	
		0.4		36				Sand	medium SAND, little fine gravel, trace silt	
-	SS	S-1	24	32	3	68		, ,		
-				26 24					Moist, dense, gray to brown, fine to medium	1
_	ss	S-2	24	18	10	40			SAND, little fine gravel, trace silt	
EE 2		0-2		22 20	10	40				
<u>55.3</u> 10										
-	-									
							/			
-							4:0			
-	1							avel		
_								Sand and Grave		
E0 2				60 60				d an	Wet, very dense, brown, fine to coarse SAN and fine to coarse GRAVEL, trace silt	ID
50.3 15	SS	S-3	24	55	8	>100		San	and into to obtained on the LE, trade one	
-				86			<u>;;;;;</u>		Test boring B-37 terminated at 16' bgs and	
									backfilled with soil cuttings.	
-	1								·	
-										
_]									
45.0										
45.3	⊥ Sa	ample Ty	pes						Consistency vs Blowcount/Foot	Burmister Classification
AS - Auge			V - Vac		ıb		Gra	anular		and 35-50%
AS - Auge CS - Calif 3Q - 1.5"	ornia Sa	ampler S	Sam SS - Spli T - She	nple t Spoor	n	V. Loos	se: 0)-4 C	ense: 30-50 V. Soft: <2 Stiff: 8-15	some 20-35% little 10-20%
NQ - 2" R		e S	ST - She SP - Geo	lby Tul probe	ре	Loose: M. Der	-4- nse: 10		Dense: >50 Soft: 2-4 V. Stiff: 15-30 M. Stiff: 4-8 Hard: >30	trace <10% moisture, density, color
Revie	wed b	ov:							Date: Boring Numb	er: B-37

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Number: 101038-102170 Project Location: Massachusetts

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 401 Main St., Waltham, MA Northing: 2962860.4893 Easting: 730274.4037

Drilling Date: Start: 10/18/2017 **End:** 10/18/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 57.74

Total Depth (ft.): 16

Depth to Initial Water Level (ft): Depth Date Time 8.5 10/18/2017 09:55

	, Duto.	Start: 10	0/10/20	'1 <i>'</i>	iiu. 10	0/ 10/20	017			Logged	By: A. Smith	.
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		Material Desc	ription	Remarks
0									8" Aspha	lt		Vacuum excavate
-								Ē	some fine	e to coarse sand	coarse GRAVEL	6' bgs. Boulders and cobbles from 1 to 3' bgs.
	VE	V-1								own, fine to med gravel, trace silt	ium SAND, little fin	ne Analytical sample (3'-3.5')
<u>52.7</u> -				36				Sand		/ dense, brown, 1		Analytical sample
-	SS	S-1	24	30 26 30	10	56			SAND, tr	ace silt		(6'-8')
▼ -	SS	S-2	24	32 40 44 45	8	84		Gravel		/ dense, brown, f e gravel, trace sil	ine to coarse SAN	ND,
47.7 10								Sand and Gravel				
-				22				Sandy Silt		d, brown, SILT, t	race fine to mediu	m
42.7 15	SS	S-3	24	30 34 40	16	64		Ø	sand			
-										ng B-38 terminat I with soil cutting	ed at 16' bgs and s.	
37.7												
	<u>Sa</u>	ample Ty								vs Blowcount/Foo		Burmister Classification
AS - Auge CS - Califo BQ - 1.5" NQ - 2" Ro	Rock Co	ampler ore	V - Vac Sam SS - Spli ST - She SP - Geo	nple t Spoor lby Tul	n ne	V. Loos Loose: M. Der	se: 0)-4 E ·10 V	(<u>Sand):</u> Dense: 30-50 /. Dense: >50	0 V. Soft: <2		and 35-50% some 20-35% little 10-20% trace <10% moisture, density, color
Revie	wed b	oy:							Date:		Boring Numb	er: B-38

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 50 Linden St., Waltham, MA Northing: 2963203.1720 Easting: 730823.592

Drilling Date: Start: 10/23/2017 **End:** 10/23/2017

Surface Elevation (ft.): 50.99

Total Depth (ft.): 17

Depth to Initial Water Level (ft):

Depth Date Time 11.8 10/23/2017 13:45

Abandonment Method: Backfilled with soil cuttings

	,								Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0									5" Asphalt	
	SS	S-1	18	46 65 54	6	>100		sravel	Moist, very dense, brown, fine to coarse SAND, some fine gravel, little silt	
	SS	S-2	24	32 25 22 14	3	47		Sand and Gravel	Moist, dense, brown, fine to coarse SAND, some fine gravel, little silt	Analytical sample (2'-4')
46.0 5	SS	S-3	24	12 6 6 6	14	12			Moist, medium dense, brown, fine to medium SAND, trace silt	
	SS	S-4	24	10 10 8 7	14	18			Moist, medium dense, brown, fine to medium SAND, trace silt	Corrosion sample (6'-8')
 - <u>41.0</u> -	- SS	S-5	24	4 8 5 6	12	13		Sand	Moist, medium dense, brown, fine to coarse SAND, little fine gravel, trace silt	
- <u>*</u> -	-									
_ <u>36.0</u> - 15 -	SS	S-6	24	12 12 15 18	8	27		Sandy Silt	Top 1": Moist, medium dense, brown, fine to medium SAND, trace silt Bottom 7": Wet, very stiff, brown, SILT, trace fine to medium sand	
 							<u> </u>	, 0,	Test boring B-39 terminated at 17' bgs and backfilled with soil cuttings.	
31.0									Consistant Plants and France	Dumminton Olera (filare)
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	er/Grab S ornia Sa Rock Co	impler ore S	V - Vac San SS - Spli T - She P - Ged	nple t Spoor lby Tul	n ne	V. Loos Loose: M. Den	se: 0	nular 1-4 C 10 V	Consistency vs Blowcount/Foot E (Sand): Fine Grained (Clay): Jense: 30-50 V. Soft: <2	and 35-50% some 20-35% little 10-20% trace <10% moisture, density, color
Revie	wed b	y:							Date: Boring Number	r: B-39

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / D. Jacobs

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 74 Linden St., Waltham, MA Northing: 2963369.1110 Easting: 731109.016

Drilling Date: Start: 1/11/2018 **End:** 1/11/2018

Surface Elevation (ft.): 43.17

Total Depth (ft.): 21

Depth to Initial Water Level (ft): Depth Date Time 5.2 1/11/2018 15:00

Abandonment Method: Backfilled with soil cuttings

	Dutc.	Start. 1/			4. 17.1		,		Logged By: D. Abt	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
43.2 0				98			XXXX		2" Asphalt	
-	SS	S-1	24	70 44 13	5	>100		_	Dry, very dense, brown, fine to coarse SAND, trace silt	
-	ss	S-2	24	18 14 10 14	4	24		∄	Moist, medium dense, brown, fine to coarse SAND, trace fine gravel, trace silt	
38.2	SS	S-3	24	19 24 27 20	2	51		Gravel	Moist, very dense, brown, fine to coarse GRAVEL, some fine to coarse sand, little silt	
-	SS	S-4	24	12 20 18	5	38		Sand and Gravel	Wet, dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little silt	
33.2 10	SS	S-5	24	13 26 15 11 22	8	26			Wet, very stiff, brown, SILT, little fine to medium sand, trace fine gravel	Analytical sample (8'-10')
28.2 15	- SS	S-6	24	23 25 27 22	18	52		Sandy Silt	Wet, hard, gray, SILT, trace fine sand	
23.2 20	- SS	S-7	24	10 15 16 19	20	31			Moist, hard, gray, SILT, little fine sand	
- - -	-						P 1 1 1 1 ·		Test boring B-40 terminated at 21' bgs and backfilled with soil cuttings.	
18.2										
AS - Auge CS - Califo BQ - 1.5" NQ - 2" Ro	r/Grab S ornia Sa Rock Co	mpler S	V - Vac Sam SS - Spli ST - She SP - Geo	nple t Spoor lby Tub	n ,	V. Loos Loose: M. Der	se: 0	anular ()-4 C -10 V	(Sand): Fine Grained (Clay): Dense: 30-50 V. Soft: <2 Stiff: 8-15 V. Dense: >50 Soft: 2-4 V. Stiff: 15-30	and 35-50% some 20-35% little 10-20% trace <10% obsture, density, color
Revie	wed b	y:							Date: Boring Number:	B-40

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher **Drilling Method/Casing/Core Barrel Size:** Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Drilling Date: Start: 11/21/2017 **End:** 11/21/2017

Surface Elevation (ft.): 41.3

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

 Depth
 Date
 Time

 4.1
 11/21/2017
 12:30

Abandonment Method: Backfilled with soil cuttings

Moist, brown, fine to coarse SAND and fine to coarse GRAVEL, little silt boring from the coarse GRAVEL, little silt boring from the coarse GRAVEL, little silt boring from the ground surface of bgs. Analytical sample (2-2.5) Wet, brown, fine to medium SAND, little silt, trace fine gravel Wet, dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt Wet, dense, brown, fine to coarse SAND, little silt, trace fine gravel Wet, dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt Wet, dense, gray, fine to SAND, little silt Wet, dense, gray, fine to SAND, little silt Wet, dense, gray, fine to SAND, little silt Test boring B-41 terminated at 16' bgs and backfilled with soil cuttings. As - Auger/Grab Sample Types As - Auger/Grab Sample Sample Sample Sample Sample GRAVEL, spill Spoon ST. Shelby boring St. Shelby Soon St. Shelby Bornes St. Shelby Soon St. Shelby Bornes	_									Logged By: A. Smith
VE V-1	Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description Remarks
■ SS S-1 24 17 12 34 16 Wet, dense, prown, fine to medium SAND, little silt, trace fine gravel Wet, dense, prown, fine to coarse SAND and fine to coarse GRAVEL, trace silt ■ SS S-2 24 16 18 33 20 Wet, dense, prown, fine to SAND, little silt ■ SS S-2 24 16 18 33 31.3 10 Wet, dense, gray, fine to SAND, little silt ■ Wet, dense, gray, fine to SAND, little silt ■ Wet, dense, gray, fine to SAND, little silt ■ Wet, dense, gray, fine to SAND, little silt ■ Wet, dense, gray, fine to SAND, little silt ■ Wet, dense, gray, fine to SAND, little silt ■ Test boring B-41 terminated at 16' bgs and backfilled with soil cuttings. ■ Test boring B-41 terminated at 16' bgs and backfilled with soil cuttings. ■ AS-Auger/Grab Sample	0	VE	V-1						iii	Moist, brown, fine to coarse SAND and fine to coarse GRAVEL, little silt boring from the ground surface to 6' bgs. Analytical sample
SS S-2 24 16		-	•							(2-2.3)
SS S-2 24 16	- <u>36.3</u> - 								and and Grave	trace fine gravel (5.5'-6') Wet dense brown fine to coarse SAND and Corrosion sample
Note					16 12 17				Ö	fine to coarse GRAVEL, trace silt
Sample Types Consistency vs Blowcount/Foot Burmister Classification	- <u>31.3</u>	-			1				Silty Sand	
21.3 Sample Types Consistency vs Blowcount/Foot AS - Auger/Grab Sample CS - California Sampler BQ - 1.5" Rock Core NQ - 2" Rock Core NQ		- SS	S-3	24	8 9	16	17			silt
CS - California Sampler BQ - 1.5" Rock Core NQ - 2" Rock Core GP - Geoprobe V. Loose: 0-4 Dense: 30-50 Loose: 4-10 V. Dense: >50 M. Dense: 10-30 V. Soft: <2 Stiff: 8-15 Soft: 2-4 V. Stiff: 15-30 M. Stiff: 4-8 Hard: >30 Iiitle 10-20% M. Stiff: 4-8 Hard: >30 moisture, density, color	 	-								Test boring B-41 terminated at 16' bgs and backfilled with soil cuttings.
CS - California Sampler BQ - 1.5" Rock Core NQ - 2" Rock Core GP - Geoprobe V. Loose: 0-4 Dense: 30-50 N. Soft: 2-2 Stiff: 8-15 little 10-20% M. Stiff: 4-8 Hard: >30 little 10-20% moisture, density, color	21.3					<u> </u>				
Paviawad by: Data: Raring Number: P 44	CS - Califo BQ - 1.5" I NQ - 2" Ro	6 - Auger/Grab Sample 5 - California Sampler 0 - 1.5" Rock Core 1 - 2" Rock Core 1 - 2" Rock Core 2 - 1.5" Shelby Tube						se: 0	anular)-4 [-10 \	Sand Fine Grained (Clay): and 35-50% some 20-35%

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

 $\textbf{Hammer Weight/Drop Height/ Spoon Size:} \quad 140 \text{ lb} \ / \ 30 \text{ in} \ / 2 \text{ in O.D.}$

Bore Hole Location: 168 Linden St., Waltham, MA **Northing:** 2963916.3760 **Easting:** 731917.682 **Drilling Date: Start:** 11/2/2017 **End:** 11/2/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 42.13

Total Depth (ft.): 21

Depth to Initial Water Level (ft):

Depth Date Time

3.2 11/2/2017 09:25 **Abandonment Method:** Backfilled with soil cuttings

									Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0 -	VE	V-1						Sand and Gravel	2" Asphalt Bottom 6": Moist, gray, fine to coarse SAND and fine GRAVEL, little silt Moist, gray, fine to coarse SAND and fine	Vacuum excavate boring from the ground surface to 6' bgs. Analytical sample
37.1 5		VI						Sand ar	GRAVEL, little silt	(3'-3.5')
-	ss	S-1	24	13 2 2 2	3	4			Wet, soft, dark gray, Organic SILT	Silty Sand is a potentialy varved deposit.
32.1 10	ss	S-2	24	2 10 15	12	12			Wet, stiff, dark gray, fine to medium SAND, some organic clayey silt, little fine gravel	Corrosion sample (8'-10')
- - - - 27.1 15	- ss	S-3	24	16 16 18 16	15	34		Silty Sand	Wet, dense, brown, SILT, trace fine sand	
- - - - - 20 -	- SS	S-4	24	12 14 18 16	16	32			Wet, dense, brown, fine to medium SAND, trace silt	
- - -									Test boring B-42 terminated at 21' bgs and backfilled with soil cuttings.	
17.1										
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	er/Grab S fornia Sa Rock Co lock Core	impler Sore S	V - Vac Sam S - Spli T - She GP - Geo	nple t Spoor lby Tub	n ne	V. Loose: Loose: M. Der	se: 0	nular -4 C	Sand): Fine Grained (Clay): ar so	me 20-35% tle 10-20% ace <10% ure, density, color

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 32 Waverly Oaks Rd., Waltham, MA **Northing:** 2964059.3675 **Easting:** 732508.0332

Drilling Date: Start: 10/26/2017 **End:** 10/27/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 43.5

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

Depth Date Time

5.3 10/26 14:10 **Abandonment Method:** Backfilled with soil cuttings

	,		-,,								Logg	ed B	y: A. Smith				
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material Do	escri	iption			Rei	narks
0				3			74 1/4 - 7/4		Т	op 6": To	psoil						
	SS	S-1	24	4 5 6	12	9		Fill			Moist, loose ne fine grav		own, fine to	coars	se		
	SS	S-2	24	5 5 5 5	6	10			V si	/et, medio lt, trace fi	um dense, g ne gravel	jray,	fine SAND	, som	е	Analytic (2'-4')	al sample
38.5	- ss	S-3	24	3 3 4 8	4	7		Silty Sand			, brown, fine rganic fibers		coarse SAN	ID, litt	le		
- -	ss	S-4	24	3 23 66 60	12	89			a	et, very ond fine to	lense, brow coarse GRA	n, fir AVE	ne to coarse L, little silt	e SAN	ID	Corrosio (6'-8')	on sample
33.5 10	SS	S-5	24	24 26 26 43	14	52		Silty Clay		/et, hard, edium sa	gray, Silty C ınd	CLAY	/, trace fine	to		PP = 2.	5 tsf
· · · · · · · · · · · · · · · · · · ·																	
28.5 15					16	70		Silty Sand	V	et, very o	lense, brow	n, fir	ne SAND, li	ttle sili	t		
· -	-								T b	est borinç ackfilled v	g B-43 termi vith soil cutti	nate ings.	d at 16' bgs	s and			
23.5																	
	Sa	ample Ty	pes						Consi	stency vs	Blowcount/F	oot			Burm	ister Cla	ssification
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	Rock Co	sample ampler ore	V - Vac San SS - Spli ST - She SP - Geo	nple t Spoor lby Tub	n ne	V. Loo Loose: M. Der	se: 0	-4 E	(Sand) Dense: /. Dens	30-50	V. Soft: Soft:	Grai <2 2-4 4-8	V. Stiff: 1	-15 5-30 •30	S li	ome 20 ittle 10	i-50%)-35% -20% :10% sity, color
Revie	wed I	oy:								Date:			Boring N	lumb	er: B	3-43	

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 68 Waverly Oaks Rd., Waltham, MA

Northing: 2964126.8030 Easting: 732954.263

Drilling Date: Start: 10/31/2017 End: 10/31/2017

Surface Elevation (ft.): 45.65

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

 Depth
 Date
 Time

 7.0
 10/31/2017
 11:00

Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description		Remarks
0							17 · 77 · 17		12" Topsoil		Vacuum excavate boring from the
_									Moist, brown, SILT, little fine to mediul little fine to coarse gravel	m sand,	ground surface to 6' bgs.
-	VE	V-1						Sandy Silt	·		Analytic Sample (2'-2.5')
40.7 5 -	SS	S-1	24	12 14 18 30	8	37			Wet, dense, brown, fine to coarse SA some fine to coarse gravel, little silt	ND,	
35.7 10	SS	S-2	24	14 5 6 5	6	11		Sand and Gravel	Wet, medium dense, brown, fine to co SAND and fine to coarse GRAVEL, lit		
- - - 30.7 15	SS	S-3	24	7 9 14 13	14	23		Silty Clay	Wet, very stiff, gray, Silty CLAY		PP = 2.0, 2.5, ar 3.0 tsf
- - -							*/////		Test boring B-44 terminated at 16' bgs backfilled with soil cuttings.	s and	
25.7	Sa	ımple Ty	pes						Consistency vs Blowcount/Foot	Burm	nister Classificati
AS - Auge CS - Califo BQ - 1.5" I IQ - 2" Ro	r/Grab S ornia Sa Rock Co	Sample Impler ore	V - Vac Sam SS - Spli ST - She SP - Geo	nple t Spoor Iby Tub	n l	V. Loose:	se: C	-10 \	Sand): Fine Grained (Clay): ense: 30-50 V. Soft: <2	-15 S	and 35-50% some 20-35% ittle 10-20% trace <10%

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 131 Waverly Oaks Rd., Waltham, MA Northing: 2964321.5588 Easting: 733550.3289

Drilling Date: Start: 10/31/2017 **End:** 10/31/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 48.52

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

Depth Date Time 5.4 10/31/2017 13:15

29	, Date.	Start: 10	3/3 1/20	17 6	iu. i	0/31/20	J 1 7			Logged E	By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		Material Desc	ription	Remarks
0							1111		4" Topsoil:	Moist, gray, fin	e to medium SAN	
	VE	V-1							Moist, brow	⁄n, SILT		boring from the ground surface to 6' bgs. Analytical sample (2'-2.5')
43.5 <u>¥</u>				14				Silt	No Recove	rv		
	SS	S-1	24	14 6 7	0	20		Sandy Silt	No Recove			
- <u>38.5</u> -	SS	S-2	24	8 4 5	0	12			3" split spo fine gravel,	on- fine to coar trace silt	se SAND, some	
10 	SS	S-3	24	13 4 7 11	8	11			Wet, stiff, b	rown, SILT, tra	ice fine to medium	
- 33.5 15	- SS	S-4	24	13 14 7	16	21		Silty Clay	Wet, very s to medium	tiff, gray, CLAY sand	′ & SILT, trace fine	e
	-			16						B-45 terminate ith soil cuttings	ed at 16' bgs and s.	
28.5												
	Sa	ample Ty	pes	1		1	1		Consistency vs	Blowcount/Foot		Burmister Classification
AS - Auge CS - Califo BQ - 1.5" NQ - 2" Ro	Rock Co	ampler ore	V - Vac Sam SS - Spli T - She GP - Geo	nple t Spoor lbv Tub	n ne	V. Loos Loose: M. Der	se: 0)-4 D ·10 V	(Sand): Dense: 30-50 '. Dense: >50	Fine Gra V. Soft: <2 Soft: 2-4 M. Stiff: 4-8	stiff: 8-15 V. Stiff: 15-30 Hard: >30	and 35-50% some 20-35% little 10-20% trace <10% moisture, density, color
Revie	wed b	oy:							Date:		Boring Numb	er: B-45

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 161 Waverly Oaks Rd., Waltham, MA Northing: 2964423.8834 Easting: 733848.2348

Drilling Date: Start: 11/14/2017 **End:** 11/16/2017

Surface Elevation (ft.): 56.94

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

Depth Date Time 6.4 11/16/2017 14:05

Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		Material De	escription	Remarks
0							17 31.17		12" Topsoil			Vacuum excava
-	VE	V-1						Sand and Gravel	Moist, brow fine to coars		edium SAND, some tle silt	ground surface 6' bgs. Analytical samp (2.5'-3')
51.9 5 - ▼ -	- SS	S-1	24	4 3 3 3	6	6		Sand ar	Wet, loose, fine to coars	gray, fine to se gravel, tr	o coarse SAND, som ace silt	ne
46.9 10	- SS	S-2	24	8 12 12 8	8	24		Sandy Silt	Wet, very si	tiff, brown, \$	SILT, some fine sand	d Corrosion samp (8'-10')
- - 41.9 15	SS	S-3	24	20 34 44 50	16	78		Silty Clay	Wet, hard, (
- - - 36.9									Test boring backfilled w	B-46 terminith soil cutti	nated at 16' bgs and ngs.	
30.0	Sa	mple Ty	pes						Consistency vs	Blowcount/F	<u>oot</u>	Burmister Classifica
AS - Auge CS - Califo 3Q - 1.5" NQ - 2" Ro	r/Grab S ornia Sa Rock Co	mpler S	V - Vac Sam S - Spli T - She GP - Geo	iple t Spoor Ibv Tub	n l	V. Loos Loose: M. Der	se: 0 4-	-4 C -10 V	Sand): lense: 30-50 . Dense: >50	V. Soft: Soft:	Grained (Clay): <2 Stiff: 8-15 2-4 V. Stiff: 15-30 4-8 Hard: >30	and 35-50% some 20-35% little 10-20% trace <10%

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 191 Waverly Oaks Rd., Waltham, MA Northing: 2964858.9158 Easting: 734327.5545

Drilling Date: Start: 11/2/2017 **End:** 11/2/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Reviewed by:

Surface Elevation (ft.): 68.65

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

Depth Date Time 12.8 11/2/2017 14:50

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-47

Diming	, Date.	Otart.	1/2/201	, <u>-</u>	u. 11/	2/201	•		Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0							1/ · 1/·/		12" Topsoil	Vacuum excavate boring from the
-										ground surface to 6' bgs.
-	VE	V-1							Moist, brown, fine to coarse GRAVEL and fine to coarse SAND, trace silt	Analytical sample (2'-2.5')
63.7 5										
-	- SS	S-1	24	46 98 66 56	12	>100		avel	Moist, very dense, brown to gray, fine to coarse SAND and fine to coarse GRAVEL, trace silt	
<u>58.7</u> 10	- SS	S-2	24	32 30 27 20	3	57		Sand and Gravel	Moist, very dense, brown to gray, fine to coarse SAND and fine to coarse GRAVEL, trace silt	
<u>53.7</u> 15	- SS	S-3	24	21 25 21 20	3	46			Wet, dense, brown to gray, fine to coarse SAND, little fine gravel, trace silt	
-									Test boring B-47 terminated at 16' bgs and backfilled with soil cuttings.	
-										
48.7					L					
	Sa	mple Ty							Consistency vs Blowcount/Foot Burn	mister Classification
AS - Auge CS - Calif 3Q - 1.5" NQ - 2" R	fornia Sa Rock Co	mpler ore	V - Vac Sam SS - Spli ST - She GP - Geo	iple t Spoor lby Tuk	n ne	V. Loose: Loose: M. Der	se: 0	-4 E	Dense: 30-50 V. Soft: <2 Stiff: 8-15 V. Dense: >50 Soft: 2-4 V. Stiff: 15-30	and 35-50% some 20-35% little 10-20% trace <10% pisture, density, color

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 225 Waverly Oaks Rd., Waltham, MA **Northing:** 2965111.7525 **Easting:** 734637.5415

Drilling Date: Start: 10/24/2017 **End:** 10/24/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Reviewed by:

Surface Elevation (ft.): 62.23

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

Depth Date Time 11.3 10/24/2017 13:25

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-48

Drilling	Date:	Start: 10	0/24/20	17 Ei	1d: 10)/24/2	017		Logged By: A. Smith	with 30ii cutting3
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
02.2				8			74.14. 17		Top 6": Topsoil	
-	SS	S-1	24	9 10 12	9	19			Bottom 3": Dry, medium dense, brown, SILT	
-	- SS	S-2	24	46 70 50 82	14	>100		Sand and Gravel	Dry, very dense, brown, fine to coarse SAND, little fine to coarse gravel, little silt	Analytical sample (2'-4')
57.2 5	- ss	S-3	24	36 38 40 33	12	78		Sanc	Dry, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt	Analytical sample (4'-6')
-	SS	S-4	24	31 20 14 14	16	34			Moist, dense, brown, fine SAND, some silt	Corrosion sample (6'-8')
<u>52.2</u> 10	SS	S-5	24	28 18 20 28	12	38			Moist, dense, brown, fine SAND, little silt	
10 <u>¥</u> -	-							Silty Sand		
47.2 15	- SS	S-6	24	18 17 19 12	8	36			Wet, dense, gray, fine SAND, little silt	
- -							*• 1 • •		Test boring B-48 terminated at 16' bgs and backfilled with soil cuttings.	
-										
42.2										
	Sa	mple Ty	pes	1			1		Consistency vs Blowcount/Foot Burn	nister Classification
CS - Calif 3Q - 1.5"	Auger/Grab Sample California Sampler 1.5" Rock Core 2" Rock Core GP - Geoprobe V - Vac Ex/Grab Sample SS - Split Spoon ST - Shelby Tube GP - Geoprobe V. Loose Loose: M. Dense								Dense: 30-50 V. Soft: <2 Stiff: 8-15 / Dense: >50 Soft: 2-4 V. Stiff: 15-30	and 35-50% some 20-35% little 10-20% trace <10% isture, density, color

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / D. Jacobs Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 271 Waverley Oaks Rd., Waltham, MA

Northing: 2965275.1540 Easting: 735017.5246 **Drilling Date: Start:** 1/24/2018 **End:** 1/26/2018 Surface Elevation (ft.): 59.22

Total Depth (ft.): 16

Depth to Initial Water Level (ft): Depth Date 7.2 1/26/2018 10:00

Abandonment Method: Backfilled with soil cuttings

				-					Logged By: A. Smith
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description Remarks
59.2 0							<u>7, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,</u>	-	9" Topsoil Vacuum excavate
	VE	V-1							Moist, brown, fine to coarse SAND, some fine to coarse gravel, trace silt Moist, brown, fine to coarse GRAVEL, some fine to coarse sand, trace silt
5 - <u>▼</u> -	SS	S-1	24	32 54 22 20	8	76		avel	Wet, very dense, gray, fine to medium SAND, little silt, little fine gravel Analytical sample (6'-8')
- 49.2 10	SS	S-2	24	7 9 10 12	18	19		Sand and Gravel	Wet, medium dense, brown, fine to medium SAND, trace silt
	- SS	S-3	24	5 6 6	6	12			No Recovery: 3" Spoon: Wet, medium dense, gray-brown, fine to medium SAND, little fine gravel, little silt
·									Test boring B-49 terminated at 16' bgs and backfilled with soil cuttings.
39.2									
AS - Auge CS - Calif BQ - 1.5" NQ - 2" Ro	r/Grab S ornia Sa Rock Co	mpler s	V - Vac San SS - Spli ST - She SP - Geo	nple t Spooi lby Tul	n ,	V. Loose: Loose: M. Der	se: (anular)-4 C -10 V	Consistency vs Blowcount/Foot Burmister Classification (Sand): Fine Grained (Clay): and 35-50% some 20-35% Jense: 30-50 V. Soft: <2
Revie	wed b	y:							Date: Boring Number: B-49

Project Name: Rehabilitation of Weston Aqueduct Supply Main 3 Client: MWRA

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 320 Waverley Oaks Rd., Waltham, MA

Northing: 2965897.0948 Easting: 735637.6863

Drilling Date: Start: 10/25/2017 **End:** 10/25/2017

Surface Elevation (ft.): 71.29

Total Depth (ft.): 15

Depth to Initial Water Level (ft):

Depth Date NE 10/25/2017 13:40

Abandonment Method: Backfilled with soil cuttings

									Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0									3" Asphalt Pavement	
				80					9" Cobble Base	
	SS	S-1	9	100/3"	4	>100	ο · · · · · · · · · · · · · · · · · · ·		Wet, very dense, gray, fine to coarse SAND, some fine gravel, trace silt	
	SS	S-2	24	48 26 36 24	4	62) Ø O	SO CO		alytical sample 4')
66.3 5	- ss	S-3	24	18 18 20 24	2	38	° ∪ ø • O		Moist, dense, brown, fine to coarse SAND and fine to coarse GRAVEL, some silt (4'-	alytical sample 6')
	- SS S-4 24 12 5 34 5 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			; () ; ; ; ; ()	Gravel	Moist, dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little silt (6'-	rosion sample 8')			
	SS	S-5	9	15 100/3"	4	>100	, ()	and	Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little silt	
- <u>61.3</u>	-									
	SS	S-6	12	85	8	>100	· ()		Wet, very dense, brown, fine to coarse SAND	
_ <u>56.3</u> -	33	<u> </u>	12	100	0	- 100). · · · ·		and fine to coarse GRAVEL, trace silt Test boring B-50 terminated at 15' bgs and	
	-								backfilled with soil cuttings.	
51.3	ل_ل				L ,					<u> </u>
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	er/Grab S fornia Sa Rock Co lock Core	mpler Sore S	v - Vac San S - Spli T - She P - Geo	nple t Spoor Iby Tul	n	V. Loos Loose: M. Den	se: 0 4-	nular (-4 C 10 V	Sand): Fine Grained (Clay): and some	35-50% 20-35% 10-20% <10% density, color

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira
 Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA
 Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 356 Waverley Oaks Rd., Waltham, MA

Northing: 2965991.6800 Easting: 735756.981

Drilling Date: Start: 10/25/2017 End: 10/25/2017

Surface Elevation (ft.): 77
Total Depth (ft.): 14.4

Depth to Initial Water Level (ft):

Depth Date Time 7.7 10/25/2017 10:40

Abandonment Method: Backfilled with soil cuttings

	,										Logg	ged B	By: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material D)escr	iption		Remarks
77.0				6			74 15. 12		3	" Topsoil					
	ss	S-1	24	5 4 14	8	9			N.	loist, loose	e, brown, fi gravel, little	ne to silt	o coarse SAND,		Analytical sample (0'-2')
_	SS S-2 3 100/3" 3 >100												ne to coarse arse sand, trace s	silt	
- <u>72.0</u> - 5	- SS	S-3	24	36 32 40 62	8	72			V	Vet, very d GRAVEL a	lense, brow nd fine to c	vn-gr coars	ray, fine to coarse se SAND, trace s	e ilt	Analytical sample (4'-6')
_ <u>*</u>	SS	S-4	24	72 62 90 70	12	>100		Sand and Gravel	(GRAVEĹ a	nd fine to o	coars	ray, fine to coarse se SAND, trace s	e ilt	
67.0 10	SS	S-5	24	61 71 45 51	16	>100		Sanc			dense, bro e fine grav		fine to coarse ace silt		
 	-			400/48	4										
- <u>62.0</u> - <u>15</u>	SS S-6 4 100/4"						3,000		S	AND, son	ne fine to c	oarse inate	fine to coarse e gravel, little silt ed at 14.4' bgs ar	nd	
57.0															
57.0	Sa	ample Ty	pes					1	Cons	istencv vs	Blowcount/	Foot		Burmi	ster Classification
CS - Calif BQ - 1.5" NO - 2" R	- Auger/Grab Sample - California Sampler - 1.5" Rock Core - 2" Rock Core - 2" Rock Core - 2" Rock Core - 2" Rock Core GP - Geoprobe V - Vac Ex/Grab Sample SS - Split Spoon ST - Shelby Tube GP - Geoprobe V. Loose: 0-4 Loose: 4-10 M. Dense: 10-30												ined (Clay): Stiff: 8-15 V. Stiff: 15-30 Hard: >30	ar sc lit tr	ace <10% ture, density, color
Revie	eviewed by:									Date:			Boring Numb	er: B	-51

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 390 Waverley Oaks Rd., Waltham, MA

Northing: 2966243.2130 Easting: 736227.419

Drilling Date: Start: 10/26/2017 End: 10/26/2017

Surface Elevation (ft.): 87.91

Total Depth (ft.): 14.5

Depth to Initial Water Level (ft):

Depth Date Time 5.2 10/26/2017 13:00

Abandonment Method: Backfilled with soil cuttings

	,								Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
87.9 0									4" Asphalt	
 -	SS	S-1	18	26 32 100	11	>100			Moist, very dense, brown, fine to medium SAND, some fine gravel, little silt	
	SS	\$-2	2	100/2"	2			_	Moist, very dense, brown, fine to coarse SAND, trace silt	Analytical sample (2'-2.2')
- <u>82.9</u> -	SS S-3 12 42 5 >76 5 SS S-4 9 53 100/3" 8 >100			Sand and Gravel	Moist, very dense, brown, fine to coarse SAND, little fine gravel, little silt	Analytical sample (4'-5') Corrosion sample not obtained due				
	SS	S-4	9	1	8	>100		S	Moist, very dense, brown, fine to coarse SAND, some fine gravel, little silt	to boulder and low recovery.
 	SS	S-5	6	100/6"	5				Wet, very dense, brown, fine to coarse SANE and fine to coarse GRAVEL, little silt	Weathered rock encountered at
- <u>77.9</u>	-							Weathered Rock		approximately 8.8' bgs.
_ <u>72.9</u> _ 15	SS	S-6	6	100/6"	5				Wet, very dense, brown, fine to coarse SANE and fine to coarse GRAVEL, little silt Test boring B-52 terminated at 14.5' bgs and backfilled with soil cuttings.	
 67.9										
	Sa	mple Ty	pes						Consistency vs Blowcount/Foot	Burmister Classification
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	ornia Sa Rock Co	impler ore S	V - Vac San SS - Spli ST - She SP - Geo	nple t Spoor lby Tub	n ne	V. Loos Loose: M. Den	se: 0 4-)-4 E	Sand): Fine Grained (Clay): ense: 30-50 V. Soft: <2	and 35-50% some 20-35% little 10-20% trace <10% moisture, density, color
Revie	eviewed by:								Date: Boring Number	er: B-52

Sheet 1 of 1

Boring Number: B-53 (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Number: 101038-102170 Project Location: Massachusetts

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 450 Waverley Oaks Rd., Waltham, MA

Northing: 2966643.9120 Easting: 736978.095 **Drilling Date: Start:** 10/26/2017 **End:** 11/3/2017 Surface Elevation (ft.): 105.91

Total Depth (ft.): 11

Depth to Initial Water Level (ft): Depth Date 6.0 11:00

11/3/2017

			-,,						Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0							0 0 0 0	_	4" Asphalt Pavement	
	SS	S-1	18	16 24 20	6	44		Sand and Gravel	Moist, dense, brown, fine to coarse SAND, trace fine gravel	
	SS	S-2	16	26 100 100/4"	16	>100		Sand	Top 10": Moist, very dense, brown, fine to coarse SAND, some fine to coarse gravel, some silt	
ļ -				400/0"		100			Bottom 6": Moist, very dense, gray, fine to coarse SAND and fine to coarse GRAVEL,	
400.0	SS	S-3	3	100/3"	1	>100		N.	little silt	Analytical sample (2'-3.3')
_ 100.9 5 _ ▼ -									Wet, very dense, gray, fine to coarse SAND, some fine gravel, trace silt	(2-3.3)
 - <u>95.9</u> -	NX	C-1	60		45			Bedrock	See core log for description	
									Test boring B-53 (MW) terminated at 11' bgs and converted into a monitoring well.	
_ <u>90.9</u>	-									
<u> </u>										
95.0										
85.9	S2	mple Ty	nes						Consistency vs Blowcount/Foot Burn	ister Classification
85.9 AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	er/Grab S ornia Sa Rock Co	Sample mpler ore	V - Vac San SS - Spli ST - She SP - Geo	nple it Spoor elby Tub	n ne	V. Loos Loose: M. Der	se: O	anular)-4 C -10 V	Sand): Fine Grained (Clay): ense: 30-50 V. Soft: <2	and 35-50% some 20-35% little 10-20% trace <10% sture, density, color
Revie	wed b	y:							Date: Boring Number: E	3-53 (MW)

Sheet 1 of 1

Boring Number: B-53 (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 450 Waverley Oaks Rd., Waltham, MA

Northing: 2966643.9120 Easting: 736978.095

Drilling Date: Start: 10/26/2017 **End:** 11/3/2017

ROCK CORE ONLY GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 105.91

Total Depth (ft.): 11

Depth to Initial Water Level (ft): 6.0 11/3/2017 11:00

Abandonment Method: Backfilled with soil cuttings

Logged By: A. Smith

Elevation Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Recovery (%)	RQD (%)	Drill Rate (min/ft)	Down Press. (psi)	Graphic Log	Strata	Material Description	Remarks
	NX	C-1	60	75	0	4.0 5.0 2.5 3.5	NR	× × × × × × × × × × × × × × × × × × ×	Granite	Hard, slightly weathered, fine grained, gray GRANITE; primary joint set very close, extremely fractured	
 - 90.9										Test boring B-53 terminated at 11' bgs and converted into monitoring well.	
90.9 15.0											
- <u>85.9</u> - <u>20.0</u>											
80.9											

Bedding (mm)	Joint Spacing (mm)	Continuity (mm)	Attitude Angle	Aperture (mm)
Extremely Thin <20	Extremely Close <20 Very Close 20-60 Close 60-200 Mod Close 200-600 Wide 600-2000 Very Wide 2000-6000 Extremely Wide >6000	Extremely <25 Moderately 25-100 Slightly 100-200 Sound >200	Horizontal 0° - 5° Shallow 5° - 35° Moderate 35° - 55° Steep 55° - 85° Vertical 85° - 90°	Very Tight < 0.1 Tight 0.1 - 0.25 Partly Open 0.25 - 0.5 Open 0.5 - 2.5 Mod. Wide 2.5 - 10 Wide >10

ξ	_									
Field Hardness			Weat	thering						
LOGS	Very Hard Hard	Knife Can't Scrat Scratches with Difficulty	tch Fresh Slight		ndicated				oredand may be wea	ker externally
5	Med. Hard Medium	Scratches Readi Grooves with	ly Moderate	present either a	as a con	tinuous framework o	r as coresto	ones.	to a soil. Fresh or d	
	Soft	Difficulty Grooves Readily		present either a	as a con	tinuous framework o	r as coresto	one.	to a soil. Fresh or di	
2 1 1	Very Soft	Carves with Knife		All rock materia	al is con		nasš structu	re and material	nal mass structure is fabric are destroyed.	
/			•							

Reviewed by: Date: Boring Number: B-53 (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

 $\textbf{Drilling Contractor/Driller:} \ \ \text{GeoLogic - Earth Exploration, Inc. / M. Ferreira}$

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 496 Waverley Oaks Rd., Waltham, MA

Northing: 2966867.4920 Easting: 737411.643

Drilling Date: Start: 10/24/2017 End: 10/24/2017

Surface Elevation (ft.): 96.15

Total Depth (ft.): 14.1

Depth to Initial Water Level (ft):

Depth Date Time 11.0 10/24/2017 10:35

Abandonment Method: Backfilled with soil cuttings

												Logged	d By	: A. S	mith					
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Mater	rial Des	scrip	otion				F	Remarks	
96.2									5'	' Asphalt	Pavem	ent								
-	SS	S-1	18	40 32 16	6	48		Fil	N	Moist, dense, brown, fine to coarse SAND, trace fine gravel, trace silt										
	- SS	S-2	24	8 7 10 20	7	17	◊○△○		S	Moist, medium dense, brown, fine to coarse SAND, trace fine gravel, trace silt Moist, very dense, brown, fine to coarse GRAVEL and fine to coarse SAND, little silt					Analy (2'-4'	rtical sam)	ple			
91.2	- SS	S-3	24	40 30 90 100	7	>100	。○ 。 ()) _@		G											
	SS	S-4	3	100/3"	3			Sand and Gravel	M G	oist, very RAVEL a	dense and fine	, brown to coa	n, fii arse	ne to (SAN	coarse D, little	e e silt				
- <u>86.2</u> - <u>10</u> - <u>Ψ</u> -	SS	S-5	18	65 98 100	6	>100	8	Se		oist, very RAVEL a										
	- - 	S-6	1	100/1"	0	>100		Weathered Rock		o recove		tormine	otos	Lat 1/	1 1' bo	10.00		bould weath	rbit througher or hered roc 13 to 14'	_
81.2 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 1								S	b	est boring ackfilled v	y 15-54 Vith soil	iermina I cuttin	aleo	ı at 14	+. I DG	is an	u	bgs.		
² 76.2		mple Ty	nos	<u> </u>					Conci	etonev	Blower	nunt/E-	not				D: :wie	ister C	laccific	ation
AS - Auger/Grab Sample CS - California Sampler DBQ - 1.5" Rock Core NQ - 2" Rock Core NQ - 2" Rock Core GP - Geoprobe V - Vac Ex/Grab Sample Sample SS - Split Spoon ST - Shelby Tube GP - Geoprobe M. Dens								nular -4 C 10 V	0 V. Dense: >50 Soft: 2-4 V. Stiff: 15-30 trace <10% moisture, density, column and state of the column											
Revie	wed t	y:								Date:				Borii	ng Ni	umb	er: E	5-54		

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D. Bore Hole Location: Beaver Brook Reservation, Waltham, MA

Northing: 2967033.9054 Easting: 737747.5134

Drilling Date: Start: 10/27/2017 **End:** 10/27/2017

Surface Elevation (ft.): 99.15

Total Depth (ft.): 13

Depth to Initial Water Level (ft): Depth Date Time

10/27/2017 Abandonment Method: Backfilled with soil cuttings

14:40

5.8

_									Logged By: A. Smith
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description Remarks
0 -									4" Asphalt 14" Cobbles and Coarse Gravel
-	. ss	S-1	21	55 76 92 100/3"	12	>100		်င်း Sand and Gravel	Moist, very dense, gray, fine to coarse GRAVEL and fine to coarse SAND, trace silt Analytical sample (2'-3.75')
94.2	SS	S-2	12	72 100	6	>100			Moist, very dense, gray, fine to coarse GRAVEL and fine to coarse SAND, trace silt (4'-5') Rollerbit through
5 ▼ _	SS	S-3	18	80 84 110	10	>100		Sand	Moist, very dense, gray, fine to coarse GRAVEL and fine to coarse SAND, trace silt
89.2 10 -	NX	C-1	60		24			Weathered Rock	See core log for description
84.2 15									Test boring B-55 terminated at 13' bgs and backfilled with soil cuttings.
79.2 AS - Auge CS - Califo 3Q - 1.5" l	r/Grab S ornia Sa Rock Co	mpler or me	vpes V - Vac Sam SS - Spli ST - She	nnle		V. Loos Loose:	se: 0	nular -4 [Consistency vs Blowcount/Foot Burmister Classificati (Sand): Fine Grained (Clay): and 35-50% some 20-35% Jense: 30-50 V. Soft: <2
Revie		•	GP - Geo	probe		M. Den	se: 10)-30	M. Stiff: 4-8 Hard: >30 moisture, density, color Date: Boring Number: B-55

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller:GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Beaver Brook Reservation, Waltham, MA

Northing: 2967033.9054 Easting: 737747.5134 **Drilling Date: Start:** 10/27/2017 **End:** 10/27/2017 Surface Elevation (ft.):99.15

Total Depth (ft.): 13

Depth to Initial Water Level (ft):

5.8 10/27/2017 14:40

Abandonment Method: Backfilled with soil cuttings

Elevation Depth (ft)	levation Depth (ft)	Remarks
1.5	89.2 10.0	
	84.2 15.0	
	79.2 20.0	
74.2 25.0 -	- 74.2 25.0 -	

Bedding (mn	<u>n</u>)	Joint Spacin	g (mm)	Continui	ty (mm)	Attitude	Angle	Aperture (mm)		
Thin 6 Medium 20 Thick 60 Very Thick 200	<20 20-60 60-200 00-600 00-2000 00-6000 >6000	Extremely Close Very Close Close Mod Close Wide Very Wide Extremely Wide	<20 20-60 60-200 200-600 600-2000 2000-6000 >6000	Extremely Moderately Slightly Sound	<25 25-100 100-200 >200	Horizontal Shallow Moderate Steep Vertical	0° - 5° 5° - 35° 35° - 55° 55° - 85° 85° - 90°	Very Tight Tight Partly Open Open Mod. Wide Wide	< 0.1 0.1 - 0.25 0.25 - 0.5 0.5 - 2.5 2.5 - 10 >10	

- 5/18/23													
GPJ	<u>Beddi</u>	ng (mm)	Joint Spaci	<u>ng (mm</u>)	Continui	<u>ty (mm</u>)	<u>Attitud</u>	e Angle	<u>Apertu</u>	re (mm)			
A WASM 3 20180220	Extremely T Very Thin Thin Medium Thick Very Thick Extremely T	20-60 60-200 200-600 600-2000 2000-6000	Extremely Close Very Close Close Mod Close Wide Very Wide Extremely Wide	20-60 60-200 200-600 600-2000 2000-6000	Extremely Moderately Slightly Sound	<25 25-100 100-200 >200	Horizontal Shallow Moderate Steep Vertical	0° - 5° 5° - 35° 35° - 55° 55° - 85° 85° - 90°	Very Tight Tight Partly Open Open Mod. Wide Wide	< 0.1 0.1 - 0.25 0.25 - 0.5 0.5 - 2.5 2.5 - 10 >10			
MWRA	<u>Field</u>	<u>Hardness</u>	Wea	<u>Weathering</u>									
CORE ONLY GINT LOGS	Very Hard Hard Med. Hard Medium Soft Very Soft	Knife Can't Scrato Scratches with Difficulty Scratches Readily Grooves with Difficulty Grooves Readily Carves with Knife	Slight Moderate Severe	its fresh conditi Less than half present either a More than half present either a All rock materia	ndicated weather on. of the rock mate as a continuous of the rock mate as a continuous al is decomposed is converted to the	ering. All the erial is decome framework of the erial is decome framework of the erial is decome framework of the erial is decome erial is dec	rock material posed and/o r as coreston posed and/o r as coreston ntegrated to s nass structure	may be discolor disintergrated es. disintegrated e. soil. The origins and material f	I to a soil. Fresh to a soil. Fresh al mass structur	weaker externally that or discolored rock is or discolored rock is e is largely intact. yed. There is a large			
ROCK	Reviewe	d by:			Dat	e:		Boring N	umber: B	-55			

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

 $\textbf{Drilling Contractor/Driller:} \ \ \text{GeoLogic - Earth Exploration, Inc. / M. Ferreira}$

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NX Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Beaver Brook Reservation, Waltham, MA **Northing:** 2967084.8840 **Easting:** 738063.3567

Drilling Date: Start: 10/27/2017 **End:** 10/27/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 74.6

Total Depth (ft.): 15

Depth to Initial Water Level (ft):

Depth Date Time 7.2 10/27/2017 12:15

Abandonment Method: Backfilled with soil cuttings

	,										Logged I	By: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material Desc	ription		Remarks
0				16			74.14. 74		6	" Topsoil				
-	ss	S-1	24	50 56 28	6	>100				,		<i>c</i>		
-	ss	S-2	15	17 12 100/3"	6	>100			S	AND, som	ne fine gravel, l	fine to coarse ittle slightly organic	c	Analytical sample (2'-3.75') Rollerbit through boulders and
69.6 5														cobbles from 3.3 to 10.8' bgs.
<u> </u>								Sand and Gravel						
64.6 10								Sand						
-	- SS	S-3	24	23 42 38 55	8	80			W a	Vet, very d	ense, gray, fin coarse GRAVI	e to coarse SAND EL, little silt		
<u>59.6</u>	- SS	S-4	24	47 34 26 26	12	60			a	Vet, very d	ense, gray, fin coarse GRAVI	e to coarse SAND EL, trace to little sil	t	
15	-						V P Y		T b	est boring ackfilled w	B-56 terminat ith soil cuttings	ed at 15' bgs and s.		
54.6														
	Sa	ample Ty	pes	'		1			Consi	istency vs	Blowcount/Foo	<u> </u>	Burmi	ster Classification
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	Rock Co	impler ore S	V - Vac San S - Spli T - She GP - Ged	nple t Spooi lby Tul	ן הפ	V. Loos Loose: M. Den	se: 0	-4 C	(Sand) Dense: /. Dens	30-50	Fine Gra V. Soft: <2 Soft: 2-4 M. Stiff: 4-8		so lit t	nd 35-50% ome 20-35% ttle 10-20% race <10% ture, density, color
Revie	Reviewed by:											Boring Numb	er: B	-56

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NX Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 628 Trapelo Rd., Belmont, MA Northing: 2967193.5570 Easting: 738503.346

Drilling Date: Start: 9/20/2017 **End:** 9/20/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 95.47

Total Depth (ft.): 14

Depth to Initial Water Level (ft):

Depth Date Time 5.8 9/20/2017 12:15

Abandonment Method: Backfilled with soil cuttings

Dillilling	, Date.	Start. 9/	20/201	,	u. 5/2	.0/2011				Logged I	By: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		Material Desc	ription	Remarks	
0	1								6" Asphalt	Pavement			
	SS	S-1	2	100/2"	2				Moist, very		ne to coarse SANI l, little silt	D,	
	- ss	S-2	24	5 14 18 20	4	32		Sand and Gravel		se, brown, fine o coarse grave	to coarse SAND, Il, little silt	Analytical samp (2'-4')	ple
90.5 5	SS	S-3	18	66 72 100	14	>100		Sanc	Wet, very of fine SAND,		ine GRAVEL and		
. - .	SS	S-4	3	100/3"	3			Weathered Rock	Wet, very o	lense, brown, f some fine to co	ine to coarse parse sand, little sil	Attempted rock core starting at 7.5' bgs. Core	
. <u>85.5</u>	NX	C-1	60		60			Bedrock	See core lo	og for descriptio	on	barrel jammed and consisted to little recovery of large gravel size fractured rock. Advance to 9' by with the rollerbit and start rock core.	of of ced ogs
80.5 15										յ B-57 terminat vith soil cutting։	ed at 14' bgs and s.		
75.5													
	Sa	mple Ty	pes	es Consistency vs Blowcount/Foot							Burmister Classificat	tion	
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	ornia Sa	impler ore S	V - Vac Sam SS - Spli T - She GP - Geo	iple t Spoor Iby Tub	n ne	V. Loos Loose: M. Der	se: 0	10 V.	Sand): ense: 30-50 Dense: >50	Fine Gra V. Soft: <2 Soft: 2-4 M. Stiff: 4-8		and 35-50% some 20-35% little 10-20% trace <10% moisture, density, colo	or
Revie	wed b	y:							Date:		Boring Numb	er: B-57	

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NX

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 628 Trapelo Rd., Belmont, MA Northing: 2967193.5570 Easting: 738503.346

Drilling Date: Start: 9/20/2017 **End:** 9/20/2017

ROCK CORE ONLY GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 95.47

Total Depth (ft.): 14

Depth to Initial Water Level (ft): 5.8 9/20/2017 12:15

Abandonment Method: Backfilled with soil cuttings

Logged By: A. Smith

Elevation Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Recovery (%)	RQD (%)	Drill Rate (min/ft)	Down Press. (psi)	Graphic Log	Strata	N	laterial Description		Remarks
<u>85.5</u> 10.0						2.0 2.5		\ \ \ \ \ \ \		Hard, slightly weath primary joint set clo	ered, gray, fine grained G. se.	ABBRO;	
-	NX	C-1	60	60	63	1.5	NR	/	Gabbro				
_						1.5 1.5							
80.5						1.0		/		Test boring B-57 tel	rminated at 14' bgs.		
_													
- <u>75.5</u> - 20.0													
20.0													
- <u>70.5</u> - 25.0													
25.0													
-													
Red	dina (mm)			aint C	Spacin	a / 100 11	\		Continuity (mm)	Attitude Angle	Δnertur	o (mm)

Bedding (mm)	Joint Spacing (mm)	Continuity (mm)	Attitude Angle	Aperture (mm)		
Extremely Thin <20 Very Thin 20-60 Thin 60-200 Medium 200-600 Thick 600-2000 Very Thick 2000-6000 Extremely Thick >6000	Extremely Close <20 Very Close 20-60 Close 60-200 Mod Close 200-600 Wide 600-2000 Very Wide 2000-6000 Extremely Wide >6000	Extremely <25 Moderately 25-100 Slightly 100-200 Sound >200	Horizontal 0° - 5° Shallow 5° - 35° Moderate 35° - 55° Steep 55° - 85° Vertical 85° - 90°	Very Tight < 0.1 Tight 0.1 - 0.25 Partly Open 0.25 - 0.5 Open 0.5 - 2.5 Mod. Wide 2.5 - 10 Wide >10		

Field	<u>Hardness</u>	Weat	thering					
Very Hard	Knife Can't Scratch Scratches with	Fresh Slight		ock material weathering; ated weathering. All the r			oredand may	he weaker externally
Hard	Difficulty	"	than its fresh condit	tion.		,	,	•
Med. Hard	Scratches Readily Grooves with	Moderate		e rock material is decom continuous framework or			to a soil. Fre	sh or discolored rock is
Medium	Difficulty	Severe	More than half of the	e rock material is decom	posed and/o	or disintegrated	to a soil. Fre	sh or discolored rock is
Soft	Grooves Readily			continuous framework or				
Very Soft	Carves with Knife	Complete		decomposed and/or disir				
		Residual Soil		converted to soil. The m but the soil has not been			abric are des	troyed. There is a large
Dovious	ad by	•		Doto		Davina No	ımbarı B	. 57

Reviewed by: Date: Boring Number: B-57

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

 $\begin{tabular}{ll} \textbf{Drilling Contractor/Driller:} & \textbf{GeoLogic - Earth Exploration, Inc. / M. Ferreira} \\ \end{tabular}$

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D. Bore Hole Location: 602 Trapelo Rd./Agassiz St., Belmont, MA

Northing: 2967013.6930 Easting: 738818.938

Drilling Date: Start: 9/28/2017 End: 9/28/2017

Surface Elevation (ft.): 94.08

Total Depth (ft.): 10

Depth to Initial Water Level (ft):

Depth Date Time

NE 9/28/2017 ---

Abandonment Method: Backfilled with soil cuttings

]	,	Cum C C	_0,_0 .		0,_	.0,20			Logged By: A	a. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Descriptio	on	Remarks
0									5" Asphalt		Vacuum excavate
									Moist, brown, fine to coarse Gl	RAVEL and fine	boring from the ground surface to 6' bgs. Analytical sample
-	VE	V-1							to coarse SAND, trace silt	TV (V EE and mio	(2'-3')
- <u>89.1</u> -				90				Sand and Gravel	Maint vanudanna kunsun fina	.	
	SS	S-1	10	100/4"	6	>100		Sa	Moist, very dense, brown, fine SAND and fine to coarse GRA	to coarse .VEL, trace silt	Corrosion sample (6'-7')
-	SS	S-2	10	58	10	>100			Moist, very dense, brown, fine	to coarse	
-	SS	S-2 S-3	0	100/4" 100/0"		-100			SAND and fine to coarse GRA No recovery	VEL, trace silt	Advance rollerbit
<u>84.1</u> 10									•		to 10' bgs.
	-								Test boring B-58 terminated at backfilled with soil cuttings.	. To bys and	
ASM 5 20 180 220 . GPD - 5/6/12	-										
74.1 AS - Auge	Sa	ample Ty							Consistency vs Blowcount/Foot	Burm	ister Classification
CS - Calif BQ - 1.5" NQ - 2" R	fornia Sa Rock Co lock Cor	impler ore S	V - Vac San S - Spli T - She GP - Geo	nple t Spoor lby Tul	n ne	V. Loos Loose: M. Der	se: 0)-4 C -10 V	Dense: >50 Soft: 2-4 V. M. Stiff: 4-8 Ha	siff: 8-15 li Stiff: 15-30 ard: >30 mois	nd 35-50% ome 20-35% ttle 10-20% race <10% sture, density, color
୍ମ Revie	wed b	y:							Date: Bo	oring Number: B	-58

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 579 Trapelo Rd., Belmont, MA Northing: 2966834.7650 Easting: 739160.765 **Drilling Date: Start:** 9/29/2017 **End:** 9/29/2017

Surface Elevation (ft.): 88.34

Total Depth (ft.): 16

Depth to Initial Water Level (ft): Depth Date Time ΝE 9/29/2017

Abandonment Method: Backfilled with soil cutttings

J									Logged By: A. Smith/J. Wang				
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description Remarks				
0									10" Asphalt Vacuum excavat				
	-								boring from the ground surface to 6' bgs.				
	VE	V-1						≡.	Moist, dark gray, fine to coarse SAND, some fine to coarse gravel Analytical sampl (2'-3')				
83.3 5	VE	V-2							Moist, dark gray, fine to coarse GRAVEL and fine to coarse SAND, trace silt Analytical sampl (5'-6')				
-	SS	S-1	24	23 40 64 82	10	>100	δ · · · · · · · · · · · · · · · · · · ·		Moist, very dense, gray, fine to coarse SAND, some fine to coarse gravel, little silt				
_	SS	S-2	9	80 100/3"	8	>100	。)		Moist, very dense, gray, fine to coarse SAND, some fine to coarse gravel, little silt				
78.3 -								Sand and Gravel					
73.3 15	- SS	S-3	24	70 86 70 70	4	>100); Ø O O O		Moist, very dense, gray, fine to coarse GRAVEL and fine to coarse SAND, trace silt				
- - -									Test boring B-59 terminated at 16' bgs and backfilled with soil cuttings.				
68.3	S	ample Ty	pes						Consistency vs Blowcount/Foot Burmister Classification				
AS - Auge CS - Califo BQ - 1.5" I NQ - 2" Ro	r/Grab S ornia Sa Rock Co	Sample Impler ore	V - Vac	nple t Spoor lby Tub	ן הב	V. Loos Loose: M. Den	se: (anular)-4 [-10 \	Sand): Fine Grained (Clay): and 35-50% Some 20-35% Soft: 2-4 V. Stiff: 15-30 trace 10% moisture, density, color				
Revie	wed k	y:				Date: Boring Number: B-59							

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NX **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 1075 Pleasant St., Belmont, MA Northing: 2966922.9100 Easting: 739437.503

Drilling Date: Start: 9/21/2017 End: 9/21/2017

Surface Elevation (ft.): 96.11

Total Depth (ft.): 8.5

Depth to Initial Water Level (ft):

Depth Date Time

NE 9/21/2017 --

Abandonment Method: Backfilled with soil cuttings

Logged By: J. Wang

									Logged By: J. Wang
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description Remarks
96.1				38					6" Asphalt
	SS	S-1	9	100/3"	7	>100	,, o,	_	Moist, very dense, dark gray, fine to coarse
-								3ve	SAND, some fine to coarse gravel, trace silt
								Sand and Gravel	or true, some time to obdise gravel, trade six
-				58				n d	Moist, very dense, dark gray, fine to coarse Analytical sample
	SS	S-2	15	73	12	>100		ا و	GRAVEL and fine to coarse SAND, trace silt (2'-3.25')
-	1		'	100/3"				Sar	
							N/X		See core log for description
	1								
91.1									
5									
L.	NX	C-1	60		56			Bedrock	
	1	0-1	00		50			ğ	
ļ .	4								
								3	
ļ .	- 1							1	
							DXXX.	-	Test boring B-60 terminated at 8.5' bgs and
<u> </u>	- 1								backfilled with soil cuttings.
06.4									baokilied with soil outlings.
86.1 10	1								
F -	1								
-	1								
	1								
L									
81.1									
15									
L .	1								
17/8									
·	1 1								
집									
ZO 1802ZU.GPJ - 3/8/ZI									
180									
<u>-</u>									
20.4									
76.1		manla To							Consistency on Planacount/Foot Promise of Classification
76.1 AS - Auge	Sample Types								Consistency vs Blowcount/Foot Burmister Classificatio
≦ AS - Auge	AS - Auger/Grab Sample V - Vac Ex/Grab Sample							anular	Sand): Fine Grained (Clay): and 35-50% some 20-35%
n CS - Calif BQ - 1.5"	ornia Sa Rock Ca	ampler S	SS - Spli ST - She	t Spooi	n	V. Loos			ense: 30-50 V. Soft: <2 Stiff: 8-15 little 10-20%
∸l NQ - 2" R		e S	ST - She SP - Geo	lby Tub	be	Loose: M. Den			. Dense: >50 Soft: 2-4 V. Stiff: 15-30 trace <10% M. Stiff: 4-8 Hard: >30 moisture, density, color
Povio	א א א ו			-p. 500					module, denoity, each
ୁ Revie	wea t	υy:							Date: Boring Number: B-60

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NX Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 1075 Pleasant St., Belmont, MA Northing: 2966922.9100 Easting: 739437.503

Drilling Date: Start: 9/21/2017 **End:** 9/21/2017

Surface Elevation (ft.): 96.11

Total Depth (ft.): 8.5

Depth to Initial Water Level (ft): ΝE 9/21/2017

Abandonment Method: Backfilled with soil cuttings

Logged By: J. Wang

Elevation Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Recovery (%)	RQD (%)	Drill Rate (min/ft)	Down Press. (psi)	Graphic Log	Strata	N	laterial Description		Remarks
91.1 5.0	NX	C-1	60	93	35	2.5 2.5 2.0 2.0	NR	××× ××× ××× ××× ××× ××× ×××	Granite	Hard, slightly weath GRANITE; primary moderately fracture	ered, medium grained, gra joint set shallow, very clos d	ay se to close,	
_ <u>86.1</u>								×××		Test boring B-60 ter	rminated at 8.5' bgs.		
81.1 - 81.1 - 15.0													
,	dina (mm)			-:4 0	anacin	(Continuity (mm)	Attitude Angle	Anauti	ıre (mm)

Bedding (mm)	Joint Spacing (mm)	Continuity (mm)	Attitude Angle	Aperture (mm)
Extremely Thin <20	Extremely Close <20 Very Close 20-60 Close 60-200 Mod Close 200-600 Wide 600-2000 Very Wide 2000-6000 Extremely Wide >6000	Extremely <25 Moderately 25-100 Slightly 100-200 Sound >200	Horizontal 0° - 5° Shallow 5° - 35° Moderate 35° - 55° Steep 55° - 85° Vertical 85° - 90°	Very Tight < 0.1 Tight 0.1 - 0.25 Partly Open 0.25 - 0.5 Open 0.5 - 2.5 Mod. Wide 2.5 - 10 Wide >10

- 3/8/21	-]															
.GPJ	Bedo	ling (n	<u>nm)</u>		J	oint S	pacir	ıg (mı	<u>m)</u>	2	Continui	ty (mm)	Attitud	le Angle	Apert	ure (mm)
A WASM 3 20180220.	Extremely Very Thin Thin Medium Thick Very Thicl Extremely	(<2 20- 60-2 200- 600-2 2000- >60	-60 200 -600 2000 -6000	Ve CI Mo W Ve	tremely ery Clos ose od Clos ide ery Wid	e e	20 20 600 200 200	<20 0-60 0-200 0-600 0-2000 0-6000 6000	M _i	Extremely <25 Moderately 25-100 Sound >200 Sound Sound Sound Sound					
MWRA	<u>Fiel</u>	d Hard	dnes	<u>s</u>			Wea	therin	<u>nering</u>							
SDO7.	Very Hard Hard	Scr	e Can atches culty	n't Scrat s with		Fresh Slight		Disco	sible si loration	indica	ited weath	al weathering ering. All the	; slight to no rock materia	discoloration. Il may be disco	loredand may l	pe weaker externally
BIN	Med. Hard	Scr	atches	Readi	ly	Modera	ate					erial is decom			d to a soil. Fre	sh or discolored rock is
	Medium	Diffi	oves v			Severe		More	than ha	alf of the	e rock mat	erial is decon	nposed and/	or disintegrated	I to a soil. Free	sh or discolored rock is
CORE ONLY	Soft Very Soft			Readily ith Knife	e	Compl Residu		All ro	ck mate ck mate	erial is o erial is o	decompos converted	to soil. The n	integrated to nass structu	soil. The origin		ture is largely intact. royed. There is a large
30CK	Reviewed by:										Dat	e:		Boring N	umber: B	-60

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira **Drilling Method/Casing/Core Barrel Size:** Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Pleasant St./Olmstead Dr., Belmont, MA

Northing: 2966985.6420 Easting: 739825.182

Drilling Date: Start: 9/21/2017 **End:** 9/21/2017

Surface Elevation (ft.): 94.5

Total Depth (ft.): 14

Depth to Initial Water Level (ft):DepthDateTime69/21/201712:00

Abandonment Method: Backfilled with soil cuttings

									Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description Remai	rks
0									6" Asphalt	
_									6" Cobble	
	SS	S-1	12	45 70	7	>70			Moist, very dense, brown, fine to coarse SAND, some fine to coarse gravel, trace silt	
	SS	S-2	24	22 21 20 20	2	41		Sand and Gravel	Moist, dense, brown, fine to coarse SAND, some fine to coarse gravel, trace silt Analytical s (2'-4')	sample
89.5 5	- SS	S-3	24	27 26 45 46	8	71		Sand	Moist, very dense, brown, fine to coarse GRAVEL and fine to coarse SAND, trace silt (4'-6')	sample
- * -	SS	S-4	7	70 50/1"	7	>50		d Rock	Wet, very dense, brown, fine to coarse GRAVEL and fine to coarse SAND, trace silt	
								ere		
	SS	S-5	5	100/5"	5			Weathered	Wet, very dense, brown, fine to coarse	
-							V ////	>	GRAVEL and fine to coarse SAND, trace silt See core log for description	
- 84.5 10	NX	C-1	60		52			Bedrock		
- <u>79.5</u>	-								Test boring B-61 terminated at 14' bgs and backfilled with soil cuttings.	
	1									
74.5	9-	mnle Tra	nos						Consistency vs Blowcount/Foot Burmister Classi	fication
74.5 AS - Auge CS - Calife BQ - 1.5" NQ - 2" Re	er/Grab S ornia Sa Rock Co ock Core	mpler Sore S	V - Vac Sam S - Spli T - She SP - Geo	nple t Spoor lby Tul	n l	V. Loos Loose: M. Den	se: 0	nular ()-4 C 10 V	Consistency vs Blowcount/Foot Burmister Classi (Sand): Fine Grained (Clay): and 35-50 some 20-35 some 20-35 little 10-20 some 20-35 little 10-20 trace < 10 moisture, density, Date: Boring Number: B-61	0% 5% 1% %

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA
Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Pleasant St./Olmstead Dr., Belmont, MA

Northing: 2966985.6420 Easting: 739825.182

Drilling Date: Start: 9/21/2017 **End:** 9/21/2017

ROCK CORE ONLY GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 94.5

Total Depth (ft.): 14

Depth to Initial Water Level (ft):

Depth Date Time
6 9/21/2017 12:00

Abandonment Method: Backfilled with soil cuttings

Logged By: A. Smith

Elevation Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Recovery (%)	RQD (%)	Drill Rate (min/ft)	Down Press. (psi)	Graphic Log	Strata	N	laterial Description		Remarks
<u>84.5</u> 10.0						2:00 2:30		××× ××× ××× ××× ××× ××× ××× ×××		Hard, slightly weath GRANITE; very clos	ered, medium grained, gra se to close jointing	ay,	
	NX	C-1	60	87	17	2:30	NR	× × × × × × × × ×	Granite				
- 						1:30 2:00		××× ×××		Total having D Cd to	maria aka da ka da la bara		
<u>79.5</u> 15.0										Test boring B-61 te	rminated at 14' bgs.		
- - -													
74.5 20.0													
69.5													
_ <u>69.5</u> _ 25.0													
- 													
Bed	dina (mm)			oint S	\		>		Continuity (mm)	Attitude Angle	Anaut	ıre (mm)

Bedding (mm)	Joint Spacing (mm)	Continuity (mm)	Attitude Angle	Aperture (mm)		
Extremely Thin <20	Extremely Close <20 Very Close 20-60 Close 60-200 Mod Close 200-600 Wide 600-2000 Very Wide 2000-6000 Extremely Wide >6000	Extremely <25 Moderately 25-100 Slightly 100-200 Sound >200	Horizontal 0° - 5° Shallow 5° - 35° Moderate 35° - 55° Steep 55° - 85° Vertical 85° - 90°	Very Tight < 0.1 Tight 0.1 - 0.25 Partly Open 0.25 - 0.5 Open 0.5 - 2.5 Mod. Wide 2.5 - 10 Wide >10		

	Field I	Hardness	Weat	hering	
3 \	Very Hard	Knife Can't Scratch	Fresh	No Visible sign of rock material weathering; slight to no	
3 +	Hard	Scratches with Difficulty	Slight	Discoloration indicated weathering. All the rock materithan its fresh condition.	ai may be discoloredand may be weaker externally
וכ	Med. Hard	Scratches Readily Grooves with	Moderate	Less than half of the rock material is decomposed and/ present either as a continuous framework or as coresto	
١.	Medium	Difficulty	Severe	More than half of the rock material is decomposed and	or disintegrated to a soil. Fresh or discolored rock is
	Soft	Grooves Readily		present either as a continuous framework or as coresto	
۱ از	√ery Soft	Carves with Knife	Complete	All rock material is decomposed and/or disintegrated to	
5			Residual Soil	All rock material is converted to soil. The mass structuchange in volume, but the soil has not been significantly	
ŧΓ	Davilous	al las es		Deter	Danima Number D C4

Reviewed by: Date: Boring Number: B-61

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher **Drilling Method/Casing/Core Barrel Size:** Drive and Wash / 4 in / NX

 $\textbf{Hammer Weight/Drop Height/ Spoon Size:} \quad 140 \text{ lb} \text{ / } 30 \text{ in /2 in O.D.}$

Bore Hole Location: 1010 Pleasant St., Belmont, MA **Northing:** 2966921.5300 **Easting:** 740085.377 **Drilling Date: Start:** 11/9/2017 **End:** 11/13/2017

Surface Elevation (ft.): 85.85

Total Depth (ft.): 14.1

Depth to Initial Water Level (ft):

Depth Date Time

6.0 11/13/2017 09:15

Abandonment Method: Backfilled with soil cuttings

	,							Logged By: A. Smith					
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks			
0									4" Asphalt				
	SS	S-1	10	17 100/4"	6	>100		≣	Moist, very dense, brown, fine to medic SAND, little silt	ım			
	- ss	S-2	24	14 28 28 25	8	56			Moist, very dense, gray-brown, fine to o SAND and fine to coarse GRAVEL, little	coarse Analytical sample (2'-4')			
	- ss	S-3	24	14 44 38 56	10	82		Sand and Gravel	Moist, very dense, gray-brown, fine to o SAND and fine to coarse GRAVEL, little	e silt (4'-6')			
	ss	S-4	18	66 92 100	16	>100		Sanda	Moist, very dense, gray-brown, fine to o SAND and fine to coarse GRAVEL, little	coarse Corrosion sample (6-'7.5')			
 	SS	S-5	16	18 40 100/4"	8	>100			Moist, very dense, gray-brown, fine to o SAND and fine to coarse GRAVEL, little	Advanced rollerbit from 10 to 11' in rock. Cored rock from 11 to 14' and			
- <u>75.9</u>	NX	C-1	36		12			Weathered Rock	See core log for description	retrieved 12" of cobbles and coarse gravel.			
- <u>70.9</u> - 15	SS	S-6	1	100/1"	0				No Recovery Test boring B-62 terminated at 14.1' bo backfilled with soil cuttings.	gs and			
65.9	65.9 Sample Types								Consistency vs Blowcount/Foot	Burmister Classification			
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	er/Grab S fornia Sa Rock Co	Sample mpler ore	V - Vac San SS - Spli T - She GP - Ged	nple t Spoor lby Tub	n ne	V. Loos Loose: M. Den	se: 0 4-	anular ()-4 C -10 V	Sand): Fine Grained (Clay): ense: 30-50 V. Soft: <2	and 35-50% some 20-35%			
Revie	wed b	y:							Date: Boring N	umber: B-62			

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NX

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 1010 Pleasant St., Belmont, MA Northing: 2966921.5300 Easting: 740085.377

Drilling Date: Start: 11/9/2017 **End:** 11/13/2017

ROCK CORE ONLY GINT LOGS MWRA WASM 3 20180220.GPJ - 5/18/23

Surface Elevation (ft.):85.85

Total Depth (ft.): 14

Depth to Initial Water Level (ft):

6.0 11/13/2017 09:15

Abandonment Method: Backfilled with soil cuttings

Elevation Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Recovery (%)	RQD (%)	Drill Rate (min/ft)	Down Press. (psi)	Graphic Log	Strata	Material Description	Remarks
	NX	C-1	36	33	0	2 1 2		××× ××× ××× ××× ×××	GRANITE	Hard, moderately fractured, slightly weathered, gray, medium grained, GRANITE; primary joint set steep to vertical, very close, rough, stepped	
- <u>70.9</u> - <u>15.0</u>								XXX		Continue split spoon sampling at 14' bgs.	
- <u>65.9</u> - <u>20.0</u>											
<u>55.9</u> 30.0	ding	(mm)			-i4 G	Snacij				Continuity (mm) Attitude Angle Ape	ture (mm)

Bedding (mm)	Joint Spacing (mm)	Continuity (mm)	Attitude Angle	Aperture (mm)		
Extremely Thin <20	Extremely Close	Extremely <25 Moderately 25-100 Slightly 100-200 Sound >200	Horizontal 0° - 5° Shallow 5° - 35° Moderate 35° - 55° Steep 55° - 85° Vertical 85° - 90°	Very Tight < 0.1 Tight 0.1 - 0.25 Partly Open 0.25 - 0.5 Open 0.5 - 2.5 Mod. Wide 2.5 - 10 Wide >10		

Field	Hardness	Weat	thering		·
Very Hard Hard	Knife Can't Scratch Scratches with	Fresh Slight		material weathering; slight to no weathering. All the rock materia	discoloration. al may be discoloredand may be weaker externally that
Med. Hard	Difficulty Scratches Readily	Moderate			or disintergrated to a soil. Fresh or discolored rock is
Medium	Grooves with Difficulty	Severe	More than half of the ro		or disintegrated to a soil. Fresh or discolored rock is
Soft Very Soft	Grooves Readily Carves with Knife	Complete	All rock material is dec		soil. The original mass structure is largely intact.
		Residual Soil		the soil has not been significantly	re and material fabric are destroyed. There is a large y transported.
Reviewe	ed by:			Date:	Boring Number: B-62

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 1010 Pleasant St., Belmont, MA Northing: 2967275.6760 Easting: 740503.059 **Drilling Date: Start:** 9/20/2017 **End:** 9/20/2017

Surface Elevation (ft.): 74.79

Total Depth (ft.): 14.3

Depth to Initial Water Level (ft):

Depth Date Time 6.2 9/20/2017 15:35

Abandonment Method: Backfilled with soil cuttings

Diming	, Date.	Start. 3/	20/201	, LI	u. 0/2	0/2017					Lo	gged E	By: A. Smith				
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Materia	l Desci	ription			Rema	arks
0	SS	S-1	24	20 70 70 78		>100					dense, g to coarse		ne to coarse I, little silt	SANI	D,		
	SS	S-2	6	100/6"	6						dense, g to coarse		ne to coarse I, little silt	SANI	D,	Analytical (2-2.5')	sample
- <u>69.8</u> -	SS	S-3	24	21 25 65 100	12	90							ine to coarse EL, little silt	SAN	ID	Analytical (4-6')	sample
- <u>T</u>	SS	S-4	10	75 100/4"	10	>100		and Gravel					ine to coarse EL, trace silt	SAN	ID		
_ <u>64.8</u> _ 10	- SS	S-5	24	40 80 80 100	16	>100		Sand and					ine to coarse EL, trace silt	SAN	ID		
	-																
<u>59.8</u> 	SS	S-6	3	100/3"	0			i	T				ed at 14.3' bǫ s.	gs an	d		
54.8														,			
	<u>Sa</u>	mple Ty							Consistency vs Blowcount/Foot Burmister Classifica								
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	ornia Sa Rock Co	impler ore S	V - Vac San SS - Spli ST - She SP - Geo	nple t Spoor lby Tub	n ne	V. Loos Loose: M. Den	se: 0	-4 C 10 V	(Sand) Dense: /. Dens	30-50 e: >50	V. Soft Soft: M. Stiff	<2 2-4		15 -30 30	s li	and 35-5 ome 20-3 ittle 10-2 trace <10 sture, density	35% 0% 0%
Revie	wed k	y:								Date:			Boring N	umb	er: B	-63	

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher **Drilling Method/Casing/Core Barrel Size:** Drive and Wash / 4 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 1000 Pleasant St., Belmont, MA Northing: 2967341.7673 Easting: 740754.7076

Drilling Date: Start: 11/20/2017 End: 11/20/2017

Surface Elevation (ft.): 73
Total Depth (ft.): 15.3

 Depth to Initial Water Level (ft):

 Depth
 Date
 Time

 11.8
 11/20/2017
 10:25

Abandonment Method: Backfilled with soil cuttings

									Logged By: A. Smith
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description Remarks
0 -									4" Peastone Vacuum excavate boring from the ground surface to 6' bgs.
	VE	V-1							Moist, brown-gray, fine to medium SAND, some fine to coarse gravel, little silt Analytical sample (2'-2.5')
	SS	S-1	24	16 21 20 50	10	41			Moist, hard, brown, fine to coarse SAND, some silt, some fine to coarse gravel Analytical sample (6'-8')
- 63.0 - 10	- SS	S-2	24	54 52 54 100	16	>100		Sand and Gravel	Moist, hard, brown, SILT, little fine to coarse gravel, trace fine sand Corrosion sample (8'-10')
	SS	S-3	16	23 26 100/4"	8	>100			Wet, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little silt Test boring B-64 terminated at 15.3' bgs and backfilled with soil cuttings.
	r/Grab S ornia Sa	malor	V - Vac Sam	nple	- 1.	V. Loos		anular (Consistency vs Blowcount/Foot Burmister Classification (Sand): Fine Grained (Clay): and 35-50% some 20-35% little 10-20% Jense: 30-50 V. Soft: <2
Revie	ock Core	· G	S - Spli T - She SP - Geo	by Tub probe	pe	Loose: M. Den			Dense: >50 Soft: 2-4 V. Stiff: 15-30 trace <10% moisture, density, color

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 800 Pleasant St., Belmont, MA Northing: 2967744.1836 Easting: 741155.4214 **Drilling Date: Start:** 9/19/2017 **End:** 9/19/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 74.4

Total Depth (ft.): 15

Depth to Initial Water Level (ft): Depth

Date Time 9.0 9/19/2017 13:40

Abandonment Method: Backfilled with soil cuttings

_			13/201							Logged E	By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		Material Desc	ription	Remarks
0				12			74 15 17		4" Topsoil			
-	ss	S-1	24	32 32 30	12	64					nse, brown, fine to coarse gravel, little	
-	SS	S-2	24	10 14 22 12	5	36					fine to coarse gravel, little silt	Analytical sample (2-4')
69.4 5	- ss	S-3	24	12 10 12 24	20	22				im dense, bro and, trace fine	wn, SILT, some fi e sand	ne
-	ss	S-4	15	20 70 100/3"	12	>100		Sand and Gravel			fine to coarse se gravel, trace silt	
-	SS	S-5	6	100/6"	6			lanc	Wet verv de	nse grav-bro	wn, fine to coarse	
▼ .		- 0 0						Sanc			e gravel, some silt	
64.4 10												
<u>59.4</u> 15	SS	S-6	12	28 100/6"	10	>100			SAND, some	e fine to coars	wn, fine to coarse e gravel, little silt ed at 15' bgs and	
- - -	-									h soil cuttings		
54.4					<u> </u>							
	Sa	mple Ty		- /-					Consistency vs B			Burmister Classification
AS - Auge CS - Calif 3Q - 1.5" NQ - 2" R	ornia Sa	impler ore S	V - Vac Sam S - Spli T - She SP - Geo	nple t Spoor lby Tul	n ,	V. Loos Loose: M. Den	se: 0	10 V	Sand): ense: 30-50 Dense: >50	Fine Gra V. Soft: <2 Soft: 2-4 M. Stiff: 4-8	stiff: 8-15 V. Stiff: 15-30 Hard: >30	and 35-50% some 20-35% little 10-20% trace <10% moisture, density, color
D! -	wed b	w.							Date:		Boring Numb	er: B-65

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira
 Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NX
 Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

 Bore Hole Location:
 790 Pleasant St., Belmont, MA

 Northing:
 2967939.2190 Easting:
 741497.916

 Drilling Date:
 Start:
 9/26/2017 End:
 9/26/2017

Surface Elevation (ft.): 73.6

Total Depth (ft.): 14.2

Depth to Initial Water Level (ft):

Depth Date Time 7.0 9/26/2017 13:20

Abandonment Method: Backfilled with soil cuttings

Logged By: J. Wang

									Logged By: J. Wang	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0							0 0 0 0		3" Concrete	Vacuum excavate
	-							Sand and Gravel	1" Gravel Subbase	boring from the ground surface to 6' bgs.
	VE	V-1	12					Sand	Moist, dark gray, fine to coarse SAND, some silt, little fine to coarse gravel	Analytical sample (3-4')
<u>68.6</u> 5	VE	V-2	6						Moist, dark brown, SILT, little clay, trace fine gravel	Corrosion sample (4'-6')
_ ⊼ -	- SS	S-1	24	17 10 7 14	12	17		Sandy Silt	Wet, medium dense, black, Organic SILT and fine to coarse SAND, trace fine gravel	
-	SS	S-2	3	100/3"	3			and	No Recovery	
- 63.6 - 10	-									
-	NX	C-1	12					Sand and Gravel		Rollerbit from 12 to 13' bgs.
							\$	and		
-	SS	S-3	2	100/2"	1			ιχ	Wet, very dense, brown, fine to coarse SAND,	
53.6 AS - Auge CS - Calife BQ - 1.5" NQ - 2" Ro				100/2	•				some silt, little fine to coarse gravel Test boring B-66 terminated at 14.1' bgs and backfilled with soil cuttings.	
33.0	Sa	ample Ty	pes	I				<u> </u>	Consistency vs Blowcount/Foot Burn	nister Classification
AS - Auge CS - Califo BQ - 1.5" I NQ - 2" Ro	er/Grab S ornia Sa Rock Co	Sample Impler ore S	V - Vac San SS - Spli ST - She SP - Geo	nple t Spoor lby Tuk	n l	V. Loos Loose: M. Den	se: 0	anular)-4 C -10 V	Sand): Fine Grained (Clay): ense: 30-50 V. Soft: <2	and 35-50% some 20-35% little 10-20% trace <10% isture, density, color
Revie	wed b	y:							Date: Boring Number: I	3-66

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number: 101038-102170**

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 782 Pleasant St., Belmont, MA Northing: 2968066.8890 Easting: 741677.9 **Drilling Date: Start:** 10/3/2017 **End:** 10/3/2017

Surface Elevation (ft.): 73.01

Total Depth (ft.): 14.8

Depth to Initial Water Level (ft): Depth Date

10/3/2017 Abandonment Method: Backfilled with soil cuttings

12:15

2.5

	, =		0,0,00			0,20			Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0									3" Concrete 3" Sand Subbase	Vacuum excavate boring from the
- <u>▼</u>	VE	V-1						E	Moist, dark brown, fine to coarse SAND, some fine to coarse gravel, trace silt	ground surface to 6' bgs. Analytical sample (3-4')
5 	SS	S-1	14	11 18 100/2"	5	>100			Moist, hard, brown, Organic fine to coarse SAND and SILT, some fine gravel	
	SS	S-2	3	100/3"	3				Moist, very dense, brown, fine to coarse SAND, some fine to coarse gravel, little silt	
- <u>63.0</u>	-							Silty Sand		
- 58.0 - 15	SS	S-3	9	70 100/3"	6	>100			Moist, very dense, brown, fine to coarse SAND, some fine to coarse gravel, little silt Test boring B-67 terminated at 14.8' bgs and backfilled with soil cuttings.	
 53.0										
50.0	Sa	mple Ty	pes	1					Consistency vs Blowcount/Foot But	mister Classification
AS - Auge CS - Califo BQ - 1.5" NQ - 2" Ro	ornia Sa Rock Co ock Core	impler sore	V - Vac San SS - Spli ST - She SP - Geo	nple t Spoor lby Tub	n ,	V. Loos Loose: M. Den	se: O)-4 C ·10 V		and 35-50% some 20-35% little 10-20% trace <10% oisture, density, color
Revie	wed b	y:							Date: Boring Number:	B-67

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira **Drilling Method/Casing/Core Barrel Size:** Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 762 Pleasant St., Belmont, MA **Northing:** 2968334.4810 **Easting:** 742022.9 **Drilling Date: Start:** 10/2/2017 **End:** 10/2/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 69.93

Total Depth (ft.): 15.5

Depth to Initial Water Level (ft):DepthDateTime6.110/2/201713:15

Abandonment Method: Backfilled with soil cuttings

	,										Logge	d By	: A. Sm	ith / J. W	√ang				
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material Des	scrip	otion				R	emarks	
0							5. X.X		3	" Concrete	& 1" Sand	Sub	base					ım excava	
· -	VE	V-1	12					Ē	N s	Noist, dark to	orown, fine t coarse gra	to co	oarse S trace s	SAND, ilt			groun 6' bgs	tical samp	to
64.9 5	VE	V-2	12								orown, fine t coarse gra						Analy (3'-4')	tical samp	le
. <u>T</u> .	ss	S-1	24	33 28 9 36	8	37			M	∕loist, dense	e, brown, fin	ne S/	AND a	nd SILT	-				
59.9 10	- SS	S-2	24	38 84 70 100	14	>100		Silty Sand			lense, brow , trace fine (me fine	to				
	SS	S-3	18	44 46 100/6"	12	>100		S	S	SAND, some	ense, brown e fine to coa	arse	gravel,	some s					
									b	est boring l ackfilled wit	B-68 termin th soil cuttin	nated ngs.	I at 15.	5' bgs a	and				
49.9																			
		ample Ty									Blowcount/Fo	<u>oot</u>			<u> </u>			lassificat	ion
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	Rock Co	ampler ore	V - Vac San SS - Spli ST - She SP - Geo	nple t Spoor lby Tub	n ne	V. Loos Loose: M. Den	se: 0 4-	-10 V	(Sand Dense: /. Dens	30-50	V. Soft: <	<u>Grain</u> <2 2-4 4-8	ed (Clay Stiff: V. Stiff: Hard:	 8-15		litt tr	me tle ace	35-50% 20-35% 10-20% <10% ensity, colo	r
Revie	wed b	oy:								Date:			Borin	g Num	ber	r: B -	-68		

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 750 Pleasant St., Belmont, MA Northing: 2968469.5950 Easting: 742257.907

Drilling Date: Start: 9/19/2017 **End:** 9/19/2017

Surface Elevation (ft.): 74.66

Total Depth (ft.): 14.8

Depth to Initial Water Level (ft):

Depth Date 11.5 9/19/2017 10:25

Abandonment Method: Backfilled with soil cuttings

									Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
74.7					_				6" Asphalt	
· ·				7			$\times\!\!\times\!\!\times$		Moist, very dense, brown, fine to coarse	Analytical sample
_	SS	S-1	18	44	8	92	\bowtie		Sand, some fine to coarse gravel, little silt	(2-4')
_				48			\bowtie			
				24			\bowtie	≣	Moist, dense, brown, fine to coarse Sand,	Analytical sample
-	ss	S-2	24	25 13	10	38	\bowtie		some fine to coarse gravel, little silt	(4-6')
				12			\bowtie			
-				12			$\sim\sim$		Moist, dense, brown, fine to coarse SAND,	
69.7				15					some silt, little fine gravel	
<u>69.7</u> 5	SS	S-3	24	18	8	33			, 3	
				18						
_				15					Moist, dense, brown, fine to medium SAND,	Corrosion sampl
_	ss	S-4	24	12	12	40			some silt, trace fine gravel	(6'-8')
		0 7		28	12	40				
-				20 12					Maint vary dance grow fine to coorse CAND	
				45				-	Moist, very dense, gray, fine to coarse SAND, little silt, little fine gravel	
-	SS	S-5	24	45	16	90		Silty Sand	inde sin, inde time graver	
64.7				70				ty S		
10								S		
▼ -	-									
-	SS	S-6	24	85 100/4"	10	>100			Wet, very dense, brown, fine to coarse SAND,	
59.7 15				100/4					some fine to coarse gravel, little silt Test boring B-69 terminated at 14.8' bgs and	
15									backfilled with soil cuttings.	
=	1								basiamed war con catalige.	
-										
-	-									
-										
54.7		ample Ty	, nos						Consistency vs Blowcount/Foot B	urmister Classificati
				Ev/C=-	h					
S - Auge	r/Grab S	sample mplor	V - Vac San	elar	١.	, ,			Sand): Fine Grained (Clay):	some 20-35%
Q - 1.5"	Rock Co	orė Š	SS - Spli ST - She	t Spoor	<u>ا</u> ا	√. Loos _oose:	4-	·10 \	ense: 30-50 V. Soft: <2 Stiff: 8-15 . Dense: >50 Soft: 2-4 V. Stiff: 15-30	little 10-20% trace <10%
IQ - 2" R	ock Core	e d	SP - Geo	pprobe	′ i		se: 10		M. Stiff: 4-8 Hard: >30	moisture, density, color
Povio	wed b	JV.							Date: Boring Number	· B-69

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher, J. Murphy Surface Elevation (ft.): 78.82

Drilling Method/Casing/Core Barrel Size:Drive and Wash / 4 in / NATotal Depth (ft.): 13.5Hammer Weight/Drop Height/ Spoon Size:140 lb / 30 in /2 in O.D.Depth to Initial Water Level (ft):Bore Hole Location:Pleasant St./Snake Hill Rd., Belmont, MADepth DateTime

Northing: 2968930.1200 Easting: 742578.168

Drilling Date: Start: 9/18/2017 End: 9/18/2017

3.2 9/18/2017 15:15 **Abandonment Method:** Backfilled with soil cuttings

										Logged	By: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		Material Desc	cription		Remarks
78.8 0					_				E	5" Asphalt			
	SS	S-1	18	10 26 32	10	58			N	Moist, very dense, brown SAND, some fine to coar			
— Ā -	- SS	S-2	24	20 20 15 14	18	35				Moist, dense, brown, fine and fine to coarse GRAV			Analytical sample (2'-4')
73.8	SS	S-3	9	13 100/3"	4	>100				Moist, very dense, brown SAND, some fine to coar			
	- SS	S-4	24	40 48 45 70	18	93		Sand and Gravel	N S	Moist, very dense, gray-b SAND, some fine gravel,	rown, fine to coars little silt	e	Analytical sample (6'-8')
- <u>68.8</u> -	- SS	S-5	24	34 50 62 80	14	>100		Sai		Moist, very dense, gray-b SAND, some fine to coar			
	SS	S-6	6	100	1				\\{	Moist, very dense, gray-b SAND, some fine to coar Test boring B-70 termina	se gravel, trace silt		
63.8 -	-									eackfilled with soil cutting		u	
7808	-												
\$	Sa	mple Ty	pes	•		•			Cons	istency vs Blowcount/Foo	<u>ot</u>	Burmi	ster Classification
g CS - Califo BQ - 1.5" NQ - 2" Ro	er/Grab S ornia Sa Rock Co	Sample mpler S	V - Vac San S - Spli T - She GP - Ged	nple t Spoor lby Tuk	n ne	V. Loos Loose: M. Den	se: 0 4-	nular 1-4 C 10 V		1): Fine Gi 30-50 V. Soft: <2	rained (Clay): 2 Stiff: 8-15 4 V. Stiff: 15-30	a so li t	nd 35-50% ome 20-35% ttle 10-20% race <10% ture, density, color
Revie	wed b	y:								Date:	Boring Numb	er: B	-70

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira **Drilling Method/Casing/Core Barrel Size:** Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 710 Pleasant St., Belmont, MA **Northing:** 2969443.2520 **Easting:** 742853.145 **Drilling Date: Start:** 9/25/2017 **End:** 9/25/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 75.15

Total Depth (ft.): 15.5

Depth to Initial Water Level (ft):

Depth Date Time

NE 9/25/2017 13:45

Abandonment Method: Backfilled with soil cuttings

Logged By: J. Wang

										Logge	ed By: J. Wang		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		Material De	escription		Remarks
0							74 15 - 74		6	" Topsoil		V	acuum excavate
									N	loist, medium dense, b AND, little silt	orown, fine to mediu	''' g	oring from the round surface to bgs.
	VE	V-1								loist, dark brown, fine ne to coarse GRAVEL		(2 S	nalytical sample 2'-3') ome cobbles in ample VE-1.
70.2	SS	S-1	8	20 100/2"	1	>100			٨	lo Recovery			oarse gravel agment in spoon o.
_	SS	S-2	4	100/4"	2	>100		Gravel		loist, very dense, dark AND, little fine gravel	gray, fine to coarse		
-	SS	S-3	13	71 60 100/1"	13	>100		Sand and Gravel		loist, very dense, gray, o coarse gravel, little sil		ne	
- <u>65.2</u> 10	- - -												
_ <u>60.2</u> _ 15	ss	S-4	18	28 40 100/5.5	. 12	>100			S	loist, very dense, dark AND, some fine grave	el, little silt		
	_								T b	est boring B-71 termin ackfilled with soil cuttir	nated at 15.5' bgs an	d	
55.2	-												
	Sa	ample Ty	pes			•	•	9	Cons	istency vs Blowcount/Fo	<u>oot</u>	Burmist	er Classification
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	fornia Sa	ampler ore S	V - Vac Sam SS - Spli ST - She SP - Geo	nple t Spoor Iby Tub) ne	V. Loos Loose: M. Den	se: 0	10 V	Sand ense: Dens	30-50 V. Soft: 5 se: >50 Soft: 2	Grained (Clay): <2 Stiff: 8-15 2-4 V. Stiff: 15-30 4-8 Hard: >30	and some little trace moistur	10-20%
Revie	wed k	oy:								Date:	Boring Numb	er: B-7	1

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Number: 101038-102170 Project Location: Massachusetts

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NX Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Pleasant St./Moore St., Belmont, MA

Northing: 2969926.0748 Easting: 743401.939

Drilling Date: Start: 9/15/2017 **End:** 9/15/2017

Surface Elevation (ft.): 71.72

Total Depth (ft.): 13.5

Depth to Initial Water Level (ft):

Depth Date 3.0 9/15/2017 11:45

Abandonment Method: Backfilled with soil cuttings

											Lo	ggea B	sy: A. Sm	ith			
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material	Descr	iption			Remarks	\$
0									5'	' Asphalt							
	SS	S-1	18	20 28 28	7	56			IV	oist, very	dense, g coarse G				D		
_ 🛂 -	- SS	S-2	24	18 30 48 22	8	78					l, brown, fine grave		some fin	e to coar	rse	Analytical sar (2'-4')	nple
- 66.7 5	SS	S-3	12	18 100	10	>100					dense, b I fine to co				t	Analytical sar (4'-5')	nple
	SS	S-4	6	100	4	>100		Sand and Gravel	N S	oist, very AND and	dense, b I fine to co	rown, oarse (fine to co GRAVEL	oarse ., little silt	t	Corrosion sar (6'-6.5')	mple
								Sa								Core through boulder from 11.5' bgs.	
	SS	S-5	2	50/2"	0	>50			3'	o Recove ' Spoon: parse SA tle silt	ery: Moist, ver ND and fi	y dens	se, brow coarse G	n, fine to RAVEL,	/		
- <u>56.7</u> - <u>56.7</u> 	-								T	est boring	g B-72 ter with soil c	minate uttings	ed at 13.	5' bgs ar	nd		
	-																
51.7															1		
	<u>Sa</u>	mple Ty							Consi	stency vs	Blowcour	t/Foot				ister Classific	
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	ornia Sa Rock Co	mpler ore S	V - Vac San SS - Spli ST - She SP - Geo	nple t Spoor lby Tul	n	V. Loos Loose: M. Den	se: 0	-4 E	(Sand) Dense: /. Dens	30-50	V. Soft: Soft: M. Stiff	<2 2-4	ined (Clay Stiff: V. Stiff: Hard:	 8-15	s li	and 35-50% some 20-35% ittle 10-20% trace <10% sture, density, co	
Revie	wed b	y:								Date:			Borin	g Numb	oer: B	3-72	

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira **Drilling Method/Casing/Core Barrel Size:** Drive and Wash / 3 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 624 Pleasant St., Belmont, MA **Northing:** 2970178.3111 **Easting:** 743563.9377 **Drilling Date: Start:** 9/15/2017 **End:** 9/15/2017

Surface Elevation (ft.): 81.67

Total Depth (ft.): 14.3

Depth to Initial Water Level (ft):

Depth Date Time 8.0 9/15/2017 14:30

Abandonment Method: Backfilled with soil cuttings

											Lo	gged E	3y: A. Sm	nith			
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material	Desci	ription			Remark	ks
81.7				1			74 15. °41		т	op 6": To	ocoil						
	SS	S-1	24	4 10 14	10	14			S	ottom 4": SAND, little	Moist, me silt, trace	e fine (gravel		ne		
-	SS	S-2	24	25 40 70 45	14	>100				loist, very AND, little				oarse		Analytical sa (2'-4')	ample
- <u>76.7</u> -	SS	S-3	9	62 100/3"	9	>100				loist, very AND, sor							
_	SS	S-4	3	100/3"	3			and Gravel		loist, very AND, sor							
▼ -	SS	S-5	9	84 100/3"	6	>100		Sand and		Vet, very on the second very detailed the second very detailed to the second very detail to the					ND		
- <u>71.7</u>	-																
66.7 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15	SS	S-6	4	100/4"	2				a T	Vet, very o nd fine to est boring ackfilled v	coarse G B-73 ter	RAVE minate	EL, little sed at 14.	silt			
61.7 61.7 AS - Auge																	
*	Sa	mple Ty	pes			•		•	Cons	istency vs	Blowcoun	t/Foot	<u> </u>		Burm	ister Classif	ication
g CS - Calif BQ - 1.5" NQ - 2" R	ornia Saı Rock Co	mpler re S	V - Vac Sam SS - Spli T - She GP - Geo	nple t Spoor lby Tul	n ne	V. Loos Loose: M. Den	se: 0 4-	·10 V	(Sand Dense: /. Dens	30-50	Fi V. Soft: Soft: M. Stiff:	<2 2-4	ained (Cla Stiff: V. Stiff Hard:	 8-15	so li t	nd 35-50% ome 20-35% ttle 10-20% race <10% sture, density, o	% %
Revie	wed b	y:								Date:			Borin	g Numl	ber: B	-73	

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D. Bore Hole Location: Alexander Ave./Pleasant St., Belmont, MA

Northing: 2970563.1560 Easting: 743850.058

Drilling Date: Start: 9/14/2017 **End:** 9/14/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Surface Elevation (ft.): 74.86

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

Depth Date Time

7.0 9/14/2017 15:10 **Abandonment Method:** Backfilled with soil cuttings

										Logged	By: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		Material Desc	cription		Remarks
74.9 0									4	" Asphalt			
	ss	S-1	14	44 50 100/2"	12	>100			Ī.	Moist, very dense, brown BAND, some fine gravel,			
	SS	S-2	24	12 34 14 35	4	48			s S	Noist, dense, brown, fine ome fine gravel, little silt	to coarse SAND,		Analytical sample (2'-4')
69.9 5	SS	S-3	12	38 100	12	>100				Moist, very dense, brown SAND, some fine gravel,			
- Ť -	SS	S-4	5	100/5"	4			Gravel					Core through boulder from 6 to 7.5' bgs.
	SS	S-5	15	52 70 100/3"	10	>100		Sand and Gi		Vet, very dense, dark graßAND and fine to coarse		ilt	
- <u>64.9</u>	-												
<u>59.9</u> 15	SS	S-6	24	40 46 80 100	6	>100				Vet, very dense, dark gra SAND and fine to coarse		ilt	
	-									est boring B-74 termina eackfilled with soil cutting			
54.9		ample Ty	nes	I					Cone	istency vs Blowcount/Foo	ıt.	Burmi	ister Classification
AS - Auge CS - Califo BQ - 1.5" NQ - 2" Ro	er/Grab S ornia Sa Rock Co	Sample ampler ore	V - Vac Sam SS - Spli T - She GP - Geo	nple t Spooi lby Tul	n ne	V. Loos Loose: M. Den	se: 0	<u>nular (</u> -4 D 10 V): Fine Gr 30-50 V. Soft: <2		a so li t	nd 35-50% ome 20-35% tttle 10-20% race <10% sture, density, color
Revie	wed k	oy:								Date:	Boring Numb	er: B	-74

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NX Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 543 Pleasant St., Belmont, MA Northing: 2971000.5200 Easting: 744248.625

Drilling Date: Start: 9/22/2017 **End:** 9/22/2017

Surface Elevation (ft.): 55.69

Total Depth (ft.): 1.8

Depth to Initial Water Level (ft): Depth Date Time ΝE NE NE

Abandonment Method: Backfilled wiht soil cuttings

Longed By: | Wang

	_									Logged By: J. Wang
	Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description Remarks
t	0									6" Asphalt
		VE	V-1						E	Moist, brown, fine to coarse GRAVEL and fine to coarse SAND, trace silt
										Concrete block encountered in vacuum excavated hole. Test boring B-75 backfilled with soil cuttings and offest to B-75A (MW).
	<u>50.7</u> 5	_								
		-								
	- <u>45.7</u> -									
		-								
	40.7									
20180220.GPJ - 3/8/21										
M 3 2018022C										
WAS	35.7	9-	mple Tr	nos						Consistency vs Plansount/Foot Purminter Classification
gg	AS - Auge CS - Califo BQ - 1.5" I NQ - 2" Ro	r/Grab S ornia Sa Rock Co ock Core	mpler Sore S	V - Vac Sam S - Spli T - She SP - Geo	nple t Spoor Iby Tuk	ן ן	V. Loos Loose: M. Der	se: 0	inular (-4 D	Consistency vs Blowcount/Foot Burmister Classification
اد	Revie	wed b	y:							Date: Boring Number: B-75

Boring Number: B-75A (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NX

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 543 Pleasant St., Belmont, MA Northing: 2971005.5200 Easting: 744248.625 **Drilling Date: Start:** 11/16/2017 **End:** 11/16/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 4/26/23

Reviewed by:

Surface Elevation (ft.):55.69

Total Depth (ft.): 14.5

Depth to Initial Water Level (ft):

Depth Date Time 5.0 11/16/2017 11:15

Abandonment Method: Monitoring well installed

Boring Number: B-75A (MW)

Drining	, Duto.	Otart.	17 10/20			1/10/2	-017		Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0									9" Asphalt	Vacuum excavate boring
-	VE	V-1							Moist, brown, fine to medium SAND, little fine gravel, trace silt	from the ground surface to 4' bgs. Vacuum
-	- VE	V-2						d Gravel	Moist to wet, brown, fine to coarse SAND and fine to coarse GRAVEL, little silt	excavation could not be conducted past 4' bgs due to cobbles. Cobbles were noted in the
<u>5₩.7</u> 5								Sand and Grave		vacuum excavated hole.
-	ss	S-1	24	12 13 20 21	8	33			Wet, dense, brown, fine to coarse GRAVEL, some fine to coarse sand, little silt	Corrosion sample (6'-8')
-	SS	S-2	6	100/6"	0	>100	٠٠.٠			
45.7 10	NX	C-1	60		30			Bedrock	See core log for description	
40.7 15	-								Test boring B-75A (MW) terminated at 14.5' bgs and backfilled with soil cuttings.	
35.7	<u> </u>	ımple Ty	/pes						Consistency vs Blowcount/Foot Burn	nister Classificatio
S - Aug			V - Vac		ab		<u>Gr</u> a		(Sand): Fine Grained (Clav):	and 35-50%
CS - Cali BQ - 1.5" NQ - 2" F	fornia Sa	ampler s	Sar SS - Spli ST - She SP - Ge	elby Tu	be	V. Loo Loose M. De	: 4		Dense: 30-50 V. Soft: <2 Stiff: 8-15 V. Dense: >50 Soft: 2-4 V. Stiff: 15-30	ome 20-35% ittle 10-20% trace <10% sture, density, color

Date:

Boring Number: B-75A (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Projec	ct Lo	cation	n: Ma	ssacl	huset	ts	Projec	t Nur	nber: 101038	-102170)		
Elevation Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Recovery (%)	RQD (%)	Drill Rate (min/ft)	Graphic Log	Strata	N	/laterial Des	cription		Remarks
10.0	NX	C-1	60	50	24	NR	+++++++++	DIORITE	Hard, slightly fractu medium grained, D moderate, close, ro	IORITE; pri	mary joint set s	shallow to	
15.0									Test boring B-75A converted into a mo	(MW) termi onitoring we	nated at 14.5'	bgs and	
Bed	lding (r	<u>nm)</u>		<u>Joir</u>	nt Spac	cing (n	<u>nm)</u>	<u>c</u>	ontinuity (mm)	Attitud	de Angle	<u>Apertu</u>	<u>ire (mm)</u>
Bed Extremely Very Thir Thin Medium Thick Very Thic Extremely Fie Very Hard Hard Med. Hard	ń ck	<20 20-6 60-20 200-6 600-20 2000-6 >600	0 00 00 000 000	Very C Close Mod C Wide Very V	Close	60 20	<20 20-60 60-200 200-600 00-2000 000-6000 >6000	Mod	remely <25 derately 25-100 jhtly 100-200 ind >200	Horizontal Shallow Moderate Steep Vertical	0° - 5° 5° - 35° 35° - 55° 55° - 85° 85° - 90°	Very Tight Tight Partly Open Open Mod. Wide Wide	< 0.1 0.1 - 0.25 0.25 - 0.5 0.5 - 2.5 2.5 - 10 >10
Fie Very Hard Hard Med. Hard Medium Soft Very Soft	Scr Diff Scr Gro Diff Gro		Readily ith eadily	Slig Mod Sev Cor	sh iht derate	Disc thar Les pres Mor pres All r	Visible signological visible signological visible sites than half sent either than half sent either tock materiock material visible sites visi	indicate condition of the ras a confirm as a confirmation as a confi	rock material is decon ontinuous framework o rock material is decor ontinuous framework o ecomposed and/or dis	rock material rock material rock material rock and/or as coresto rock and/or as coresto integrated to mass structu	al may be discolor disintergrated nes. or disintegrated ne. soil. The origine and material	I to a soil. Fresto a soil. Fresto a soil. Fresto al mass struction	sh or discolored rock is
				1		ona	ყ∪ ու ۷∪Ո	۰ , <i>ب</i> ال		. organicantly	, a an openicu.		

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Winner St./Pleasant St., Belmont, MA

Northing: 2971057.4620 Easting: 744517.272 **Drilling Date: Start:** 9/13/2017 **End:** 9/13/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/8/21

Reviewed by:

Surface Elevation (ft.): 48.09

Total Depth (ft.): 14.8

Depth to Initial Water Level (ft):

Depth Date ΝE 9/18/2017 13:45

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-76

	•	Start: 9/							Logged By: A. Smith
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description Remarks
0				3			74 1× 1/4		Top 6": Topsoil
	ss	S-1	24	7 8 5	10	15		≣	Bottom 4": Moist, medium dense, brown, fine to coarse SAND, some fine gravel, trace silt
-	- SS	S-2	24	2 2 4 6	12	6		Clay	Moist, medium stiff, brown, CLAY and SILT, some fine to medium sand Analytical sample (2'-4')
43.1	_ ss	S-3	20	8 20 40 50/2"	8	60		Silty Clay	Moist, hard, brown, CLAY and SILT, some fine to medium sand
-	SS	S-4	14	45 90 50/2"	12	>100			Moist, very dense, brown, fine to coarse SAND, some fine gravel, little silt
38.1	SS	S-5	4	100/4"	4			Sand and Gravel	Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little silt
33.1 15	ss	S-6	9	85 100/3"	9	>100			Moist, very dense, brown, fine to coarse SAND, some fine to coarse gravel, little silt Test boring B-76 terminated at 14.8' bgs and
	- - -								backfilled with soil cuttings.
28.1		mple Ty	nes						Consistency vs Blowcount/Foot Burmister Classification
CS - Calit BQ - 1.5"	AS - Auger/Grab Sample CS - California Sampler 3Q - 1.5" Rock Core V - Vac Ex/Grab Sample SS - Split Spoon ST - Shelby Tube GP - Geoprobe V. Loose Loose: M. Dens							nular (-4 D 10 V	

Date:

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 5 Stella Road, Belmont, MA
Northing: 2971652.8460 Easting: 745125.079
Drilling Date: Start: 9/11/2017 End: 9/11/2017

Surface Elevation (ft.): 51.11

Total Depth (ft.): 15

Depth to Initial Water Level (ft):DepthDateTime8.09/11/201713:20

Abandonment Method: Backfilled with soil cuttings

									L	ogged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Materia	al Description	Remarks
0									4" Asphalt		
-	SS	S-1	9	48 100/3"	8	>100				prown, fine to medium gravel, little silt	Cobbles from 1.2 to 2' bgs.
-	SS	S-2	24	18 25 38 11	10	63		Sandy Silt	Moist, very dense, coarse sand, little fi	brown, SILT, some fine t ne gravel	to Analytical sample (2'-4')
46.1 5	SS	S-3	20	20 25 70	18	95			fine to coarse sand		
5				70 100/4"					BOTTOM 12": MOIST,	very dense, gray, fine to le fine to coarse gravel,	
-				46					trace silt	ic line to coarse graver,	
		0.4	6.4	46		7.			Moist, very dense, l	orown, fine to coarse	
-	SS	S-4	24	25	9	71			SAND, little fine gra		
T -				31			\vdots		NA-:-4 !	6 1	
	SS	S-5	6	100	6			<u></u>	Moist, very dense, l SAND, little fine gra	orown, fine to coarse	
41.1 -								Sand and Gravel			Rollerbit through cobbles from 10 to 13' bgs.
- - 36.1	SS	S-6	24	42 66 44 40	12	>100			Moist, very dense, SAND, little fine gra	prown, fine to coarse avel, little silt	
36.1 15							***		Test boring B-77 te backfilled with soil o	erminated at 15' bgs and outtings.	
- 31.1	-										
	<u>Sa</u>	mple Ty							Consistency vs Blowcou	int/Foot	Burmister Classification
AS - Auge CS - Califo 3O - 1.5" I	ornia Sa Rock Co	mpler s	V - Vac Sam SS - Spli ST - She	nple t Spoor	n k	V. Loos Loose:	se: 0 4-	-10 V	ense: 30-50 V. Soft: 50 Soft:	2-4 V. Stiff: 15-30	and 35-50% some 20-35% little 10-20% trace <10%
NQ - 2" Ro	OCK CORE		SP - Geo	probe	ין	M. Den	se: 10	0-30	M. Sti	ff: 4-8 Hard: >30	moisture, density, color

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira
 Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA
 Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 422 Pleasant St., Belmont, MA
Northing: 2971804.7740 Easting: 745417.737

Drilling Date: Start: 9/13/2017 **End:** 9/13/2017

Surface Elevation (ft.): 50.47

Total Depth (ft.): 14.5

Depth to Initial Water Level (ft):

 Depth
 Date
 Time

 7.5
 9/13/2017
 10:35

Abandonment Method: Backfilled with soil cuttings

											Log	gea E	sy: A. Sm	litn			
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material [Descr	iption			Remarks	
50.5 0									4	" Asphalt							
	ss	S-1	18	7 35 38	9	73			N	Moist, very of AND, som							
	- SS	S-2	24	10 10 10 90	6	20		Gravel	V S	Vet, mediur SAND, som	n dense, e fine gra	brow vel, ti	n, fine to	o coarse		Analytical sam (2'-4'). Coarse gravel in spoor tip.	
45.5 5	- SS	S-3	21	70 95 80 50/3"	0	>100		Sand and Gravel	N	lo Recover	y					Coarse gravel spoon tip.	in
 - Y	- SS	S-4	24	48 25 23 20	0	48			3	lo Recover " Spoon: M nedium SA	loist, den	se, bi silt	rown, fin	e to		Corrosion sam (6'-8')	ıple
	- SS	S-5	24	12 21 23 28	18	44		Sandy Silt	N.	1oist, dense	e, brown,	SILT	, little fin	e sand			
10 	-							Sand									
	-							Sand and Gravel									
	SS	S-6	6	100	6	>100		San		Vet, very de					ND,		
_ <u>35.5</u>	-							•	Ť	ome fine to est boring ackfilled wi	B-78 term	ninate	ed at 14.	5' bgs aı	nd		
30.5	_																
	Sa	mple Ty						Cons	istency vs E	Blowcount	/Foot			Burm	ister Classifica	<u>ation</u>	
AS - Auge CS - Califo BQ - 1.5" NQ - 2" Ro	ornia Sa Rock Co	Ex/Granple t Spoor by Tub pprobe	n ne	V. Loos Loose: M. Den	se: 0	-4 [10 \	(<u>Sand</u> Dense: /. Dens	30-50	Fin V. Soft: Soft: M. Stiff:	e <u>Gra</u> <2 2-4 4-8	ined (Clay Stiff: V. Stiff: Hard:	8-15	S I	and 35-50% ome 20-35% ittle 10-20% trace <10% sture, density, col	lor		
Revie	wed b	y:								Date:			Borin	g Numl	ber: B	3-78	

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

 $\textbf{Drilling Contractor/Driller:} \ \ \text{GeoLogic - Earth Exploration, Inc. / M. Ferreira}$

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Rere Hole Location: 3 Scott Read Relmont MA

Bore Hole Location: 3 Scott Road, Belmont, MA
Northing: 2972192.9570 Easting: 745884.085
Drilling Date: Start: 9/14/2017 End: 9/14/2017

Surface Elevation (ft.): 48.61

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

Depth Date Time

9.5 9/14/2017 10:00 **Abandonment Method:** Backfilled with soil cuttings

Elev. Depth (ft) 48.6 0	Sample Sample Type	Sample S-1	Samble 24	Blows ber 9 12 20 27 50	Sample 12 Recovery (in)	N-Value	Graphic Log	Strata	Top 4": -	Material Desc	ription		Remarks
0 -	- SS	S-2		7 8 9 12 20 27	12					Tonsoil		-	
43.6	- SS	S-2		8 9 12 20 27		15			Bottom 8	i opooli			
43.6			24	20 27	10				to mediu	B": Moist, medium m SAND, trace s	dense, brown, fin ilt	ie	
43.6	- ss	S-3				47		ravel		ense, brown, fine e to coarse grave	to coarse SAND, I, little silt		Analytical sample (2'-4')
			24	42 30 80 62	12	>100		Sand and Gravel	Moist, ve SAND, s	ery dense, brown come fine to coars	fine to coarse se gravel, trace silt		Analytical sample (4'-6')
-	ss	S-4	24	33 36 32 52	12	68			Moist, ve SAND, s	ery dense, brown come fine to coars	fine to coarse se gravel, trace silt		Corrosion sample (6'-8')
₹ 38.6 10	- SS	S-5	24	76 65 45 52	14	>100		Sandy Silt	coarse S trace silt	6": Moist, very de			
33.6 15	- ss	S-6	24	11 15 23 24	24	38		Silty Clay	Wet, har medium	d, gray, CLAY & sand	SILT, little fine to		
	_								Test bor backfilled	ing B-79 terminat d with soil cutting	ed at 16' bgs and s.		
28.6													
	Sa	ample Ty	pes						Consistency	vs Blowcount/Foo	<u>t</u>	Burmis	ster Classification
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	fornia Sa Rock Co	ampler ore	V - Vac San SS - Spli ST - She GP - Ged	nple t Spoor lby Tub	n ,	V. Loos Loose: M. Den	se: 0)-4 E	(<u>Sand):</u> Dense: 30-5 '. Dense: >50	0 V. Soft: <2		litt tr	me 20-35%
Revie	wed k	ov:							Date:		Boring Numb	_	

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Pleasant St./Brighton St., Belmont, MA

Northing: 2972521.9200 Easting: 746251.684 **Drilling Date: Start:** 9/22/2017 **End:** 9/22/2017

Reviewed by:

Surface Elevation (ft.): 49.15

Total Depth (ft.): 16

Depth to Initial Water Level (ft): Depth

Date 8.5 9/25/2017 10:30

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-80

Ū					Logged By: J. Wang									
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks				
0									6" Asphalt	Vacuum excavate				
	- VE	V-1						E	Moist, brown, fine to coarse SAND, some fine to coarse gravel, trace silt	boring from the ground surface to 4' bgs. Cobbles observed in borehole fro 1 to 5' bgs.				
	VE	V-2							Moist, brown, fine to coarse SAND, some fine to coarse gravel, trace silt					
44.2 5	- SS	S-1	23	21 27 72 100/5"	6	99			Wet, very dense, brown, fine to coarse SAND, some fine to coarse gravel, trace silt	Analytical sample (3'-4.5')				
	- SS	S-2	24	40 18 19 15	18	37			Moist, dense, brown to gray, fine to coarse SAND and fine to coarse GRAVEL, trace silt					
. 				38				Vel	Mat your damas dayle way fine to soone					
<u>39.2</u> -	ss	S-3	15	65 100/3"	1	>100		Sand and Gravel	Wet, very dense, dark gray, fine to coarse SAND and fine to coarse GRAVEL, trace silt					
 	-			30				Sand	Wet, very dense, dark gray, fine to medium					
- <u>34.2</u> 15	SS	S-4	24	35 40 35	12	75			SAND, trace silt, trace fine gravel					
	-								Test boring B-80 terminated at 16' bgs and backfilled with soil cuttings.					
29.2														
	<u>Sa</u>	mple Ty							Consistency vs Blowcount/Foot Bu	rmister Classification				
AS - Auge CS - Califo BQ - 1.5" NQ - 2" Ro	ornia Sa Rock Co	mpler s	V - Vac San SS - Spli ST - She SP - Geo	nple t Spoor lby Tub	n ne	V. Loos Loose: M. Der	se: 0)-4 E -10 V	(Sand): Fine Grained (Clay): Dense: 30-50 V. Soft: <2	and 35-50% some 20-35% little 10-20% trace <10% noisture, density, color				

Date:

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D. Bore Hole Location: Pleasant St./Concord Turnpike, Belmont, MA

Northing: 2972932.4574 Easting: 746740.3706

Drilling Date: Start: 10/4/2017 End: 10/4/2017

Surface Elevation (ft.): 50.22

Total Depth (ft.): 26

Depth to Initial Water Level (ft): Depth Date Time 9.0 10/4/2017 14:30

Abandonment Method: Backfilled with soil cuttings

Logged By: J.Wang

										Logged	By: J.Wang	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		Material Descr	ription	Remarks
0	- SS	S-1	24	8 19 41 75	24	60			3" Topso Dry, very SILT, trac	dense, light brow	n, fine SAND and	i
45.2	SS	S-2	9	60 100/3"	6	>100		Fill	Dry, very SILT, trad	dense, light brow ee roots	n, fine SAND and	Analytical sampl (2'-2.9') Asphalt encountered from 3 to 3.5' bgs.
5	- SS	S-3	24	18 26 35 59	4	61			Wet, very GRAVEL	dense, brown, fi , little fine to coar	ne to coarse se sand, trace silt	Analytical sampl (6'-8')
<u>¥</u> 0.2 10	SS	S-4	24	32 45 30 35	18	75		avel	coarse SA Bottom 8	Moist, very dense AND, trace silt ": Moist, very den fine to medium S	se, light brown,	
35.2 15	- - - - -	S-5	5	100/5"	2	<u></u>		Sand and Grave	Wet, very GRAVEL	dense, gray, fine	e to medium	
30.2	- ss	S-6	24	37 42 40 40	18	82			Wet, very some silt	dense, light brov	wn, fine SAND,	
AS - Auge CS - Cali BQ - 1.5" NQ - 2" R	er/Grab S fornia Sa Rock Co	mpler ore S	v - Vac Sam S - Spli T - She F - Geo	nple t Spoor lby Tub	n l	Loose:	Consistency vs Blowcount/Foot Burmister Classificate Granular (Sand): Fine Grained (Clay): and 35-50% some 20-35% some 20-35% little 10-20% some 20-35% Loose: 4-10 V. Dense: >50 Soft: <2 Stiff:					

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Projec	ct Loc	ation:	Mass	achu			oject	Num	lber: 101038-102170	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
30.2 20 								Sand and Gravel		
- <u>25.2</u> - <u>25</u>	- SS	S-7	24	20 30 23 41	15	53		Sand	Wet, very dense, light brown, fine SAND	
 	-								Test boring B-81 terminated at 26' bgs and backfilled with soil cuttings.	
- <u>20.2</u> -	-									
	-									
- <u>15.2</u> - <u>35</u>	-									
	-									
 - <u>10.2</u> -	-									
40 	-									
	-									
- <u>5.2</u> - 45	-									
-			•						Boring Number: E	-81

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller:GeoLogic - Earth Exploration, Inc. / P. Fisher **Drilling Method/Casing/Core Barrel Size:** Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 9 Venner Rd., Arlington, MA Northing: 2973277.1544 Easting: 746927.0222 Drilling Date: Start: 10/3/2017 End: 10/3/2017

Surface Elevation (ft.):51.64

Total Depth (ft.): 10

Depth to Initial Water Level (ft):

Depth Date Time

Abandonment Method: Backfilled with soil cuttings

Logged By: A. Smith

									Logged by. A. Oniill
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description Remarks
51.6 0					_				8" Asphalt
	SS - SS	S-1	12	36 40 30 26	8	 50		E	Moist, very dense, gray, fine to coarse SAND, some fine to coarse gravel, trace silt Moist, very dense, brown, fine to coarse SAND, some fine to coarse gravel, little silt Analytical sample (2'-4')
46.6 5	- SS	S-3	24	24 23 10 10 10 10	10	20		and Gravel	Moist, very dense, brown, fine to coarse SAND, some fine to coarse gravel, little silt
-	- SS	S-4	24	14 15 16 35	14	31		Sand and (Moist, very dense, brown, fine to coarse SAND, some fine to coarse gravel, little silt
41.6 10	- SS	S-5	24	20 38 50 72	12	88		Silty Clay	Moist, hard, brown, CLAY & SILT, some fine sand
- - -	-								Drill crew notified that test boring location was too close to an existing utility. The boring was backfilled with drill cuttings and offset to boring location B-82A.
36.6 15	-								
31.6	Sa	ample Ty	/pes						Consistency vs Blowcount/Foot Burmister Classificati
AS - Auae	er/Grab	Sample	V - Vac	Ex/Gr	ab		<u>Gr</u> a	ınular ((Sand): Fine Grained (Clay): and 35-50%

MO VALVE ACTIVITY OF THE COLUMN

AS - Auger/Grab Sample CS - California Sampler BQ - 1.5" Rock Core NQ - 2" Rock Core Granular (Sand): Sample some 0-4 Dense: 4-10 V. Dens 10-30 Stiff: V. Stiff: 30-50 SS - Split Spoon ST - Shelby Tube V. Loose: V. Soft: 8-15 10-20% <10% little Loose: M. Dense: Soft: M. Stiff: 15-30 >30 V. Dense: >50 trace Hard: moisture, density, color GP - Geoprobe

Reviewed by: Date: Boring Number: B-82

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / P. Fisher

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 9 Venner Rd., Arlington, MA Northing: 2973277.1544 Easting: 746927.0222

Drilling Date: Start: 11/9/2017 **End:** 11/9/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 3/22/21

Reviewed by:

Surface Elevation (ft.): 51.64

Total Depth (ft.): 26

Depth to Initial Water Level (ft):

Depth Date Time 8.5 11/9/2017 11:10

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-82A

Diming	, Date.	otart.	11/3/201	, <u>-</u>	4. 11/	0/2011	•	Logged By: A. Smith					
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks			
0									4" Asphalt				
-	SS	S-1	18	8 6 4	10	10		Ħ	Moist, stiff, dark brown, Organic SILT, some fine to coarse sand, trace fine gravel				
-	- SS	S-2	24	14 18 25 30	14	43			Moist, dense, brown, fine to coarse SAND, some fine gravel, little silt				
46.6 5	SS	S-3	12	30 100	4	>100		Sand and Gravel	Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little silt				
-	SS	S-4	24	18 32 50 54	8	82		Silt Sand	Moist, very dense, brown, fine to medium SAND, some fine to coarse gravel, little silt				
▼ .				13				S ×	Top 6": Moist, hard, brown, SILT, some fine to				
41.6 10	ss	S-5	24	46 62 56	12	>100		Sandy	medium sand, trace fine gravel Bottom 6": Moist, very dense, light brown, fine SAND, little silt				
- - -				19				Silty Sand	Moist, dense, brown, fine SAND, little silt				
36.6 15	SS	S-6	24	21 21 23	12	42		Silty	ividiot, dorido, provin, mile do trap, maio dia				
-													
-	SS	S-7	24	12 21	12	43			Moist, dense, brown, fine SAND, little silt				
31.6	9-	mple T	vnos	۷1			1.1.1		Consistency vs Blowcount/Foot Burmi	ster Classification			
			V - Vac	Ev/Cro	h					nd 35-50%			
S - Calif Q - 1.5"	er/Grab S fornia Sa Rock Co Rock Core	mpler ore	Sam SS - Split ST - She GP - Geo	nple t Spoor Iby Tuk	n ne	V. Loos Loose: M. Der	se: 0 4-	-4 [Dense: 30-50 V. Soft: <2 Stiff: 8-15 iii V. Dense: >50 Soft: 2-4 V. Stiff: 15-30 tr	ome 20-35% ttle 10-20% race <10% ture, density, color			

Date:

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Projec	JI LUC	alion.	iviass	acriu		FIC	Jeci	Nulli	ber: 101038-102170	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
31.6 20	SS	S-7	24	22	12	43				
	-			24				Silty Sand		
- <u>26.6</u> _ 25	- SS	S-8	24	22 20 32 22	15	52			Moist, very dense, brown, fine SAND, little silt	
 							. 4.51-7		Test boring B-82A terminated at 26' bgs and backfilled with soil cuttings.	
	-									
21.6 30	-									
	-									
16.6 35	-									
	-									
 11 6	_									
- <u>11.6</u> -	-									
- <u>6.6</u> - 45										
<u> </u>									Boring Number: B	-82A

Project Name: Rehabilitation of Weston Aqueduct Supply Main 3 Client: MWRA

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 235 Pleasant Street, Arlington, MA Northing: 2973644.3219 Easting: 747551.1924 **Drilling Date: Start:** 10/2/2017 **End:** 10/2/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Surface Elevation (ft.): 49.41

Total Depth (ft.): 15

Depth to Initial Water Level (ft): Depth Date Time ΝE 10/2/2017 10:00

Abandonment Method: Backfilled with soil cuttings

Diming	, Duto.	Start. I	3/2/201	,	4. 10/.	2/2011	•		Logged	By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Des	cription	Remarks
0							2 5 4		7" Concrete		
-	SS	S-1	12	30 28	9				Moist, brown, fine to coa to coarse gravel, trace si	t	
-	SS	S-2	35	50 60 50	9	>100		ravel	Moist, very dense, browr SAND, some fine to coal		Analytical sample (2'-4')
44.4 5	SS	S-3	24	28 30 36 38	12	66		Sand and Grave	Moist, very dense, brown SAND, little fine gravel, tr		Corrosion sampl (4'-6')
-	ss	S-4	18	32 66 100	12	>100			Moist, very dense, browr SAND, little fine gravel, tr		Silt in spoon tip.
39.4 10	- SS	S-5	24	20 28 48 48	24	76		Silty Clay	Moist, hard, brown, CLA to medium sand	Y & SILT, trace fine	9
34.4 15	SS	S-6	12	100/4"	6	>100		Sand and Gravel	Moist, very dense, brown SAND and fine to coarse Test boring B-84 termina backfilled with soil cutting	GRAVEL, little silt ted at 15' bgs and	
29.4 		ample Ty	pes V - Vac	Ex/Gra	b		Gra	nular (Consistency vs Blowcount/For	o <u>t</u> rained (Clay):	Burmister Classificati
CS - Calif 3Q - 1.5" NQ - 2" R	fornia Sa Rock Co Rock Cor	ampler Sore Sore	Sam S - Spli T - She P - Geo	t [·] Spoor Iby Tub	e l	V. Loos Loose: M. Der	se: 0	-4 D	ense: 30-50 V. Soft: Dense: >50 Soft: 2- M. Stiff: 4-	2 Stiff: 8-15 4 V. Stiff: 15-30 8 Hard: >30	some 20-35% little 10-20% trace <10% moisture, density, color
Revie	wed b	oy:							Date: Boring Number: B-84		

Client: MWRA **Project Name:** Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / D. Jacobs Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 211 Pleasant St., Arlington, MA Northing: 2973919.8504 Easting: 747898.0533 **Drilling Date: Start:** 9/7/2017 **End:** 9/8/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Reviewed by:

Surface Elevation (ft.): 45.35

Total Depth (ft.): 16

Depth to Initial Water Level (ft): Depth Date 6.5 9/8/2017 09:00

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-85

		Start. 3/	772011		0,0,2				Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
45.4 0				1			74 14 . 14		5" Topsoil	
-	SS	S-1	24	8 6 6	12	14			Moist, medium dense, brown, SILT and fine SAND	
-	- SS	S-2	24	12 30 32 40	16	62			Moist, medium dense, brown, fine to medium SAND, little fine gravel, trace silt	Analytical sample (2'-4')
40.4 5	- SS	S-3	24	42 60 55 60	12	>100		Silty Sand	Wet, very dense, brown, fine to coarse SAND, little fine gravel, trace silt	
Ā	SS	S-4	24	44 45 45 60	14	90			Wet, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt	Corrosion sample (6'-8')
-				23					Moist, hard, brown, SILT	
35.4 10	ss	S-5	24	27 30 35	20	57			Moist, hard, brown, CLAY	PP = 2.5 tsf
- - -	-							Silty Clay		
30.4 15	- SS	S-6	24	20 30 24 25	24	54			Moist, hard, brown, CLAY and SILT, trace fine to medium sand	PP = 2 tsf
-									Test boring B-85 terminated at 16' bgs and backfilled with soil cuttings.	
25.4										
	Sa	mple Ty	pes						Consistency vs Blowcount/Foot Br	urmister Classificatio
SQ - 1.5" ROCK Core ST - Shelby Tube						V. Loos Loose: M. Den	se: 0	-4 D	Sand): Fine Grained (Clay):	and 35-50% some 20-35% little 10-20% trace <10% moisture, density, color

Project Name: Rehabilitation of Weston Aqueduct Supply Main 3 Client: MWRA

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NX Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D. Bore Hole Location: Kensignton Park at Pleasant St., Arlington, MA

Northing: 2974281.9003 Easting: 748160.7361 Drilling Date: Start: 9/6/2017 End: 9/6/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Surface Elevation (ft.): 55.91

Total Depth (ft.): 15

Depth to Initial Water Level (ft): Depth Date Time 3.0 9/6/2017 15:45

Abandonment Method: Backfilled with soil cuttings

Diming	Date.	Start. 3/	0/2017	Liid	. 5/0/2	-017				Logged I	By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		Material Desc	ription	Remarks
0				8			-4 1. · · · · ·		3" Topso	oil		
	SS	S-1	24	13 27 20	11	40			Moist, de		to coarse SAND, VEL, little silt	
. <u>¥</u> .	- SS	S-2	24	9 8 7 5	12	15		Gravel			own, fine to coarse se GRAVEL, little s	
50.9 5	- SS	S-3	24	5 14 10 12	10	24		Sand and Gravel		edium dense, brov some silt, little fine	vn, fine to coarse to coarse gravel	
	SS	S-4	24	7 9 18 40	10	27		¥	Wet, me GRAVE	edium dense, gray L, some fine to co	y, fine to coarse parse SAND, little s	silt
	SS	S-5	4	100/4"	0	>100		Rock	No reco	very		Advanced rollerbit
 45.9								Weathered				from 8 to 10' bgs through weathered rock.
- <u>45.9</u>	NX	C-1	60					Bedrock W	See core	e log for descriptio	on	
- <u>40.9</u>	-								Test bor backfille	ing B-86 terminat d with soil cutting:	ed at 15' bgs and s.	
35.9	Sa	ample Ty	⊥ pes						Consistency	vs Blowcount/Foo	t	Burmister Classification
CS - Calif	AS - Auger/Grab Sample CS - California Sampler 3Q - 1.5" Rock Core NQ - 2" Rock Core ST - Shelby Tube GP - Geoprobe V - Vac Ex/Grab Sample Sample V - Vac Ex/Grab Sample SS - Split Spoon ST - Shelby Tube GP - Geoprobe M. Dense: 10-30										ained (Clay): Stiff: 8-15 V. Stiff: 15-30	and 35-50% some 20-35% little 10-20% trace <10% moisture, density, color
Revie	wed b	oy:							Date: Boring Number: B-86			

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Projec			n: M	lassa	achu	setts		-		ı me: Renabilita ı mber: 101038	tion of Weston Ad -102170	queduct St	uppiy Main 3
Elevation Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Recovery (%)	RQD (%)	Drill Rate (min/ft)	Down Press. (psi)	Graphic Log	Strata	N	laterial Description		Remarks
10.0 	NX	C-1	60	100	22	2 4 6 2	NR	××× ××× ××× ××× ××× ××× ××× ×××	Bedrock		weathered, moderately fr E, medium dipping with v		
<u>40.9</u> 15.0						2		××× ×××		Test boring B-86 te	rminated at 15' bgs.		
- <u>35.9</u>													
- 30.9 25.0													
25.9										Occation it a (com)			
Extremel	lding (ly Thin	</td <td>20</td> <td>Ex</td> <td>tremely</td> <td>/ Close</td> <td></td> <td>n) <20</td> <td></td> <td>Continuity (mm) xtremely <25</td> <td>Attitude Angle Horizontal 0° - 5°</td> <td>Very Tight</td> <td><u>ire (mm)</u> < 0.1</td>	20	Ex	tremely	/ Close		n) <20		Continuity (mm) xtremely <25	Attitude Angle Horizontal 0° - 5°	Very Tight	<u>ire (mm)</u> < 0.1
Very Thin Thin Medium Thick Very Thic Extremel	ck	60- 200- 600- 2000-	-60 200 -600 2000 -6000	Ve Cl Mc W Ve	ery Clos ose od Clos ide ery Wide tremely	e e	20 20 600 200	0-60 -200 0-600 -2000 0-6000	M S	lightly 25-100 lightly 100-200 ound >200	Shallow 5° - 35° Moderate 35° - 55° Steep 55° - 85° Vertical 85° - 90°	Tight Partly Open Open Mod. Wide Wide	0.1 - 0.25 0.25 - 0.5 0.5 - 2.5 2.5 - 10 >10
	ld Ha			toh	Fresh	Weat	herin	_	an of r	ock material weathering	elight to no discolaration		
Very Hard Hard Med. Hard	Sc Di	ratches	n't Scra s with s Readi		Fresh Slight Modera	ate	Disco than i	loration ts fresh than hal	indica condi	ated weathering. All the tion. e rock material is decon	; slight to no discoloration. rock material may be discon posed and/or disintergrate	•	•
Medium Soft Very Soft	Medium Grooves with Difficulty Severe Soft Grooves Readily Very Soft Carves with Knife Complete						prese More prese All roo	nt eithe than ha nt eithe ck mate ck mate	r as a If of th r as a rial is rial is	continuous framework of the rock material is decord continuous framework of decomposed and/or disconverted to soil. The r	or as corestones. nposed and/or disintegrate	d to a soil. Fres	h or discolored rock is ure is largely intact.
Dovio	wadl	h					J. rui le	, 5 111 401	J.110, 1	Doto:		lumbarı B	96

ROCK CORING LOG GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Reviewed by:

Date:

Boring Number: B-86

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

 $\textbf{Drilling Contractor/Driller:} \ \ \text{GeoLogic - Earth Exploration, Inc. / M. Ferreira}$

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

 $\textbf{Hammer Weight/Drop Height/ Spoon Size:} \quad 140 \text{ lb / } 30 \text{ in /2 in O.D.}$

Bore Hole Location: Pleasant St./Gray St., Arlington, MA Northing: 2974926.5197 Easting: 748441.0614

Drilling Date: Start: 9/8/2017 End: 9/8/2017

Surface Elevation (ft.): 60.23

Total Depth (ft.): 14

Depth to Initial Water Level (ft):

Depth Date Time 11.5 9/8/2017 13:30

Abandonment Method: Backfilled with soil cuttings

	, =		0,20		. 0,0,2				Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0				18			74 1		3" Topsoil	
	ss	S-1	24	58 12 16	14	70			Dry, very dense, brown, fine to medium SAND, some fine to coarse GRAVEL, little silt	
	- ss	S-2	24	22 40 12 12	12	52				Analytical sample (2'-4')
<u>55.2</u> 5	- ss	S-3	24	60 52 46 80	17	98		Sand and Gravel		Analytical sample (4'-6')
	SS	S-4	2	100/2"	2			d ar	Moist, very dense, gray, fine to coarse SAND	
_								San	and fine to coarse GRAVEL, trace silt	
	SS	S-5	0	100/0"	0				No recovery	
50.2 10	SS	S-6	5	100/5"	4				Wet, very dense, brown, fine to coarse SAND,	
 	ss	S-7	0	100/0"	0			Weathered Rock	some fine to coarse GRAVEL, little silt No Recovery	
_ <u>45.2</u> _ 15	-			100,0	0				Test boring B-87 terminated at 14' bgs and backfilled with soil cuttings.	
40.2 AS - Auge CS - Calif BQ - 1.5" NQ - 2" R										
	Sa	mple Ty						Consistency vs Blowcount/Foot Burmis	ter Classification	
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	ornia Sa Rock Co	impler ore S	V - Vac San S - Spli T - She P - Geo	nple t Spoor lby Tul	n l	V. Loos Loose: M. Der	se: 0)-4 E -10 V	Sand): Fine Grained (Clay): and som	ne 20-35% e 10-20%
Revie	wed b	y:							Date: Boring Number: B-8	37

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira **Drilling Method/Casing/Core Barrel Size:** Drive and Wash / 3 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D. Bore Hole Location: Lakeview St./Pleasant St., Arlington, MA

Northing: 2975244.8954 Easting: 748545.6563 Drilling Date: Start: 9/6/2017 End: 9/6/2017 Surface Elevation (ft.): 58.94

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

 Depth
 Date
 Time

 NE
 9/6/2017
 10:40

Abandonment Method: Backfilled with soil cuttings

Logged By: A. Smith

									Logged By: A. Sm	пит
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
58.9 0				4	_		74 15. 74		6" Topsoil	
-	SS	S-1	24	7 6 5	14	13		Organic Soils	Moist, medium dense, brown, Slight SILT and fine SAND. 1" fine to me lens at 17' bgs	edium sand
-	- SS	S-2	24	3 22 50 40	16	72		Org	Top 6": Moist, dense, brown, Orga and fine SAND Bottom 10": Moist, very dense, bro coarse SAND and fine to coarse G	own, fine to
53.9 5	SS	S-3	15	36 85 100/3"	12	>100			trace silt Moist, very dense, brown, fine to co SAND and fine to coarse GRAVEL	oarse
-	SS	S-4	9	80 100/3"	9	>100		_	Moist, very dense, brown, fine to co SAND, little fine gravel, trace silt	oarse Corrosion sample (6-6.75')
- 48.9 10	- SS	S-5	24	33 42 40 40	16	82		Sand and Grave	Moist, very dense, brown, fine to constant SAND, little fine gravel, trace silt	oarse
43.9 15	- SS	S-6	24	10 9 30 34	14	39		Silty Clay	Top 3": Moist, dense, brown, fine t SAND, little fine gravel, trace silt Bottom 11": Wet, hard, brown, CL fine to medium sand, trace fine gra Bottom 1": Wet, dense, brown, fine medium SAND	AY, some avel e to
38.9		ımple Ty	<u>rpes</u>						Test boring B-88 terminated at 16' backfilled with soil cuttings. Consistency vs Blowcount/Foot	Burmister Classification
AS - Auge	r/Grab S ornia Sa	mpler -	V - Vac San SS - Spli	nple t Spoor	, ,	V. Loos	se: (ense: 30-50 V. Soft: <2 Stiff:	8-15 some 20-35% little 10-20%
CS - Califo 3Q - 1.5" NQ - 2" Ro	Rock Core	,,,	ST - She SP - Geo	lby Tul	ne li	Loose: M. Der	nse: 10		Dense: >50 Soft: 2-4 V. Stiff: M. Stiff: 4-8 Hard:	trace <10% moisture, density, color

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / D. Jacobs

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Hopkins Rd./Pleasant St., Arlington, MA

Northing: 2975525.9291 Easting: 748812.8921 Drilling Date: Start: 9/7/2017 End: 9/7/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Reviewed by:

Surface Elevation (ft.): 62.64

Total Depth (ft.): 15.3

Depth to Initial Water Level (ft):

Depth Date Time 2.0 9/7/2017 10:20

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-89

J	•								Logged By: A. Smith				
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks			
02.0							74.14. 74		6" Topsoil	Vacuum excavate			
▼ -	-								Moist, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt	boring from the ground surface to 4' bgs. Analytical sample (0.5'-4.3')			
_	VE	V-1											
57.6 5	SS	<u>S-1</u>		100/3"	0					Rollerbit throughout boulder from 4.5 to 5.5'			
-	SS	S-2	3	100/3"	3			and Gravel	Wet, very dense, brown, fine to coarse GRAVEL, some fine to coarse SAND, little silt	Rollerbit through cobbles from 6.5 to 8' bgs.			
-				50				Sand and	Wet, very dense, brown, fine to coarse				
52.6 10	SS	S-3	18	72 100	16	>100			GRAVEL and fine to coarse SAND, some silt				
- - 47.6 15	SS	S-4	15	40 72 100/3"	12	>100			Wet, very dense, brown, fine to coarse GRAVEL, some fine to coarse SAND, little silt				
-	-								Test boring B-89 terminated at 15.3' bgs and backfilled with soil cuttings.				
42.6	-												
	<u>Sa</u>	mple Ty						Consistency vs Blowcount/Foot Burmister Classification					
CS - Califo BQ - 1.5" l	S - Auger/Grab Sample S - California Sampler SQ - 1.5" Rock Core IQ - 2" Rock Core GP - Geoprobe							on Use V. Loose: 0-4 Dense: 30-50 V. Soft: <2 Stiff: 8-15 Use V. Soft: 15-30 V. Soft: 15-30 V. Soft: 2-4 V. Stiff: 15-30 V. Soft: 2-					

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA
Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Lombard Rd./Pleasant St., Arlington, MA **Northing:** 2976065.1933 **Easting:** 749373.6117

Drilling Date: Start: 9/1/2017 **End:** 9/1/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Surface Elevation (ft.): 62.43

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

Depth Date Time

9/1/2017

Abandonment Method: Backfilled with soil cuttings

11:00

Logged By: A. Smith

ΝE

										Logged	By: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		Material Desc	cription		Remarks
0	- SS	S-1	24	11 12 11 12	18	23		Silty Sand	Dry, med fine SAN	dium dense, brov ID and SILT	vn, Slightly Organio	С	
	ss	S-2	21	55 80 80 100/3"	14	>100		-		dense, brown, f e to coarse GRA	ine to coarse SAN VEL, trace silt	D,	Analytical sample (2' - 3.75')
57.4 5	SS	S-3	9	66 100/3"	9	>100				y dense, brown, to coarse GRAV	fine to coarse SAN EL, trace silt	ID	Analytical sample (4'-4.75')
	- SS	S-4	24	55 40 82 100	16	>100		-		ery dense, brown some fine to coar	, fine to coarse se GRAVEL, trace		
-	SS	S-5	2	100/2"	2	>100		Grave			d brown, medium coarse GRAVEL	to	
52.4 10								Sand and Gravel					
47.4	- SS	S-6	24	33 75 75 77	10	>100				y dense, brown, to coarse GRAV	fine to coarse SAN EL, trace silt	ND	
	-								Test bor backfilled	ing B-90 termina d with soil cutting	ted at 16' bgs and s.		
42.4													
		ample Ty	oes V - Vac	EviCro	h		Consistency vs Blowcount/Foot Burmister Classification Granular (Sand): Fine Grained (Clay): and 35-50%						
CS - Calif BQ - 1.5" NQ - 2" R	CS - California Sampler BQ - 1.5" Rock Core NQ - 2" Rock Core ST - Shelby Tube GP - Geoprobe V. Loose: Loose: M. Dense:								ense: 30-5 . Dense: >50	0 V. Soft: <2 Soft: 2-4 M. Stiff: 4-8	Stiff: 8-15 4 V. Stiff: 15-30 3 Hard: >30	so lit tr mois	ome 20-35% ttle 10-20% race <10% ture, density, color
Revie	wed k	oy:							Date:		Boring Numb	er: B	-90

Client: MWRA **Project Name:** Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D. Bore Hole Location: Swan St./Pleasant St., Arlington, MA

Northing: 2976361.5967 Easting: 749665.2126 **Drilling Date: Start:** 9/1/2017 **End:** 9/1/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Reviewed by:

Surface Elevation (ft.): 51.88

Total Depth (ft.): 16

ΝE

Depth to Initial Water Level (ft): Depth Date Time

9/1/2017

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-91

14:00

2g	Date.	Start: 9	/ 1/2017	Liid	0/1/2	2017			Logged By: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks	
0									3" Asphalt 8" Gravel base course	Vacuum excavate boring from the	
-								≣	Dry, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt Dry, brown, fine to coarse SAND and fine to	ground surface to 5' bgs. Analytical sample (2'-4')	
_	VE	V-1						_	coarse GRAVEL, trace silt, trace brick		
<u>46.9</u> _				9					Dry, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt	Rollerbit through boulder from 4 to	
-	ss	S-1	24	17 60 60	10	77			Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt	5' bgs.	
-	SS	S-2	4	100/4"	4	>100			Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt		
<u>41.9</u>	SS	S-3	10	55 100/4"	10	>100		Gravel	Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt		
10 -	-							Sand and			
36.9 15	- ss	S-4	24	60 65 72 80	12	137			Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt		
-	-								Test boring B-91 terminated at 16' bgs and backfilled with soil cuttings.		
31.9											
	Sa	mple Ty	pes					Consistency vs Blowcount/Foot Burmister Classification			
AS - Auge CS - Califo BQ - 1.5" NQ - 2" Ro	V - Vac Sam SS - Spli ST - She SP - Geo	nple t Spoor lby Tub	n ne	V. Loose: 0-4 Dense: 30-50 V. Soft: <2 Stiff: 8-15 little 10-20%							

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

 $\textbf{Drilling Contractor/Driller:} \ \ \textbf{GeoLogic - Earth Exploration, Inc.} \ / \ \textbf{M.} \ \textbf{Ferreira}$

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: Swan St./Swan Pl., Arlington, MA Northing: 2976218.8527 Easting: 749859.8445

Drilling Date: Start: 9/5/2017 End: 9/5/2017

Surface Elevation (ft.): 46.61

Total Depth (ft.): 16

Depth to Initial Water Level (ft):DepthDateTimeNE9/5/201710:15

Abandonment Method: Backfilled with soil cuttings

Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0									4" Asphalt	Vacuum excavate
-									4" Gravel base course Dry, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt, trace brick	boring from the ground surface to 5' bgs.
41.6	VE	V-1								Analytical sample (4'-6')
41.6 5	- SS	S-1	24	50 72 44 50	12	>100			Moist, very dense, brown, fine to coarse SAND and fine GRAVEL, trace silt	
-	- SS	S-2	24	88 76 83 78	12	>100			Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt	
36.6	SS	S-3	24	48 50 50 76	12	100		Sand and Gravel	Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt	
31.6 15	- SS	S-4	24	32 22 38 72	8	60			Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt	
- - -									Test boring B-92 terminated at 16' bgs and backfilled with soil cuttings.	
26.6		male T:	mas.						Panaistanay va Playsayınt/East	niotor Classificati
AS - Auge CS - Calif BQ - 1.5" IQ - 2" R	r/Grab S ornia Sa Rock Co	mpler re	V - Vac Sam SS - Splii T - She	elar	n l	V. Loos Loose:	se: C	anular ()-4 D -10 V	Sand): Fine Grained (Clay): Sense: 30-50 V. Soft: <2 Stiff: 8-15	nister Classification 35-50% and 35-50% ittle 10-20% trace <10%

Sheet 1 of 1

Boring Number: B-93 (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D. Bore Hole Location: Massachusetts Ave./Broadway, Arlington, MA

Northing: 2976272.7917 Easting: 750377.6421 Drilling Date: Start: 9/5/2017 End: 9/5/2017

Reviewed by:

Surface Elevation (ft.): 44.09

Total Depth (ft.): 16

Depth to Initial Water Level (ft): Depth Date Time 3.0 9/5/2017 13:00

Abandonment Method: Monitoring well installed

Boring Number: B-93 (MW)

Dillillig	Date.	Start: 9/	3/2017	Ellu	. 9/3/2	2017			Logged By: A. Smith			
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks		
<u>44.1</u> 0				8			711. 71		Top 12": Topsoil			
-	SS	S-1	24	1 2	16	2			Bottom 12": Dry, very loose, brown, fine SAND, some silt			
▼ -	- SS	S-2	24	30 36 36 40	15	72			Moist, very dense, brown, fine to coarse SAND, some fine to coarse gravel, trace silt	Analytical sample (2'-4')		
39.1 5	- SS	S-3	24	40 46 62 75	12	>100			Moist, very dense, brown, fine to coarse SAND, some fine to coarse gravel, trace silt	Analytical sample (4'-6')		
-	SS	S-4	24	56 70 70 68	14	>100		avel	Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt	Corrosion sample (6'-8')		
34.1 10	- SS	S-5	24	28 50 62 50	14	>100		Sand and Gravel	Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt			
- - - 29.1 15	- SS	S-6	24	20 15 30 20	10	45			Wet, dense, brown, fine to coarse SAND, little fine gravel, trace silt			
-									Test boring B-93 (MW) terminated at 16' bgs and converted into a monitoring well.			
24.1	92	ımple Ty	nes						Consistency vs Blowcount/Foot Bu	urmister Classification		
CS - Califo 3Q - 1.5" l	- Auger/Grab Sample - California Sampler - 1.5" Rock Core - 2" Rock Core GP - Geoprobe							Canular (Sand): Fine Grained (Clay): Some 20-35%				

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira **Drilling Method/Casing/Core Barrel Size:** Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Broadway/Alton St., Arlington, MA Northing: 2976203.5501 Easting: 750682.654

Drilling Date: Start: 8/30/2017 End: 8/30/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Surface Elevation (ft.): 39.91

Total Depth (ft.): 16

Depth to Initial Water Level (ft):DepthDateTime10.08/30/201711:30

Abandonment Method: Backfilled with soil cuttings

	,								Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0									4" Asphalt	
	SS	S-1	4	100/4"	4		XXX			
 	- SS	S-2	24	15 11 8 6	6	19		≣	coarse SAND, trace fine gravel, trace brick	nalytical sample 2'-4')
34.9 5	ss	S-3	15	6 100/3"	10	>100				nalytical sample 4'-5.2')
	SS	S-4	24	95 50 60 50	12	>100				Corrosion sample 6'-8')
	SS	S-5	8	76	8	>100			Wet, very dense, brown, fine to coarse SAND, some fine to coarse gravel, trace silt	
2 <u>79</u> - 10	-							Sand and Gravel		
- <u>24.9</u> 15	- SS	S-6	24	30 30 70 40	12	100			Wet, very dense, brown, fine to coarse SAND, some fine to coarse gravel, trace silt	
									Test boring B-94 terminated at 16' bgs and backfilled with soil cuttings.	
19.9	9-	ımple Ty	nas						Consistency vs Blowcount/Foot Burmist	er Classification
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	er/Grab S fornia Sa Rock Co lock Core	Sample Impler ore S	V - Vac San SS - Spli T - She P - Geo	nple t Spoor lby Tub	ne	V. Loos Loose: M. Der	se: 0	nular ()-4 C 10 V	Sand): Fine Grained (Clay): and som	35-50% e 20-35% e 10-20% ce <10% re, density, color
Revie	wed b	y:							Date: Boring Number: B-9	4

Client: MWRA **Project Name:** Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Broadway, Arlington, MA Northing: 2975925.3156 Easting: 751155.8707 **Drilling Date: Start:** 8/28/2017 **End:** 8/28/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Reviewed by:

Surface Elevation (ft.): 36.25

Total Depth (ft.): 16

Depth to Initial Water Level (ft): Depth Date ΝE 8/28/2017

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-95

13:00

									Logged By: A. Smith
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description Remarks
0				3			74 1. T		16" Topsoil
-	- ss	S-1	24	2	12	5	/ XXX		Dry, loose, brown, fine to medium SAND,
	- SS	S-2	24	2 2 1 4 7	12	5		E	some SILT, trace fine gravel Dry, loose, brown, fine to coarse SAND, trace fine gravel, trace silt Analytical sample (2'-4')
24.2	SS	S-3	9	11 100/3"	6	>100			Moist, very dense, brown, fine to medium SAND, some SILT, trace fine gravel
31.3 5				100/3					SAND, Some SILT, trace line graver
	- SS	S-4	24	10 10 14 18	10	24		Sand	Wet, medium dense, brown, fine to coarse SAND, trace silt, trace fine to coarse gravel
<u>26.3</u> 10	- ss	S-5	24	15 24 28 32	18	52			Wet, very dense, brown, fine to coarse SAND, some fine to coarse gravel, trace silt
10	- - - SS	S-6	24	12 14 14	7	28		Sand and Gravel	Wet, medium dense, gray, fine to medium SAND, trace silt, trace fine gravel
15				14					Test boring B-95 terminated at 16' bgs and backfilled with soil cuttings.
16.3									
	Sa	ample Ty		F (0	.				Consistency vs Blowcount/Foot Burmister Classification
AS - Auge CS - Calif 3Q - 1.5" NQ - 2" R	fornia Sa Rock C	ampler ore	V - Vac Sam SS - Spli ST - She SP - Geo	nple t Spoor lby Tub	n ne	V. Loos Loose: M. Den	se: 0	-4 C	(Sand): Fine Grained (Clay): and 35-50% some 20-35% some 20-35% some 20-35% little 10-20% trace <10% moisture, density, color '. Dense: >50 V. Soft: <2 Stiff: 8-15 little 10-20% trace <10% moisture, density, color

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

 $\textbf{Drilling Contractor/Driller:} \ \ \text{GeoLogic - Earth Exploration, Inc. / M. Ferreira}$

Drive and Wash / 3 in / NA

 $\label{lem:lemma$

Bore Hole Location: Palmer St./Broadway, Arlington, MA Northing: 2975780.4278 Easting: 751467.8792

Drilling Date: Start: 8/29/2017 **End:** 8/29/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Surface Elevation (ft.): 34.71

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

Depth Date Time 14.5 8/29/2017 13:30

Abandonment Method: Backfilled with soil cuttings

	,									Lo	gged E	By: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		Material	Desc	ription		Remarks
0										" Asphalt				
· -	SS	S-1	18	7 4 3	4	7				/et, loose, brown, f tle silt	ine to	medium SAND,		
	SS	S-2	24	8 14 21 23	18	36			V tr	/et, dense, dark gra ace silt	ay, fin	e to medium SAN	D,	Analytical sample (2'-4')
<u>29.7</u> 5	SS	S-3	24	17 20 28 27	16	48			loist, dense, brown tle fine gravel, trace		to coarse SAND,			
- -	SS	S-4	24	30 36 36 45	22	72		Gravel	N S	loist, very dense, b AND and fine to co	rown, oarse	fine to coarse GRAVEL, trace sil	lt	
24.7 10	SS	S-5	24	16 48 62 62	14	>100	Sand and Gravel	Sand and		loist, very dense, b AND, some fine to				
<u>▼</u> 19.7 15	- SS	S-6	24	15 18 23	14	41			v	/et, dense, brown,	fine S	AND, trace silt		
-	-			24					T b	est boring B-96 ter ackfilled with soil cu	minate uttings	ed at 16' bgs and s.		
14.7														
	Sa	ample Ty	pes			1			Cons	stency vs Blowcour	t/Foot		Burmi	ster Classification
BQ - 1.5"	S - Auger/Grab Sample S - California Sampler Q - 1.5" Rock Core Q - 2" Rock Core GP - Geoprobe V - Vac Ex/Grab Sample S - Split Spoon Loose: 4- M. Dense: 10									E 30-50 V. Soft: Soft: M. Stiff:	<2 2-4		so lit ti	nd 35-50% ome 20-35% title 10-20% race <10% ture, density, color
Revie	wed k	y:								Date:		Boring Numb	er: B	-96

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

 $\textbf{Drilling Contractor/Driller:} \ \ \text{GeoLogic - Earth Exploration, Inc. / M. Ferreira}$

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA
Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 84-86 Palmer St., Arlington, MA **Northing:** 2976280.7598 **Easting:** 751947.828 **Drilling Date: Start:** 8/30/2017 **End:** 8/30/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Surface Elevation (ft.): 31.85

Total Depth (ft.): 16

Depth to Initial Water Level (ft):DepthDateTime10.08/30/201715:10

Abandonment Method: Backfilled with soil cuttings

	,										Logge	d By: A. Smith			
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material Des	scription			Remarks
0										3" Asphalt					
	SS	S-1	18	5 5 3	10	8			Ī	Top 4": We GRAVEL, s	ome fine to				
	- ss	S-2	24	5 6 6	14	11			n T	nedium SA	.ND and SIL [*] t, medium de	brown, fine to T ense, gray, me			Analytical sampl (2'-4')
<u>26.9</u> 5	SS	S-3	21	13 15 23 50/3"	12	38			S	SAND, som Moist, dens	ne silt e, brown, fin	m dense, brov e to coarse SA vel, trace silt		е	
	SS	S-4	24	3 27 34 32	12	61		ravel	l N	Moist, very	dense, brow	n, fine to coars arse gravel, trad			Corrosion sample (6'-8')
	- SS	S-5	24	26 31 22 15	16	53		Sand and Gravel	N S	Moist, very SAND, som	dense, brow ne fine grave	n, fine to coars l, trace silt	se		
- - -	-			24							, brown, fine	to medium SA	AND,		
16.9 15	SS	S-6	24	21 20 22	14	41				race silt					
-	-								b b	est boring packfilled w	B-97 termin ith soil cuttin	ated at 16' bgs gs.	s and		
-	1														
11.9	⊥ S:	ample Ty	pes	<u> </u>					Cons	istency vs	Blowcount/Fo	oot		Burmi	ster Classificat
CS - Calif BQ - 1.5"	S - Auger/Grab Sample S - California Sampler Q - 1.5" Rock Core Q - 2" Rock Core GP - Geoprobe V - Vac Ex/Grab Sample SS - Split Spoon ST - Shelby Tube GP - Geoprobe V. Loose: Ucose: 4-1 M. Dense: 10-									-	Fine C V. Soft: < Soft: 2	— <u>Grained (Clay):</u> <2 Stiff: 8- !-4 V. Stiff: 15	-15 5-30 -30	ar sc lit tr	nd 35-50% ome 20-35% ttle 10-20% race <10% ture, density, color
Revie	wed k	oy:								Date:		Boring N	lumb	er: B	-97

Client: MWRA **Project Name:** Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 124-126 Palmer St., Arlington, MA Northing: 2976660.2076 Easting: 752246.5993 **Drilling Date: Start:** 8/31/2017 **End:** 8/31/2017

Surface Elevation (ft.): 27.55

Total Depth (ft.): 21

Depth to Initial Water Level (ft): Depth Date Time

8.0 8/31/2017 13:30 Abandonment Method: Backfilled with soil cuttings

		Start. O							Logged By: D. Abt / A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0									10" Asphalt 2" Gravel base course	Vacuum excavate test boring from
-									Moist, brown, fine to coarse SAND, some fine to coarse GRAVEL, trace silt	the ground surface to 5' bgs.
-										Analytical sample (2.5'-5.0')
- 22.6	VE	V-1								Obstruction encountered. Offset boring 2'
22.6 5	SS	S-1	24	17 32	12	65		ıvel	Wet, very dense, brown, fine to coarse SAND, little fine to coarse gravel, trace silt	NW and resume drilling.
_	33	J-1	24	33 36 38	12	03		Sand and Gravel	Wat your dama harry fine to cooke CAND	
T -	SS	S-2	24	30 38	14	68		Sand	Wet, very dense, brown, fine to coarse SAND, some fine to coarse GRAVEL, trace silt	
-				28 40					Wet, very dense, brown, fine to coarse SAND,	
17.6 10	SS	S-3	24	35 33 30	10	68			some fine to coarse GRAVEL, trace silt	
-	-									
-	-)/ 			
<u>12.6</u>	SS	S-4	24	45 26	8	55			Wet, very dense, brown, fine SAND, trace silt	
15	33	3-4	24	29 32	0	55		Sand		
-	_							S		
-	60	0.5	0.4	18	0.4	0.7			Wet, dense, gray, fine SAND, trace silt	
7.6	SS	S-5	24	15	24	37		<u> </u>		niotor Classificati
AS - Auge CS - Califo BQ - 1.5" NQ - 2" Ro	er/Grab S ornia Sa Rock Co	mpler s	V - Vac Sam SS - Spli ST - She GP - Geo	iple t Spoor Iby Tub	n l	V. Loo: _oose: VI. Der	se: ()-4 [Sand): Fine Grained (Clay):	nister Classificati and 35-50% some 20-35% little 10-20% trace <10% isture, density, color
Revie	wed b			•					Date: Boring Number: I	

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
7.6	SS	S-5	24	22 31	24	37		Sand	Test boring B-98 terminated at 21' bgs and backfilled with soil cuttings.	
									backilled with soil cuttings.	
<u>2.6</u>										
- <u>-2.5</u> 30										
 -75										
- -7.5										
- <u>-12.5</u> - 40										
<u>17.5</u> - 4 5										
									Boring Number: B	-98

Client: MWRA **Project Name:** Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 143-145 Palmer St., Arlington, MA Northing: 2976965.7177 Easting: 752462.7051 **Drilling Date: Start:** 8/31/2017 **End:** 8/31/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Reviewed by:

Surface Elevation (ft.): 25.98

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

Depth Date Time 13.2 8/31/2017 10:25

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-99

J			75 1/20 1		0,0	.,			Logged By: D. Abt / A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0									9" Asphalt 2" Gravel base course	Vacuum excavate boring from the
- - -	VE	V-1							Dry, brown, fine to coarse SAND, some fine to coarse GRAVEL	ground surface to 5.2' bgs. Analytical sample (2.5'-5.2')
21.0 5				7					Moist vany dance brown fine to corre	
о -	SS	S-1	24	17 34 34	10	51			Moist, very dense, brown, fine to coarse SAND, little fine gravel, trace silt	
-	- SS	S-2	24	32 32 40 33	14	72		ınd Gravel	Wet, very dense, brown, fine to coarse SAND, little fine to coarse gravel, trace silt	
16.0 10	SS	S-3	24	30 33 37 48	14	70		Sand and	Wet, very dense, brown, fine to coarse SAND, some fine to coarse GRAVEL, trace silt	
<u>▼</u> - 11.0 15	- SS	S-4	24	32 22 22 27	14	44			Wet, very dense, brown, fine to coarse SAND, some fine to coarse GRAVEL, trace silt	
- - -									Test boring B-99 terminated at 16' bgs and backfilled with soil cuttings.	
6.0	, Sa	ımple Ty	nes						Consistency vs Blowcount/Foot Bu	urmister Classification
S - Califo	Auger/Grab Sample - California Sampler - 1.5" Rock Core ST - Shelby Tube					V. Loo: Loose: M. Der	se: 0	nular -4 [10 \	(Sand): Fine Grained (Clay): Dense: 30-50 V. Soft: <2 Stiff: 8-15 V. Dense: >50 Soft: 2-4 V. Stiff: 15-30	and 35-50% some 20-35% little 10-20% trace <10% moisture, density, color

Boring Number: B-100 (MW)

Client: MWRA **Project Name:** Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Palmer St./Hamlet St., Arlington, MA Northing: 2977246.7851 Easting: 752681.1012

Drilling Date: Start: 8/29/2017 **End:** 8/29/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Surface Elevation (ft.): 24.39

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

Time Depth Date

8.0 8/29/2017

Abandonment Method: Backfilled with soil cuttings

•	,	Start. 0/	20,20		u. 0,2	.0,20				Logged E	By: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		Material Desci	ription		Remarks
0							p & 4		4" Concrete				
-	SS	S-1	18	4 4 4	10	8				, brown, Sligh ND, some silt	tly Organic fine to		
-	- ss	S-2	24	8 11 14 12	12	25					wn, fine to coarse e GRAVEL, trace		
19.4 5	- SS	S-3	24	11 10 12 22	17	22				um dense, bro e fine gravel, tr	wn, fine to coarse ace silt	Ana (4'-6	lytical sample ')
- -	SS	S-4	24	25 13 12 15	18	27			Moist, medii SAND, trace		wn, fine to mediur	n Cori (6'-8	rosion sample '')
14.4 10	SS	S-5	24	11 10 11 14	18	21		Sand	Moist, medii trace silt	um dense, bro	wn, fine SAND,		
- - - 9.4 15	- SS	S-6	24	9 7 8 6	12	15			Wet, mediu SAND, trace		/n, fine to medium		
- - -	-			0			. (**,*)		Test boring and backfille	B-100 (MW) t ed with soil cut	erminated at 16' b tings.	gs	
4.4]												
4.4	 S:	ample Ty	pes	<u> </u>					Consistency vs E	Blowcount/Foot		Burmister	Classification
AS - Auge CS - Calif 3Q - 1.5" NQ - 2" R	er/Grab S fornia Sa	Sample ampler ore S	V - Vac Sam SS - Spli T - She GP - Geo	nple t Spoor lby Tul	n ne	V. Loos Loose: M. Der	se: 0	<u>nular (</u> -4 D 10 V			ined (Clay): Stiff: 8-15 V. Stiff: 15-30 Hard: >30	and some little trace	35-50% 20-35% 10-20% <10% density, color
Revie	wed k	oy:							Date:		Boring Numb	er: B-100	(MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 4 Coral St., Arlington, MA Northing: 2977083.4322 Easting: 752971.992

Drilling Date: Start: 12/20/2017 **End:** 12/21/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Reviewed by:

Surface Elevation (ft.): 24.21

Total Depth (ft.): 16

Depth to Initial Water Level (ft):

Depth Date Time ΝE 12/21/2017 09:05

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-101

J9	, Date.	Start: 1	2120120	' I / L	iu. 12	-/2 1/20	517		Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0				10			71.7		8" Topsoil	
_	ss	S-1	24	11 18 18	16	29			Bottom 8": Moist, medium dense, brown, fine to medium SAND, little fine gravel, little silt	
-	SS	S-2	24	14 16 15 42	10	31		₽	Moist, dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little silt	Analytical sample (2'-4')
19.2 5	SS	S-3	24	48 52 40 34	10	92			Moist, very dense, brown, fine to coarse SAND and fine to coarse GRAVEL, little silt	
-	SS	S-4	24	70 58 92 100	12	>100			Moist, very dense, gray and brown, fine to coarse SAND and fine to coarse GRAVEL, little silt	
- <u>14.2</u> - 10	SS	S-5	24	92 88 76 90	10	>100		d Gravel	Moist, very dense, gray and brown, fine to coarse SAND and fine to coarse GRAVEL, trace silt	
10	-			30				Sand and	Wet, very dense, gray, fine to coarse SAND,	Rollerbit through boulder from 10 to 11.5' bgs.
9.2	ss	S-6	24	24 26 26	10	50			little fine gravel, trace silt	
- -									Test boring B-101 terminated at 16' bgs and backfilled with soil cuttings.	
4.2									Someistanaum Blausaumt/Fact	minton Olo !f!!
CS - Calif BQ - 1.5"	- Auger/Grab Sample - California Sampler - 1.5" Rock Core - 2" Rock Core - 2" Rock Core - Copyright Sample Sample Sample SS - Split Spoon ST - Shelby Tube GP - Geoprobe						se: 0	nular -4 C 10 V	(Sand): Fine Grained (Clay): Dense: 30-50 V. Soft: <2 Stiff: 8-15 Dense: >50 Soft: 2-4 V. Stiff: 15-30	nister Classification and 35-50% some 20-35% little 10-20% trace <10% sisture, density, color

Client: MWRA **Project Name:** Rehabilitation of Weston Aqueduct Supply Main 3

Project Number: 101038-102170 **Project Location:** Massachusetts

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Mystic Valley Parkway, Arlington, MA Northing: 2976889.6176 Easting: 753296.0274

Drilling Date: Start: 12/21/2017 **End:** 12/21/2017

Surface Elevation (ft.): 12.95

Total Depth (ft.): 23

Depth to Initial Water Level (ft):

Depth Date Time 7.5 12/21/2017 13:50

Abandonment Method: Backfilled with soil cuttings

Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0				52			******* *****		4" Topsoil	Analytical cample
-	ss	S-1	24	35 86 80	14	>100			Bottom 10": Moist, very dense, dark brown, fine to medium SAND, little silt, little fine grave	
-	- SS	S-2	24	65 42 60 48	4	>100		≣	Moist, very dense, dark brown, fine to medium SAND, little silt, little fine gravel	m
8.0 5	- SS	S-3	24	18 12 9 12	10	21			Top 6": Wet, medium dense, brown, fine to coarse SAND, trace silt Bottom 4": Wet, very stiff, dark brown, Organic SILT	Analytical sample (4'-6')
¥ -	SS	S-4	24	14 13 24 32	6	37		Gravel	Wet, dense, dark brown, fine to coarse GRAVEL and fine to coarse SAND, trace organic silt	
3.0	- SS	S-5	24	14 22 30 8	6	52		Sand and Grave	Wet, very dense, gray, fine to coarse SAND, some fine gravel, little silt	
	- SS	S-6	24	4 7 12 12	24	19		Silty Clay	Wet, very stiff, gray, Silty CLAY	PP = 0.5 tsf
-7.1 -8S - Auge CS - Calif CS - 1.5" NQ - 2" R	er/Grab S ornia Sa Rock Co	mpler sore	V - Vac Sarr SS - Spli ST - She	nple t Spoor	n l	V. Loose: Loose: M. Der	se: 0 4-	nular -4 [10 \	Consistency vs Blowcount/Foot Sand): Fine Grained (Clay): ense: 30-50 V. Soft: <2	Burmister Classification and 35-50% 20-35% little 10-20% trace <10%

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3
Project Location: Massachusetts Project Number: 101038-102170

Elev. Depth (ft) -7.1	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
_ 20 	SS	S-7	24	WOH WOH WOH	12	WOH		Silty Clay	Wet, very soft, gray, Silty CLAY	
12.1 - 25 -									Test boring B-102 terminated at 23' bgs and backfilled with soil cuttings.	

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: Mystic Valley Parkway, Arlington, MA **Northing:** 2976439.0809 **Easting:** 755355.8314

Drilling Date: Start: 12/22/2017 **End:** 12/22/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Surface Elevation (ft.): 12.19

Total Depth (ft.): 26

Depth to Initial Water Level (ft):

 Depth
 Date
 Time

 7.2
 12/22/2017
 12:30

Abandonment Method: Backfilled with soil cuttings

	,		_,, _ 0			-,, -	•				Logg	ged B	sy: A. Smith			
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material D	escr)	iption			Remarks
0				93			74 18. 74		6	" Topsoil						
	SS	S-1	24	30 33 35	16	63			tı	oarse SAN ace silt	ND, some f	ine to	nse, brown, fi o coarse grav	el,		
	- ss	S-2	24	17 13 9 8	8	22		≣		/loist, medi ilt	ium dense,	gray	y, fine SAND,	son	ne	Analytical sample (2'-4')
7.2 5	SS	S-3	24	10 9 6 6	12	15				⁄loist, medi ilt	ium dense,	gray	y, fine SAND,	son	ne	Analytical sample (4'-6')
- <u>T</u> -	SS	S-4	24	6 10 6 8	12	16		Organic Soils					n, Organic SIL trace fine gra			Corrosion sample (6'-8')
- <u>2.2</u> - 10	SS	S-5	24	22 36 25 32	10	61		_					to coarse SA race organic t			
10								Sand and Gravel								
<u>-2.8</u> 15	- SS	S-6	24	8 9 10 12	6	19		Silty Clay	V	Vet, very s	tiff, gray, S	ilty C	CLAY			PP < 0.5 tsf
							7.5									
	SS	S-7	24	30 32	12	62				Vet, very d		, fine	s SAND, some	e fin	e	
-7.8	Sa	ample Ty	pes				%.4 <u>.°0°1</u>			· · · · · · · · · · · · · · · · · · ·	Blowcount/	Foot			Burmi	ster Classification
CS - Calif BQ - 1.5"	S - Auger/Grab Sample S - California Sampler Q - 1.5" Rock Core Q - 2" Rock Core GP - Geoprobe V - Vac Ex/Grab Sample Sample SS - Split Spoon ST - Shelby Tube GP - Geoprobe V. Loose: Loose: 4 M. Dense: 1												ined (Clay): Stiff: 8-19 V. Stiff: 15-3 Hard: >30	30	ar sc lit tr	nd 35-50% ome 20-35% title 10-20% race <10% ture, density, color
Revie	wed l	by:								Date:			Boring Nu	mb	er: B	-103

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)		Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
-7.8 20 	SS	S-7	24	30 30	12	62		Sand and Gravel		
<u>12.8</u> _ _ <u>25</u> _	- SS	S-8	24	58 54 56 52	12	>100		Sand	Wet, very dense, gray, fine SAND, some fine gravel, little silt Test boring B-103 terminated at 26' bgs and backfilled with soil cuttings.	
	-									
30 	-									
- <u>-22.8</u> - 35 -	-									
	-									
<u> </u>									Boring Number: B	-103

Sheet 1 of 2

Boring Number: B-104 (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / D. Jacobs **Drilling Method/Casing/Core Barrel Size:** Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Mystic Valley Parkway, Somerville, MA

Northing: 2976424.5058 Easting: 755588.63

Drilling Date: Start: 12/27/2017 End: 1/8/2018

Surface Elevation (ft.): 14.26

Total Depth (ft.): 24.7

Depth to Initial Water Level (ft):

Depth Date Time 5.3 1/8/2018 15:30

Abandonment Method: Monitoring well installed

J									Logged By: A. Smith					
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description Remarks					
0 -	-								3" Topsoil: Dry, brown, fine to coarse SAND, some fine gravel, little silt Some fine gravel, little silt Vacuum excavate boring from the ground surface to 6' bgs.					
	VE	V-1						E	Moist, brown, fine to coarse SAND, some fine to coarse gravel, little silt Analytical sample (2'-4')					
9.3				67 58					Wet, very dense, gray, fine to medium SAND, some organic silt, trace fine gravel					
	SS	S-1	24	70 16	2	>100								
4.3 10	SS	S-2	24	3 9 10 9	6	19		Silty Sand	Wet, medium dense, gray, fine to coarse SAND, some fine gravel, trace organic fibers Analytical sample (8'-10')					
	· SS	S-3	24	38 55 46 56	12	>100		Sand and Gravel	Wet, very dense, gray, fine to medium SAND, some fine to coarse gravel, little silt					
-5.7	SS <u>S</u> a	S-4	24 pes	60 65	12	>100			Wet, very dense, gray, fine to coarse SAND and fine to coarse GRAVEL, little silt Consistency vs Blowcount/Foot Burmister Classification					
AS - Auge CS - Califo BQ - 1.5" I NQ - 2" Ro	r/Grab S ornia Sa Rock Co ock Core	Sample mpler ore	V - Vac San SS - Spli ST - She SP - Geo	nple t Spoor lby Tul	n ne	V. Loos Loose: M. Der	se: 0	-4 [·10 \	(Sand): Fine Grained (Clay): and some 20-35% some 20-35% some 20-35% little 10-20% trace <10% moisture, density, color Dense: >50 V. Soft: <2					
Revie	wed b	y:							Date: Boring Number: B-104 (MW)					

Boring Number: B-104 (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

	Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
	-5.7 20	SS	S-4	24	60 40		>100				
	 				44				Sand and Gravel	Wet very dense gray fine to coarse SAND	
	<u>-10.7</u> 25	SS	S-5	8	100/2"	0.5	>100			Wet, very dense, gray, fine to coarse SAND and fine to coarse GRAVEL, little silt Test boring B-104 (MW) terminated at 24.7'	
	 	-								Test boring B-104 (MW) terminated at 24.7' bgs and converted into a monitoring well.	
	- \frac{-15.7}{30} -	-									
	<u>20.7</u> - 35	-									
GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19	25.7 - 40										
BL GINT LOGS MWRA	- 30.7 - 45									Boring Number: B	-104 (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Capen St., Somerville, MA Northing: 2976277.1826 Easting: 755945.5454

Drilling Date: Start: 9/12/2017 End: 9/12/2017

Surface Elevation (ft.): 25.24

Total Depth (ft.): 14.8

Depth to Initial Water Level (ft):

Depth Date 4.0 9/12/2017 10:00

Abandonment Method: Backfilled with soil cuttings

SS	Logged By: A. Smith					
SS S-1 18 55 8 >100	emarks					
SS S-1 18 55 8 >100						
SS S-2 24 123 10 38	e gravel in tip.					
SS S-3 5 100/5" 5 >100/5" 5 >100 S S-100 S Some fine to coarse SAND, some fine to coarse SAND, some fine to coarse gravel, some silt Moist, very dense, brown, fine to coarse SAND, some silt, little fine gravel Moist, very dense, brown, fine to coarse SAND, some silt, little fine gravel Moist, very dense, brown, fine to medium SAND, some silt, little fine gravel SS S-5 24 33 16 63 26 8 9 40 4 >100 S SAND, some silt, little fine gravel Test boring B-105 terminated at 14.8' bgs and backfilled with soil cuttings. SS Auger/Grab Sample V-Vac Ex/Grab Sample Sample Types Consistency vs Blowcount/Foot Burmister Cliented Sample Granular (Sand): Fine Grained (Clay): and 3 some 3 some 3 some 2 som	ical sampl					
SS S-4 24 30 18 60 SS S-5 24 30 30 16 63 SS S-6 9 40 4 >100 SS S-6 9 100/3 4 >100 SS S-6 9 100/3 4 >100 SS S-6 S-6 S-6 S-6 S-6 S-6 S-6 S-6 S-6 S						
SS S-5 24 30 33 16 63 Pg 8 SAND, some silt, little fine gravel SS S-6 9 40 4 > 100 Moist, very dense, brown, fine to medium SAND and SILT, little fine gravel						
SAND and SILT, little fine gravel Test boring B-105 terminated at 14.8' bgs and backfilled with soil cuttings. Sample Types Consistency vs Blowcount/Foot Sample V- Vac Ex/Grab Sample	sion sampl					
Sample Types Consistency vs Blowcount/Foot S - Auger/Grab Sample S - Colifornia Sample						
	35-50% 20-35% 0-20% <10%					

Sheet 1 of 1

Boring Number: B-107 (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NX **Hammer Weight/Drop Height/ Spoon Size:** 140 lb / 30 in /2 in O.D.

Bore Hole Location: 44 Irvington Rd., Somerville, MA Northing: 2976571.8345 Easting: 756490.7311 Drilling Date: Start: 9/12/2017 End: 9/12/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Surface Elevation (ft.): 34.79

Total Depth (ft.): 18.5

Depth to Initial Water Level (ft):

Depth Date Time 5.0 9/12/2017 11:30

Abandonment Method: Monitoring well installed

Logged By: A. Smith

										Logged E	3y: A. Smith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata		Material Desc	ription		Remarks
0							اه اه اه		√ 3" Asphalt				
	SS	S-1	18	15 12 12	12	24			Moist, med		wn, fine to coarse le silt	!	
	- SS	S-2	24	16 22 25 50	18	47			Moist, den little fine gr	se, brown, fine ravel, little silt	to medium SAND	,	Analytical sample (2'-4')
	- SS	S-3	24	30 46 56 42	16	>100			Moist, very SAND, little	dense, brown, e fine gravel, littl	fine to medium le silt		
	- SS	S-4	24	20 28 28 25	14	56		Sand and Gravel		dense, brown, me silt, little fine			
 24.8	- SS	S-5	24	20 35 56 60	14	91		Sand		dense, brown, me fine to coars	fine to coarse se gravel, little silt		
- 24.8 10													Rollerbit through cobbles and boulders from 10 to 14.5' bgs.
- <u>19.8</u>	NX	C-1	48		46			Bedrock	See core k	og for descriptic	on		
 14.8							×//>		Test boring bgs and co	g B-107 (MW) t onverted into a i	erminated at 18.5' monitoring well.	,	
	Sa	ample Typ	oes	•		Consistency vs Blowcount/Foot						Burmi	ster Classification
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	er/Grab S ornia Sa Rock Co	Sample Spre S	V - Vac Sam S - Spli T - She	nple t Spoor lby Tub	n ne	V. Loos Loose: M. Den	se: 0	<u>nular (</u> -4 D 10 V	Sand): ense: 30-50 . Dense: >50	1	hined (Clay): Stiff: 8-15 V. Stiff: 15-30	so lit ti	nd 35-50% ome 20-35% ttle 10-20% race <10% ture, density, color
Revie	wed b	oy:			,	Date: Boring Number: B							-107 (MW)

Reviewed by:

Boring Number: B-107 (MW)

Project Name: Rehabilitation of Weston Aqueduct Supply Main 3 Client: MWRA

Projec	t Lo	catio	n: M	lass	achu	setts		rojec	t Nu	umber: 101038-	-102170		,		
Elevation Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Recovery (%)	RQD (%)	Drill Rate (min/ft)	Down Press. (psi)	Graphic Log	Strata	N	Material Description		Remarks		
19.8 15.0						1:00 1:00			e		tly weathered, gray, AR0 ry close to close, thin be				
	NX	C-1	60	96	8	2:00	NR		Argillite						
										Test boring B-107 t	erminated at 18.5' bgs.				
<u> 14.8</u> – 20.0															
9.8															
25.0															
4.8 -															
Bed Extremel Very Thir	ding (<u>mm)</u>		<u>J</u>	oint S	pacin	ıg (mr	<u>n)</u>		Continuity (mm)	Attitude Angle	Apertu	ure (mm)		
Extremel Very Thir Thin Medium Thick Very Thic Extremel	ń	20- 60- 200- 600- 2000-	2000 -6000	Ex Ve Cl Mc W Ve	tremely ery Clos ose od Clos ide ery Wid tremely	/ Close se e	20 60 200 600 2000	<20)-60 -200)-600 -2000)-6000 6000	N S	Axtremely <25 Moderately 25-100 Sound >200	Horizontal 0° - 5° Shallow 5° - 35° Moderate 35° - 55° Steep 55° - 85° Vertical 85° - 90°	Very Tight Tight Partly Open Open Mod. Wide Wide	< 0.1 0.1 - 0.25 0.25 - 0.5 0.5 - 2.5 2.5 - 10 >10		
<u>Fie</u>	ld Ha	rdnes	<u>s</u>				hering								
Hard Scratches with Difficulty Med. Hard Scratches Readily Medium Difficulty Medium Difficulty Soft Grooves Readily Slight Discolora than its from Moderate Less than present eight More than the Moderate Less than present eight Modera									indication indication conding the condition of the condition of the condition indication of the condition of	ated weathering. All the ition. ne rock material is decon continuous framework o	nposed and/or disintegrate	ed to a soil. Fre	sh or discolored rock is		
Very Soft	Ca	arves w	ith Knif	e	Comple Residu		All roo	ck mate	rial is rial is	decomposed and/or disiconverted to soil. The n	integrated to soil. The orig nass structure and materia n significantly transported.				

Date:

Boring Number: B-107 (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

 $\textbf{Drilling Contractor/Driller:} \ \ \text{GeoLogic - Earth Exploration, Inc. / M. Ferreira}$

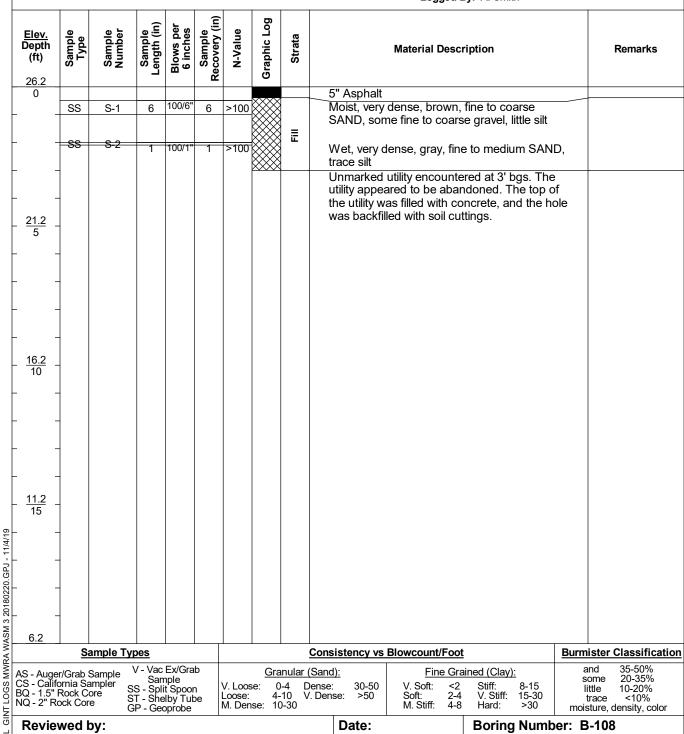
Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D. Bore Hole Location: 200 Boston Ave., Medford, MA

Northing: 2976911.0610 Easting: 756850.1348

Drilling Date: Start: 10/5/2017 End: 10/5/2017

Surface Elevation (ft.): 26.21


Total Depth (ft.): 3

Depth to Initial Water Level (ft):

Depth Date Time
NE NE NE

Abandonment Method: Backfilled with concrete

Logged By: A. Smith

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D. Bore Hole Location: Whole Foods Parking Lot, Medford, MA

Northing: 2977044.4331 Easting: 757045.8241 **Drilling Date: Start:** 10/5/2017 **End:** 10/5/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Reviewed by:

Surface Elevation (ft.): 18.3

Total Depth (ft.): 21

Depth to Initial Water Level (ft): Depth Date Time 6.5 10/5/2017 13:25

Abandonment Method: Backfilled with soil cuttings

Boring Number: B-109

J		Start. IV	0,0,20		u i 10/	0,201	•		Logged By: A. Smith	
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
0									2" Asphalt 10" Gravel and Cobbles	
-	SS	S-1	12	80 16	6				Wet, very dense, gray, fine to medium SAND, trace silt	
-	- SS	S-2	24	9 6 6 4	1	12			Wet, medium dense, brown, fine to medium SAND, some silt	
13.3 5	- SS	S-3	24	8 5 6 6	0	11		E	No Recovery: 3" Spoon: Wet, medium dense, brown, fine to medium SAND, some silt, trace glass	
T -	- SS	S-4	24	9 18 23 18	0	41			No Recovery: 3" Spoon: Wet, dense, dark brown, fine to coarse SAND and fine to coarse GRAVEL, little organic silt, trace glass	
-	- SS	S-5	24	11 8 5 5	2	13			Top 18": Wet, medium dense, dark brown, fine to coarse SAND and fine to coarse GRAVEL, little organic silt, trace glass	Analytical and Corrosion sample (8'-10')
8.3	SS	S-6	12		12		-	Silty Sand	Bottom 6": Wet, medium dense, brown, fine SAND, little silt Wet, medium dense, brown, fine SAND, little silt	Analytical sample (10'-11')
3.3 15	- SS	S-7	24	19 25 52 72	14	77		Sand and Gravel	Wet, very dense, brown, fine to coarse SAND, some fine gravel, little silt	
- -1.7	SS	S-8	24	7 9	20	39		Silty Clay	Wet, hard, gray, Silty CLAY	
		ample Ty	pes V - Vac	Ev/Cro	h					and 35-50%
AS - Auge CS - Califo BQ - 1.5" IQ - 2" Ro	ornia Sa	ampler ore S	v - vac Sam SS - Spli ST - She SP - Geo	nple t Spooi lby Tul	n l	V. Loose: Loose: M. Der	se: 0	-4 C	Dense: 30-50 V. Soft: <2 Stiff: 8-15 V. Dense: >50 Soft: 2-4 V. Stiff: 15-30	some 20-35% little 10-20% trace <10% isture, density, color

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
-1.7 20	ss	S-8	24	30 100	20	39				
									Test boring B-109 terminated at 21' bgs and backfilled with soil cuttings.	
- -6.7										
<u>-6.7</u> 25										
- -11.7										
- -11.7 -										
<u>16.7</u> -										
35 -										
-										
- <u>-21.7</u> -										
40 - –										
<u>26.7</u> - 45										
45 										
									Boring Number: E	-109

Boring Number: B-110 (MW)

Client: MWRA **Project Name:** Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 105 Auburn St., Medford, MA Northing: 2977428.7695 Easting: 757370.1157 Drilling Date: Start: 12/19/2017 End: 12/19/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Surface Elevation (ft.): 14.53

Total Depth (ft.): 21

Depth to Initial Water Level (ft): Depth Date Time 5.8 12/19/2017

Abandonment Method: Monitoring well installed

12:30

Logged By: A Smith

											Logg	jed B	y: A. Sr	mith		
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material D	escr	iption			Remarks
14.5 0	SS	S-1	24	70 62 52 32	16	>100		≣		oist, very o		wn, i	fine to r	nedium		
	SS	S-2	24	19 21 25 20	20	46			N	loist, hard,	gray, Silty	CLA	ΑΥ			Analytical sample (2'-4') PP = 2.5 tsf
9.5 5 <u>¥</u>	SS	S-3	24	7 8 12 17	20	20			tr	Moist, very s ace peat						Corrosion sample (4'-6') PP = 1.6 tsf
	SS	S-4	24	3 3 6	24	6		Organic Soils	tr	loist, medio ace peat						PP = 0.8 tsf
4.5 10	- SS	S-5	24	7 7 7 8	24	14		0		/loist, stiff, g nedium sar			CLAY, li	ttle fine to)	PP = 0.7 tsf
10																
				44				ravel	V	Vet, very de	ense brow	ın fii	ne to co	narse SA	ND	
- <u>-0.5</u> 15	SS	S-6	24	53 48 64	12	>100		Sand and Gravel		ome fine to					,	
								Clay								
-5.5	SS	S-7	24	11 9	24	18		Silty	to	Vet, very st o medium s	sand		& SILT	, trace fir	ne	PP = 1.0 tsf
	<u>Sa</u>	ample Ty	pes						Cons	istency vs E	Blowcount/I	Foot			Burn	nister Classificatio
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	fornia Sa	ampler S	V - Vac Sam S - Spli T - She SP - Ged	nple t Spoor lby Tub	n ne	V. Loose: Loose: M. Der	se: 0	10 V	(Sand ense: /. Dens	30-50	Fine V. Soft: Soft: M. Stiff:	<2 2-4 4-8	ned (Cla Stiff: V. Stif Hard:	8-15	:	and 35-50% some 20-35% little 10-20% trace <10% isture, density, color
Revie	wed l	by:								Date:			Borir	ng Num	ber: I	B-110 (MW)

Boring Number: B-110 (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
-5.5 20	SS	S-7	24	9	24	18				PP = 1.0 tsf
									Test boring B-110 (MW) terminated at 21' bgs and converted into a monitoring well.	
- <u>-10.5</u>										
- <u>15.5</u> _ 30 - 										
<u>20.5</u> _ 35										
									Boring Number:	D 440 (BMA)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D. Bore Hole Location: 120 Auburn St., DCR Property, Medford, MA Northing: 2977545.8348 Easting: 757673.1903

Drilling Date: Start: 12/18/2017 **End:** 12/18/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Reviewed by:

Surface Elevation (ft.): 11.9

Total Depth (ft.): 16

Depth to Initial Water Level (ft): Depth Date 5.5

12/18/2017 Abandonment Method: Backfilled with soil cuttings

Boring Number: B-111

13:50

Sample Sample Sample Length (in) Number Proceedings Blows per 6 inches Sample Sample Sample Sample Sample Sample Sample Sample Number Number Proceedings Sample Sam	Strata	Material Description	
0 42		Material Description	Remarks
	,7. •	6" Topsoil	
- SS S-1 24 30 16 54 42	≣	Bottom 10": Moist, very dense, brown, fine to coarse SAND, some fine gravel, trace silt	
- SS S-2 24 17 20 8 34	Organic Soils	Top 3": Moist, dense, brown, fine to coarse SAND, some fine gravel, trace silt Bottom 5": Moist, hard, dark brown, Organic SILT	Analytical sample (2'-4')
$\frac{6.9}{\P}$ - SS S-3 24 $\begin{pmatrix} 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 $		Top 3": Moist, stiff, dark brown, Organic SILT Bottom 9": Moist, loose, brown, fine to medium SAND, some silt, trace fine gravel	
- SS S-4 24 9 8 12 18	Silty Sand	Moist, medium dense, brown, fine SAND, some silt	
1.9	Sand and Gravel	Wet, very dense, brown, fine to coarse SAND, some fine to coarse gravel, little silt	
-3.1	Silty Clay (Wet, very stiff, brown, Silty CLAY	PP = 2.2 tsf
		Test boring B-111 terminated at 16' bgs and backfilled with soil cuttings.	
-8.1			
Sample Types AC Acceptance V - Vac Ex/Grab Gr			nister Classification and 35-50%
AS - Auger/Grab Sample CS - California Sampler SS - Snit Spoon V. Loose:	1-10 ∖	Dense: 30-50 V. Soft: <2 Stiff: 8-15 / Dense: >50 Soft: 2-4 V. Stiff: 15-30	and 35-50% some 20-35% little 10-20% trace <10% sture, density, color

Client: MWRA **Project Name:** Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 3 in / NA Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: DCR Property, Medford, MA Northing: 2977680.1306 Easting: 758176.0581

Drilling Date: Start: 12/18/2017 **End:** 12/18/2017

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Reviewed by:

Surface Elevation (ft.): 10.08

Total Depth (ft.): 26

5.1

Depth to Initial Water Level (ft): Depth Date

12/18/2017 Abandonment Method: Backfilled with soil cuttings

Boring Number: B-112

10:48

	Sample Sample Length (ii) Sample Recovery (iii) Recovery (iii) N-Value Graphic Log		011		Logged By: A. Smith					
			Strata	Material Description	Remarks					
0				15	_		7, 15, 7,		8" Topsoil	
-	SS	S-1	24	21 25 19	18	46		≣	Bottom 10": Moist, dense, brown, gray, fine SAND, some silt	
-	ss	S-2	24	17 19 20 23	20	39		rganic Soils	Moist, hard, dark brown, Organic Silty CLAY, trace fine to medium sand	Analytical sample (2'-4')
<u>5</u> 1 -	- ss	S-3	24	10 15 16 26	24	31		ō	Moist, dense, brown, fine to medium SAND, some silt, trace organic fibers	Corrosion sample (4'-6')
-	- SS	S-4	24	20 25 31 23	24	56		Silty Sand	Wet, very dense, brown, fine to coarse SAND, little silt, trace fine gravel	
<u>0.1</u> 10	- SS	S-5	24	32 22 13	10	35			Top 6": Wet, dense, gray, fine to medium SAND, trace silt Bottom 4": Wet, hard, brown, Silty CLAY	
- - -				11						
<u>-4.9</u> 15	- ss	S-6	24	6 4 6 7	24	10		Silty Clay	Wet, stiff, gray, Silty CLAY, trace fine to medium sand	PP = 1.0 tsf
-9.9	SS	S-7	24	7 8	24	22			Wet, very stiff, gray, Silty CLAY	PP = 1.7 tsf
	Sa	mple Ty	ypes	-		·	<u> </u>		Consistency vs Blowcount/Foot Burn	nister Classificatio
S - Auger/Grab Sample S - California Sampler SQ - 1.5" Rock Core IQ - 2" Rock Core GP - Geoprobe V - Vac Ex/Grab Sample SS - Split Spoon Loose: 0- Loose: 4-1 M. Dense: 10-						Loose:	se: 0	-4 [10 \	Dense: 30-50 V. Soft: <2 Stiff: 8-15 /. Dense: >50 Soft: 2-4 V. Stiff: 15-30	and 35-50% some 20-35% little 10-20% trace <10% isture, density, color

Date:

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3
Project Location: Massachusetts Project Number: 101038-102170

Sample Recovery (in) **Graphic Log** Blows per 6 inches Sample Length (in) Sample Number N-Value Elev. Depth (ft) Sample Type Strata **Material Description** Remarks **-**9.9 PP = 1.7 tsf S-7 24 22 15 Silty Clay 8 Wet, very stiff, gray, Silty CLAY -<u>14.9</u> 25 SS S-8 24 24 17 9 11 Test boring B-112 terminated at 26' bgs and backfilled with soil cuttings. <u>-19.9</u> 30 -<u>24.9</u> 35 <u>-29.9</u> GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19 -<u>34.9</u> 45 **Boring Number: B-112**

Boring Number: B-113 (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / M. Ferreira
 Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA
 Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Veterans Memorial Park, Medford, MA

Northing: 2977766.8067 Easting: 758496.2043

Drilling Date: Start: 12/19/2017 End: 12/20/2017

Surface Elevation (ft.): 11.11

Total Depth (ft.): 26

Depth to Initial Water Level (ft):DepthDateTime5.512/20/201711:00

Abandonment Method: Monitoring well installed

							Logged By: A. Smith						
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks			
0				20			-, 7, -, 1, ××××		4" Topsoil				
	SS	S-1	24	25 36 33	20	61		Ē	Bottom 16": Moist, very dense, gray, fine SAND, some clay, trace fine gravel				
	SS	S-2	24	9 11 14 10	10	25		Organic Soils Clay	Moist, very stiff, brown, Silty CLAY, some fine sand, trace fine gravel	Analytical sample (2'-4')			
- 61				1 2				Jic S	Top 12": Wet, soft, brown, PEAT	Corrosion sample (4'-6')			
- <u>6.1</u> -	SS	S-3	24	1 1	22	3		Orga	Bottom 10": Wet, soft, gray, Silty CLAY, trace peat	PP = 1.0 tsf			
	SS	S-4	24	3 2 1 2	20	3			Wet, soft, gray, Silty CLAY, trace peat	PP = 0.8 tsf			
								Silty Clay					
- <u>1.1</u> - 10 -	- SS	S-5	24	2 2 3 4	24	5		Silty	Wet, medium stiff, gray, CLAY, trace fine to medium sand, trace peat	PP < 0.5 tsf			
	· SS	S-6	24	60 38 20 18	10	58		Silty Clay Silty Sand	Top 6": Wet, very dense, gray, fine to medium SAND, little fine gravel, trace silt Bottom 4": Wet, hard, brown, Silty CLAY, little fine sand	PP = 2.0 tsf			
 -8.9	ss	S-7	24	13 16	16	36		Silty Sand	Wet, dense, gray, fine SAND, little silt				
	Sa	mple Ty	pes	•		•			Consistency vs Blowcount/Foot Burm	ister Classification			
AS - Auge CS - Califo BQ - 1.5" NQ - 2" Ro	ornia Sa Rock Co	mpler ore S	V - Vac Sam SS - Spli T - She GP - Ged	nple t Spoor lby Tub	n ,	V. Loo: Loose: M. Der	se: 0	-4 [10 \	Dense: 30-50 V. Soft: <2 Stiff: 8-15 ii Dense: >50 Soft: 2-4 V. Stiff: 15-30 t	nd 35-50% ome 20-35% ttle 10-20% race <10% ture, density, color			
Revie	wed b	y:							Date: Boring Number: B	-113 (MW)			

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Boring Number: B-113 (MW)

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

i rojec	, LOC	Jation.	IVIAS	Jacri			٠ . ٥٫٠	, , , ,	umber: 101036-102170	
I	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
-8.9 20 -	SS	S-7	24	20 13	16	36		Silty Sand		
- <u>13.9</u> 25	SS	S-8	24	2 3 4 5	24	7		Silty Clay	Wet, medium stiff, gray, Silty CLAY	
-									Test boring B-113 (MW) terminated at 26' bgs and converted into a monitoring well.	
- <u>18.9</u> _										
- <u>23.9</u> 35										
- <u>28.9</u> 40 -										
- <u>33.9</u> 45									Boring Number: B-	

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / D. Jacobs **Drilling Method/Casing/Core Barrel Size:** Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: Veterans Memorial Park, Medford, MA

Northing: 2977894.5906 Easting: 759032.9731 Drilling Date: Start: 1/9/2018 End: 1/9/2018

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Surface Elevation (ft.): 12.03

Total Depth (ft.): 16

Depth to Initial Water Level (ft):DepthDateTime4.01/9/201811:55

Abandonment Method: Backfilled with soil cuttings

Logged By: A. Smith

Logged By: A. Smith															
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material D	escr	iption		Remarks
0							71.74.77						e to coarse SAND), /	Vacuum excavate
	- VE	V-1			-				l ĭ	loist, brow	gravel, trace in, fine to c o coarse gr	oars	e SAND, some s	ilt,	test boring from the ground surface to 6' bgs. Analytical sample (2'-4')
5	7.0 5 VE V-2										SAND, some silt	t,			
						Sand	\ \ \	Vet, very o		/n, fi	ne to medium gravel, trace silt				
 - <u>2.0</u> -	- SS	S-2	24	54 65 70 110	14	>100					lense, brow coarse grav		ne to coarse SAN race silt	ND,	
 				Sand											
<u>-3.0</u> 15	SS	S-3	24	52 40 36 58	12	76		Silty Sand					ne SAND, little sil		
	-8.0							B-114 terr vith soil cutt		ted at 16' bgs and	d				
-0.0	Sample Types					1			Cons	istency vs	Blowcount/l	Foot		Burm	ister Classification
AS - Auger/Grab Sample CS - California Sampler BQ - 1.5" Rock Core NQ - 2" Rock Core OF - Geoprobe					n ne	V. Loose: Loose: M. Der	se: 0	-10 V	(Sand Dense: /. Dens	30-50	Fine V. Soft: Soft: M. Stiff:	e Grai <2 2-4 4-8	ined (Clay): Stiff: 8-15 V. Stiff: 15-30 Hard: >30	Si li t	nd 35-50% ome 20-35% ttle 10-20% trace <10% sture, density, color
Revie	wed l	by:				Date: Boring Number: B-114									

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / D. Jacobs

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 2400 Mystic Valley Parkway, Medford, MA

Northing: 2977890.9394 Easting: 759561.8584

Drilling Date: Start: 12/26/2016 **End:** 1/10/2018

Surface Elevation (ft.): 10.34

Total Depth (ft.): 21

Depth to Initial Water Level (ft):DepthDateTime4.31/10/201811:00

Abandonment Method: Backfilled with soil cuttings

Logged By: D. Abt

											Log	gea E	sy: D. Abt			
Elev. Depti (ft)	Sai	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material	Descr	iption			Remarks
0							7/-1						e to coarse S	SANE),	Vacuum excavate
	VE	V-1			-				N Se	ome fine t	n, fine to coarse (coars grave				test boring from the ground surface to 5.6' bgs.
- - <u>▼</u> - <u>5.3</u>	- VE	V-2								loist, brow ome fine g		coars	e SAND and	d SIL	Τ,	Analytical sample (3'-5')
5								and								
_	- SS	S-1	24	26 8 5 6	0	13		Silty Sand	N	o Recove	ry					
- - <u>0.3</u> 10	- SS	S-2	24	7 6 5 8	10	11							n, Organic f tle fine grave			Corrosion sample (8'-10')
10 - -	_															Rig chatter from
- - - <u>-4.7</u> 15	- ss	S-3	24	15 16 25 21	21	41		Silty Clay		/et, hard, ne sand	brown to	gray,	CLAY & SIL	T, littl	le	12 to 14' bgs.
-9.7 AS - Au CS - C2 BQ - 1. NQ - 2"		S-4	24	15	20	20		Silty				to gr	ay, CLAY &	SILT	,	
-9.7		ample Ty		9			<u> </u>	1		tle fine sa stency vs		t/Foot			Burmi	ster Classification
AS - Au CS - Ca BQ - 1. NQ - 2"	Y Y 5 (2)					se: 0	anular)-4 C -10 V	(Sand) Dense: /. Dens	<u>:</u> 30-50			ined (Clay): Stiff: 8- V. Stiff: 15	15 -30 30	ar sc lit tr	nd 35-50% ome 20-35% ttle 10-20% ace <10% ture, density, color	
Reviewed by:									Date: Boring Number: B-115			-115				

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts **Project Number:** 101038-102170

Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata	Material Description	Remarks
-9.7 20	SS	S-4	24	11 14	20	20			T. (1	
									Test boring B-115 terminated at 21' bgs and backfilled with soil cuttings.	
 -14.7										
- <u>-14.7</u> - 										
<u>19.7</u> -										
30										
- <u>-24.7</u> 35										
- 35 										
- <u>-29.7</u> 40										
- -34.7 -										
									Boring Number: B	 -115

Client: MWRA Project Name: Rehabilitation of Weston Aqueduct Supply Main 3

Project Location: Massachusetts Project Number: 101038-102170

Drilling Contractor/Driller: GeoLogic - Earth Exploration, Inc. / D. Jacobs

Drilling Method/Casing/Core Barrel Size: Drive and Wash / 4 in / NA

Hammer Weight/Drop Height/ Spoon Size: 140 lb / 30 in /2 in O.D.

Bore Hole Location: 2500 Mystic Valley Parkway, Medford, MA

Northing: 2977872.7539 Easting: 759901.0673

Drilling Date: Start: 1/9/2018 **End:** 1/9/2018

GINT LOGS MWRA WASM 3 20180220.GPJ - 11/4/19

Surface Elevation (ft.): 10.61

Total Depth (ft.): 16

Depth to Initial Water Level (ft):DepthDateTime3.71/9/201814:00

Abandonment Method: Backfilled with soil cuttings

Logged By: A. Smith

Logged By: A. Smith															
Elev. Depth (ft)	Sample Type	Sample Number	Sample Length (in)	Blows per 6 inches	Sample Recovery (in)	N-Value	Graphic Log	Strata			Material D	escr	iption		Remarks
0													e to coarse SAND),	Vacuum excavate test boring from
	VE	V-1							D	ry, brown		rse	race grass/roots SAND, some silt,	_/	the ground surface to 5.4' bgs.
<u>▼</u>	VE	V-2						Sand	M sc	oist, brow ome fine t	vn, fine to co to coarse gr	oars avel	e SAND and SIL ⁻	Τ,	Analytical sample (3'-5')
	- SS S-1 24 44 38 40 6 78				78		Silty Sand	w	et, very o	et, very dense, gray, SILT					
	- SS	S-2	24	23 43 25 23	10	68					dense, brow gravel, trace		ne to coarse SAN	ID,	
-4.4 15	- 9		38		Silty Clay		et, hard, and	gray, CLAY	′ and	d SILT, trace fine					
	-9.4								Te ba	est boring ackfilled v	g B-116 tern vith soil cutti	nina ings	ted at 16' bgs and	d	
-9.4	Sample Types								Consi	stency vs	Blowcount/F	oot		Burm	ister Classification
AS - Auge CS - Calif BQ - 1.5" NQ - 2" R	ornia Sa Rock Co	impler ore S	V - Vac Sam SS - Spli T - She GP - Geo	nple t Spoor lby Tul	n ne	V. Loose: Loose: M. Der	se: 0	-4 [10 \	(Sand) Dense: V. Dense	30-50	1		ined (Clay): Stiff: 8-15 V. Stiff: 15-30 Hard: >30	so li t	nd 35-50% ome 20-35% tttle 10-20% race <10% tture, density, color
Reviewed by:										Date:					

Appendix C

Rock Core Photo Logs

Rock Core Photographs

MWRA – Rehabilitation of Weston Aqueduct Supply Main 3 Weston, Waltham, Belmont, Arlington, Somerville, and Medford, MA

B-8A, B-19 and B-22

B-22: <u>11.5'-16.5'</u>

B-19: <u>9.0'-14.0'</u>

B-8A: <u>5.0'-10.0'</u>

B-53, B-62, and B-75A

B-53: <u>6.0'-11.0'</u>

B-62: <u>11.0'-14.0'</u>

B-75A: <u>9.0'-11.5'</u>

B-55, B-60, and B-61

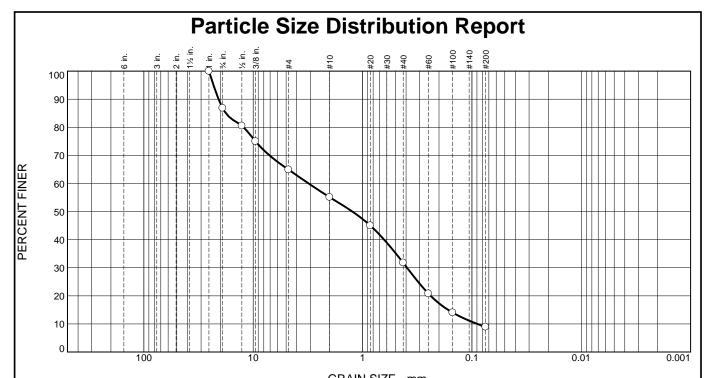
B-61: <u>9.0'-14.0'</u>

B-60: <u>3.5'-8.5'</u>

B-55: <u>8.0'-13.0'</u>

B-57, B-86, and B-107

B-86: <u>10.0'-15.0'</u>


B-107: <u>14.5'-18.5'</u>

B-57: <u>9.0'-14.0'</u>

Appendix D

Geotechnical Laboratory Test Results

			(<u> - RAIN SIZE -</u>	mm.			
0/ - 211	% Gı	ravel		% Sand		% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	13.2	21.9	9.8	23.3	22.9	8.9		

Test R	esults (ASTM I	D422 & ASTM D1140)						
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X=Fail)					
1"	100.0							
.75"	86.8							
.5"	80.5							
.375"	75.0							
#4	64.9							
#10	55.1							
#20	45.0							
#40	31.8							
#60	20.8							
#100	14.0							
#200	8.9							
*		1						

Brown poorly graded sand with silt and gravel

Atterberg Limits (ASTM D 4318)
LL= PI=

PL=

Classification

USCS (D 2487)= SP-SM AASHTO (M 145)= A-1-b

Coefficients

 D90=
 20.7450
 D85=
 17.7866
 D60=
 3.1124

 D50=
 1.2385
 D30=
 0.3918
 D15=
 0.1649

 D10=
 0.0892
 Cu=
 34.89
 Cc=
 0.55

Remarks

As received MC = 4.2%

Date Received: 12/8/17

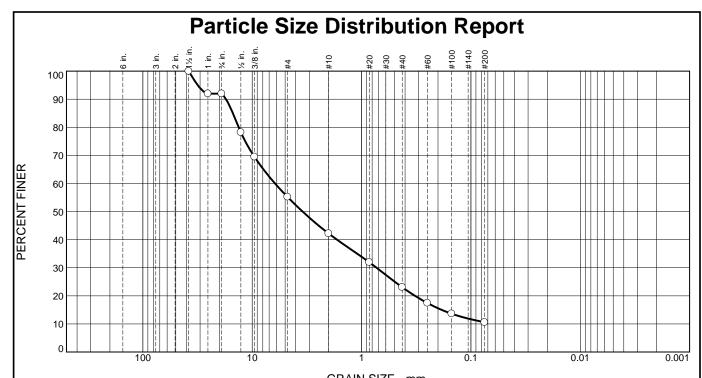
Date Tested: 12/13/17

Date Sampled: 11/29/17

Tested By: RZ Checked By: MP

Title: Laboratory Manager

* (no specification provided)


CDM Smith

Source of Sample: B-1 Sample Number: S-2 **Depth:** 2-4'

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

			(<u>GRAIN SIZE -</u>	mm.			
0/ - 211	% G	ravel		% Sand		% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	8.0	36.8	13.0	19.1	12.5	10.6		

PL=

Opening Size Finer Spec.* (Percent) Pass? 1.5 100.0 (X=Fail) 1.5 92.0 (X=Fail) .75 92.0 (Sec.*) .5 78.2 (Sec.*) .375 69.5 (Sec.*) #40 42.2 (Sec.*) #40 23.1 (Sec.*) #60 17.4 (Sec.*) #100 13.6 (Sec.*) #200 10.6 (Sec.*)	Test R	esults (ASTM D	M D6913 & ASTM D1140)							
1.5	Opening	Percent	Spec.*	Pass?						
1 92.0 .75 92.0 .5 78.2 .375 69.5 #4 55.2 #10 42.2 #20 31.9 #40 23.1 #60 17.4 #100 13.6	Size	Finer	(Percent)	(X=Fail)						
.75 92.0 .5 78.2 .375 69.5 #4 55.2 #10 42.2 #20 31.9 #40 23.1 #60 17.4 #100 13.6	1.5	100.0								
.5 78.2 .375 69.5 #4 55.2 #10 42.2 #20 31.9 #40 23.1 #60 17.4 #100 13.6	1	92.0								
.375	.75	92.0								
#4 55.2 #10 42.2 #20 31.9 #40 23.1 #60 17.4 #100 13.6	.5	78.2								
#10	.375	69.5								
#20 31.9 #40 23.1 #60 17.4 #100 13.6	#4	55.2								
#40 23.1 #60 17.4 #100 13.6	#10	42.2								
#60 17.4 #100 13.6	#20	31.9								
#100 13.6	#40	23.1								
	#60	17.4								
#200 10.6	#100	13.6								
	#200	10.6								

Material Description

Gray-brown poorly graded gravel with silt and sand

Atterberg Limits (ASTM D 4318) LL= PI=

Classification USCS (D 2487)= GP-GM **AASHTO** (M 145)= A-1-a

Coefficients

D₈₅= 15.0225 D₃₀= 0.7295 C_u= **D₆₀=** 6.1897 **D₉₀=** 17.3166 D₅₀= 3.4602 D₁₀= D₁₅= 0.1851 C_c=

Remarks

Date Received: 1/30/18 **Date Tested:** 1/31/18

Tested By: SB Checked By: MP

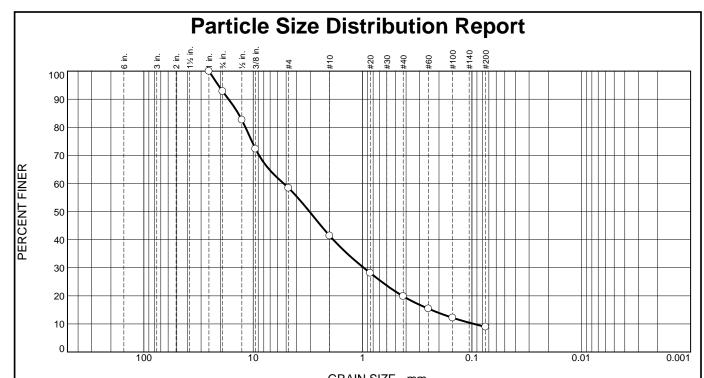
Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-2 Sample Number: S-1

Depth: 6-8'

Client: Massachusetts Water Resources Authority (MWRA)


Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 12/11/17

Boston, Massachusetts Project No: 101038.102170

CDM Smith

			(<u> JRAIN SIZE -</u>	mm.			
0/ - 21	% G	ravel		% Sand		% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	7.2	34.4	17.0	21.6	10.8	9.0		

Test Results (ASTM D6913 & ASTM D1140)								
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X=Fail)					
1	100.0							
.75	92.8							
.5	82.6							
.375	72.3							
#4	58.4							
#10	41.4							
#20	28.1							
#40	19.8							
#60	15.4							
#100	12.2							
#200	9.0							

Gray well-graded sand with silt and gravel

Atterberg Limits (ASTM D 4318) LL= PI=

PL=

Classification
SW-SM AASHTO (M 145)= A-1-a USCS (D 2487)=

Coefficients

D₉₀= 16.8087 **D₅₀=** 3.0592 **D₁₀=** 0.0957 **D₆₀=** 5.2635 **D₁₅=** 0.2355 **C_c=** 1.89 D₈₅= 13.7251 D₃₀= 0.9762 C_u= 54.98

Remarks

As received MC = 8.3%

Date Tested: 1/31/18

Date Received: 1/30/18 Tested By: SB

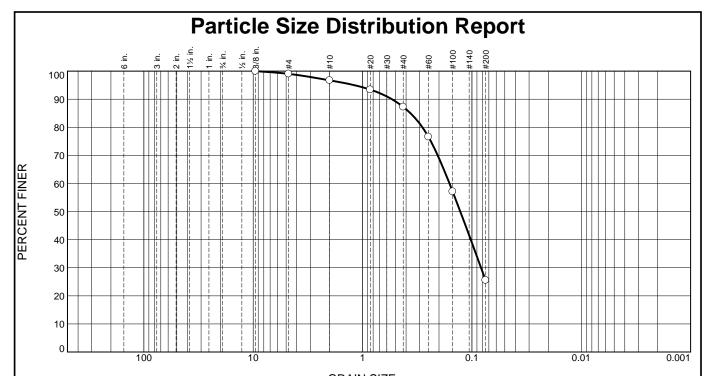
Date Sampled: 12/16/17

Checked By: MP

Title: Laboratory Manager

(no specification provided)

Source of Sample: B-3 **Depth:** 6-6.9' Sample Number: S-1


Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts Project No: 101038.102170

CDM Smith

	GRAIN SIZE - mm.							
9/ .3"		% G	ravel	el % Sand		% Fines		
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	1.0	2.3	9.4	61.7	25.6	

Test Results (ASTM D6913 & ASTM D1140)								
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X=Fail)					
.375	100.0							
#4	99.0							
#10	96.7							
#20	93.4							
#40	87.3							
#60	76.6							
#100	57.1							
#200	25.6							
*								

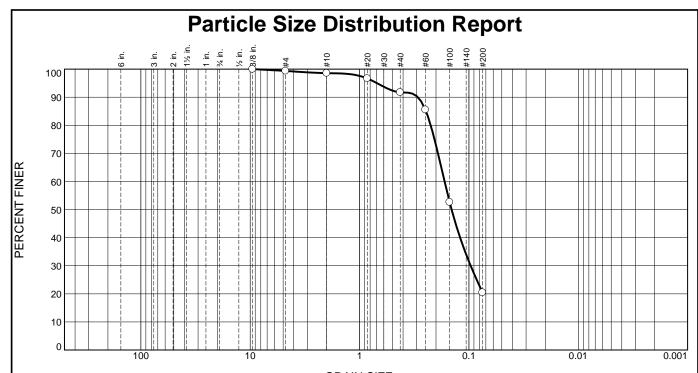
	Material Desc	<u>ription</u>
Brown silty sand		
Atte	erberg Limits (A	STM D 4318)
PL=	LĽ=	PI=
USCS (D 2487)=	SM Classificat	<u>:ion</u> ITO (M 145)= A-2-4(0)
	Coefficier	
D₉₀= 0.5391 D₅₀= 0.1277	D₈₅= 0.3641 D₃₀= 0.0825	D ₆₀ = 0.1604 D ₁₅ =
D ₁₀ = 0.1277	C _u =	C _C =
	Remarks	3
As recieved MC =	10.9%	
Date Received:	1/30/18 Da	ate Tested: 1/31/18
Tested By:	SB	
Checked By:	MP	
		er

Source of Sample: B-4 Sample Number: S-V-1

Depth: 2.5-3'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 12/6/17

Boston, Massachusetts

Project No: 101038.102170

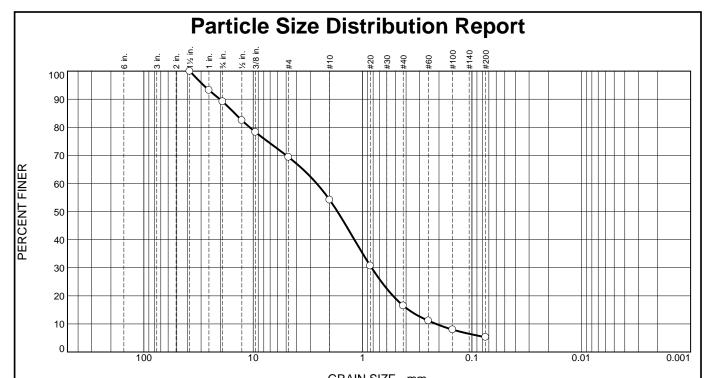
				(<u> GRAIN SIZE -</u>	mm.		
9/ - 211		% Gı	ravel	l % Sand		% Fines		
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	0.6	0.8	6.9	71.3	20.4	

Test Results (ASTM D422 & ASTM D1140)								
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X=Fail)					
.375"	100.0							
#4	99.4							
#10	98.6							
#20	96.7							
#40	91.7							
#60	85.6							
#100	52.6							
#200	20.4							

	<u> Material Descri</u>	<u>ption</u>
Brown silty sand		
<u>Att</u>	erberg Limits (AS	<u>TM D 4318)</u>
PL=	LL=	PI=
USCS (D 2487)=	SM Classification SM AASHT	on O (M 145)= A-2-4(0)
D₉₀= 0.2930 D₅₀= 0.1439 D₁₀=	Coefficient D ₈₅ = 0.2467 D ₃₀ = 0.0964 C _u =	<u>S</u> D ₆₀ = 0.1668 D ₁₅ = C _c =
As received MC =	Remarks: 14.1%	
Date Received: Tested By:		e Tested: 12/12/17
Checked By:	MP	
Title	Laboratory Manager	

Source of Sample: B-5 Sample Number: S-1

Depth: 6-8'


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 12/4/17

				(<u>GRAIN SIZE -</u>	mm.		
9/ .3"		% Gı	ravel	vel % Sand		% Fines		
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	10.8	19.8	15.2	37.7	11.2	5.3	

Test Results (ASTM D422 & ASTM D1140)									
Opening	Percent	Spec.*	Pass?						
Size	Finer	(Percent)	(X=Fail)						
1.5"	100.0								
1"	93.2								
.75"	89.2								
.5"	82.5								
.375"	78.3								
#4	69.4								
#10	54.2								
#20	30.7								
#40	16.5								
#60	11.1								
#100	8.0								
#200	5.3								

Brown well-graded sand with silt and gravel

Atterberg Limits (ASTM D 4318)
PL= LL= Pl=

PL= LL= PI=

 $\begin{array}{ccc} & & & & \\ \textbf{USCS (D 2487)=} & & SW\text{-}SM & \textbf{AASHTO (M 145)=} & A\text{-}1\text{-}b \end{array}$

Remarks

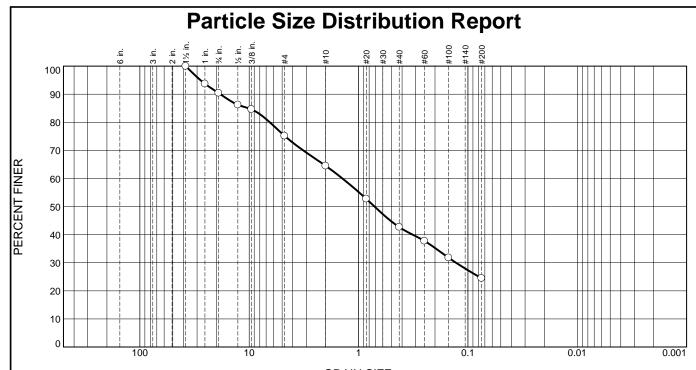
As received MC = 12.1%

Date Received: 12/8/17 Date Tested: 12/12/17

Tested By: RZ
Checked By: MP

Title: Laboratory Manager

* (no specification provided)


Source of Sample: B-6 Sample Number: S-1

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 12/1/17

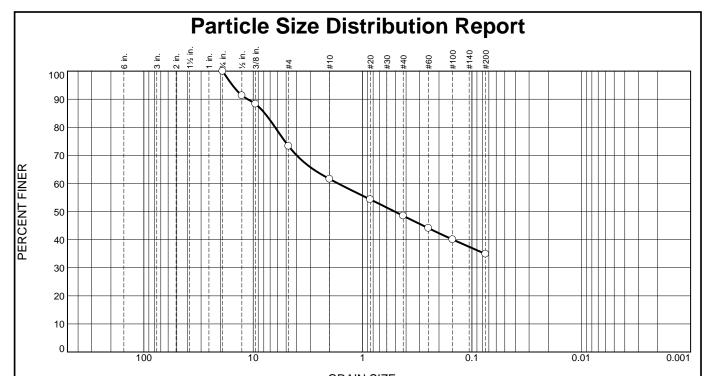
	GRAIN SIZE - mm.							
0/ - 211		% G	avel % Sand		% Fines			
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	9.6	15.2	10.7	21.8	18.2	24.5	

Test Results (ASTM D422 & ASTM D1140)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
1.5"	100.0						
1"	93.7						
.75"	90.4						
.5"	86.2						
.375"	84.6						
#4	75.2						
#10	64.5						
#20	52.7						
#40	42.7						
#60	37.8						
#100	31.8						
#200	24.5						

Material Description						
Brown silty sand v	vith gravel					
Λ++	rhora Limite (A STM D 4219	`			
PL=	erberg Limits (A LL=	PI=	1			
USCS (D 2487)=	SM Classifica	ation SHTO (M 145)=	A-1-b			
D₉₀= 18.3462 D₅₀= 0.7141 D₁₀=	Coefficie D ₈₅ = 10.1034 D ₃₀ = 0.1285 C _u =		1.4042			
	Remar	ks				
As received MC =	11.3%					
Date Received:	12/8/17	Date Tested:	12/12/17			
Tested By:	RZ					
Checked By:	MP					
Title: 1	Title: Laboratory Manager					
			-			

Source of Sample: B-7 Sample Number: S-3

Depth: 4-5.3'


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 11/28/17

			(<u>GRAIN SIZE -</u>	mm.		
0/ - 211	% G	ravel		% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	26.7	11.7	13.1	13.6	34.9	

Test R	esults (ASTM [0422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.75"	100.0		
.5"	91.3		
.375"	88.3		
#4	73.3		
#10	61.6		
#20	54.3		
#40	48.5		
#60	44.1		
#100	40.1		
#200	34.9		

Material Description								
Dark brown silty s	and with gra	vel						
A 44.		:4- /ACTM	D 4240\					
PL=	erberg Lim LL=	Its (ASTW	<u>D 4318)</u> Pl=					
	Class	sification						
USCS (D 2487)=			M 145)= A-2-4(0)					
	Coe	fficients						
D₉₀= 11.2557 D₅₀= 0.5075	D ₈₅ = 7.8	3409	D₆₀= 1.6733					
D ₅₀ = 0.3073 D ₁₀ =	D ₃₀ = C ₁₁ =		D ₁₅ = C _c =					
	u De	marks	·					
As received MC =		illaiks						
Date Received:		Date To	ested: 12/12/17					
Tested By:	RZ							
Checked By:	MP							
Title: 1	Laboratory N	Manager						

Source of Sample: B-9 Sample Number: S-1

Depth: 6-8'

CDM Smith

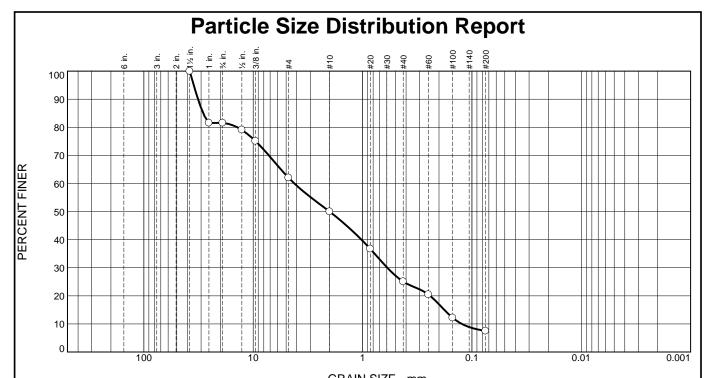
Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 11/30/17

CDM Smith


Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client:	Massachusetts Water Resources Authority		
Project Name:	Weston Aqueduct Supply Main 3	Tested By:	MP
Project Location:	MWRA line, MA	Test Date:	12/12/2017
Project Number:	101038-102170	•	
Boring Number:	B-9	Procedure:	С
Sample Number:	S-1	Temperature:	440° C
Sample Depth (ft):	6-8	•	
Sample Date:	11/30/2017		

AS RECEIVED MOISTURE CONTEN	T
Tin Mass (g)	126.65
Wet Mass of Sample & Tin (g)	169.30
Dry Mass of Sample & Tin (g)	158.94
Mass of Water (g)	10.36
Mass of Dry Soil (g)	32.29
Moisture Content (%)	32.1

ASH CONTENT					
Porcelain Dish Mass (g)	126.65				
Porcelain Dish + Oven Dried Soil (g)	158.94				
Mass of Oven Dried Soil (g)	32.29				
Mass of Dish & Burned Soil (g)	157.94				
Mass of Burned Soil (g)	31.29				
Mass of Organic Material (g)	1.00				
Ash Content (%)	96.9				
Organic Content (%)	3.1				

			(<u> JRAIN SIZE -</u>	mm.		
0/ - 211	% Gı	ravel		% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	18.4	19.6	12.0	24.9	17.6	7.5	

esuits (ASTIVI L	0422 & ASTM D)1140)
Percent	Spec.*	Pass?
Finer	(Percent)	(X=Fail)
100.0		
81.6		
81.6		
79.1		
75.1		
62.0		
50.0		
36.7		
25.1		
20.5		
12.2		
7.5		
	Percent Finer 100.0 81.6 81.6 79.1 75.1 62.0 50.0 36.7 25.1 20.5 12.2	Percent Spec.* Finer (Percent) 100.0 81.6 81.6 79.1 75.1 62.0 50.0 36.7 25.1 20.5 12.2 12.2

Brown poorly graded sand with silt and gravel

Atterberg Limits (ASTM D 4318)
PL= LL= Pl=

Classification

USCS (D 2487)= SP-SM **AASHTO** (M 145)= A-1-a

Remarks

As received MC = 5.1%

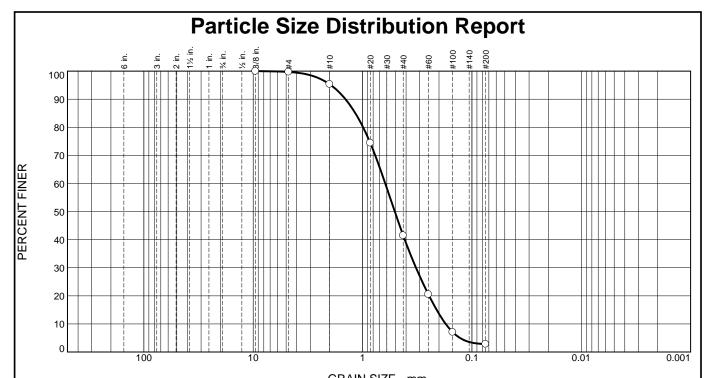
Date Received: 12/8/17 Date Tested: 12/12/17

Tested By: RZ
Checked By: MP

Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-10 Depth: 2-4' Sample Number: S-2


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 11/27/17

			(<u>GRAIN SIZE -</u>	mm.		
0/ - 21	% Gı	ravel		% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.3	4.4	53.8	38.7	2.8	

Test Results (ASTM D422 & ASTM D1140)								
Percent	Spec.*	Pass?						
Finer	(Percent)	(X=Fail)						
100.0								
99.7								
95.3								
74.4								
2.8								
	Percent Finer 100.0 99.7 95.3	Percent Spec.* (Percent) 100.0 99.7 95.3 74.4 41.5 20.5 7.1						

Gray-brown poorly graded sand

Atterberg Limits (ASTM D 4318)

PL=

Coefficients

 D90=
 1.4319
 D85=
 1.1628
 D60=
 0.6201

 D50=
 0.5072
 D30=
 0.3246
 D15=
 0.2100

 D10=
 0.1737
 Cu=
 3.57
 Cc=
 0.98

Remarks

As received MC = 21.3%

Date Received: 12/8/17 Date Tested: 12/14/17

Tested By: \underline{RZ}

Checked By: MP

Title: Laboratory Manager

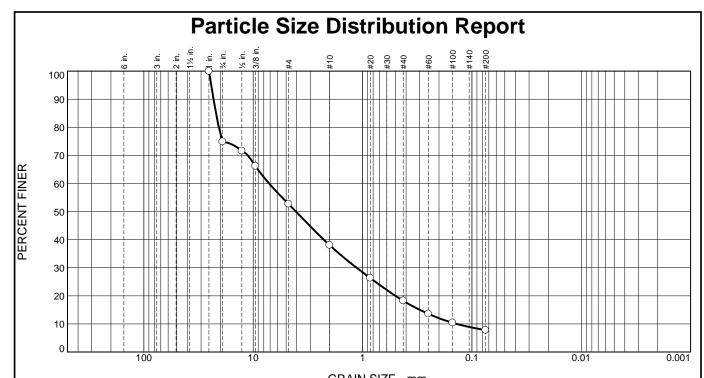
(no specification provided)

Source of Sample: B-10 Sample Number: S-4

Depth: 6-8'

Client: Massachusetts Water Resources Authority (MWRA)

Date Sampled: 11/27/17


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

acnusetts Project No: 101038.102170 Figure

CDM Smith

Boston, Massachusetts

			(<u>GRAIN SIZE -</u>	mm.		
0/ - 21	% Gı	ravel		% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	25.1	22.2	14.7	19.7	10.5	7.8	

Test Results (ASTM D422 & ASTM D1140)								
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X=Fail)					
1"	100.0							
.75"	74.9							
.5"	71.6							
.375"	66.2							
#4	52.7							
#10	38.0							
#20	26.3							
#40	18.3							
#60	13.6							
#100	10.4							
#200	7.8							

Dark brown well-graded gravel with silt and sand

Atterberg Limits (ASTM D 4318) LL= PI=

PL=

Classification

USCS (D 2487)= GW-GM AASHTO (M 145)= A-1-a

Coefficients

 D90=
 23.0722
 D85=
 21.8991
 D60=
 7.1641

 D50=
 4.0649
 D30=
 1.1331
 D15=
 0.2990

 D10=
 0.1378
 Cu=
 52.00
 Cc=
 1.30

Remarks

As received MC = 10.5%

Date Tested: 12/12/17

Date Received: 12/8/17 Tested By: RZ

Checked By: MP

Title: Laboratory Manager

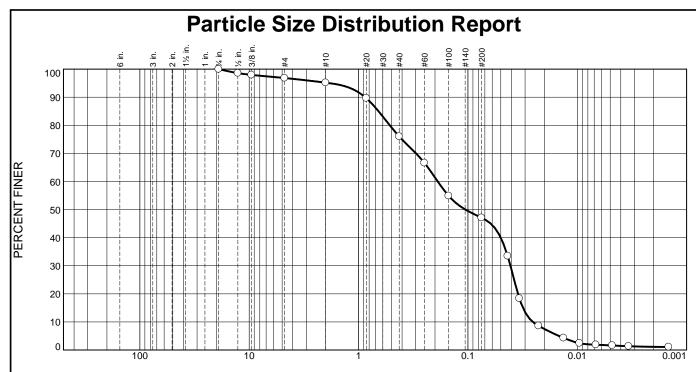
* (no specification provided)

Source of Sample: B-11 Sample Number: S-3

Depth: 4-6'

Date Sampled: 11/14/17

Figure


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts Project No: 101038.102170

			(<u> GRAIN SIZE -</u>	mm.		
0/ - 211	% Gr	ravel % Sand		% Fines			
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	3.2	1.6	19.2	28.9	45.4	1.7

Test R	esults (ASTM I	0422 & ASTM D	1140)
Opening Percent		Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.75"	100.0		
.5"	98.6		
.375"	97.9		
#4	96.8		
#10	95.2		
#20	89.7		
#40	76.0		
#60	66.6		
#100	54.9		
#200	47.1		
0.0433 mm.	33.5		
0.0338 mm.	18.4		
0.0226 mm.	8.6		
0.0133 mm.	4.3		
0.0095 mm.	2.4		
0.0068 mm.	1.9		
0.0048 mm.	1.6		
0.0034 mm.	1.3		
0.0015 mm.	1.1		

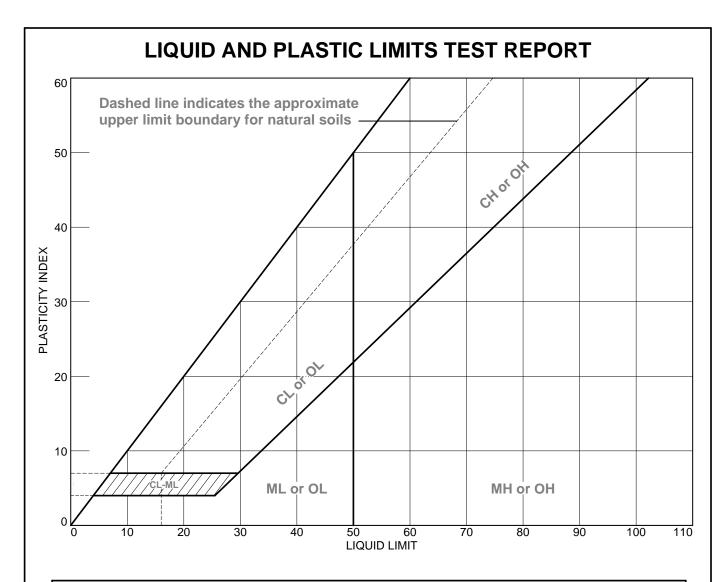
Brown silty sand	<u>Material Description</u>					
PL= NP	rberg Limits (ASTM D 4318) LL= NV PI= NP					
USCS (D 2487)=	SM Classification (M 145)= A-4(0)					
D ₉₀ = 0.8694 D ₅₀ = 0.1054 D ₁₀ = 0.0255	Coefficients D85= 0.6567 D60= 0.1887 D30= 0.0408 D15= 0.0314 Cu= 7.40 Cc= 0.35					
Remarks As received MC = 4.2%						
Date Received: Tested By:						
Checked By:	MP					
Title:	Laboratory Manager					

Source of Sample: B-11 Sample Number: S-5

Depth: 8-10'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 11/14/17

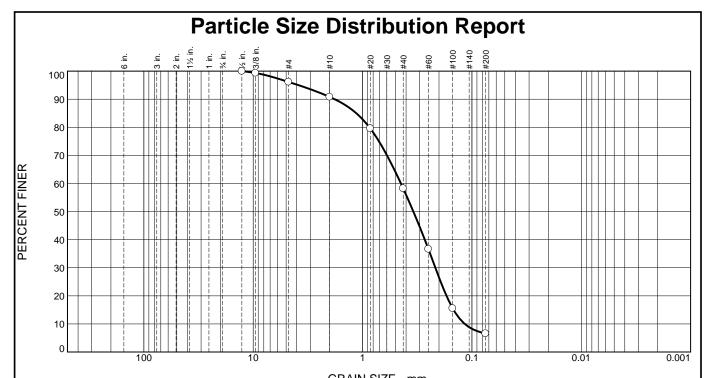
Project No: 101038.102170 **Figure**

Boston, Massachusetts

	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs
•	B-11	S-5	8-10'	4.2	NP	NV	NP	SM

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts

Project No.: 101038.102170 Figure

Tested By: RZ Checked By: MP

					<u>GRAIN SIZE -</u>	mm.		
0/ .2"		% G	Gravel % Sand		% Fines			
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	3.9	5.3	32.6	51.6	6.6	

Test F	Test Results (ASTM D422 & ASTM D1140)								
Opening	Percent	Spec.*	Pass?						
Size	Finer	(Percent)	(X=Fail)						
.5"	100.0								
.375"	99.3								
#4	96.1								
#10	90.8								
#20	79.6								
#40	58.2								
#60	36.6								
#100	15.6								
#200	6.6								
*	.:6:								

Material Description

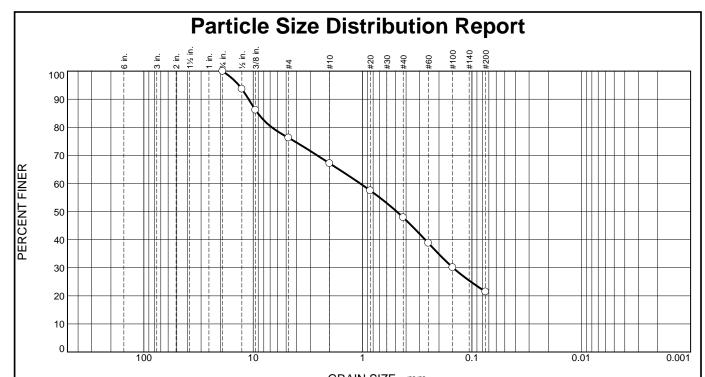
(no specification provided)

Source of Sample: B-12 Sample Number: S-2

Depth: 8-10'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Title: Laboratory Manager

Project: Weston Aqueduct Supply Main 3 (WASM3)

Checked By: MP

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 11/29/17

				(<u> - RAIN SIZE</u>	mm.		
9/ - 21		% Gı	% Gravel % Sand		% Fines			
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	23.7	9.1	19.3	26.4	21.5	

Test Results (ASTM D6913 & ASTM D1140)								
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X=Fail)					
.75	100.0							
.5	93.6							
.375	86.1							
#4	76.3							
#10	67.2							
#20	57.5							
#40	47.9							
#60	38.8							
#100	30.1							
#200	21.5							

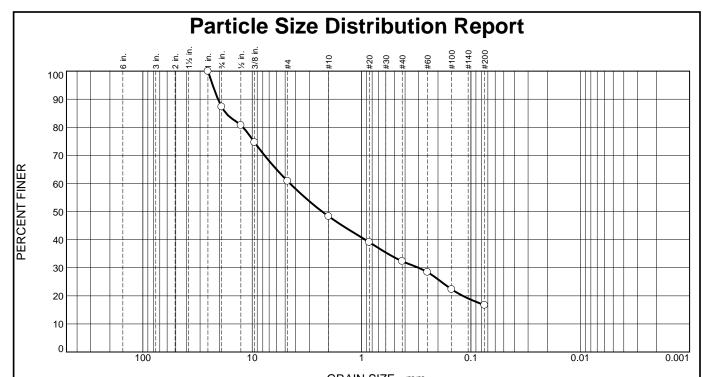
Material Description						
Brown silty sand v	with gravel					
Λ 44.	orbora Limito (A)	CTM D 4240)				
PL=	erberg Limits (A: LL=	Pl=				
USCS (D 2487)=	SM Classificat	<u>ion</u> I TO (M 145)=				
D ₉₀ = 11.0216 D ₅₀ = 0.4868 D ₁₀ =	Coefficier D ₈₅ = 9.0688 D ₃₀ = 0.1488 C _u =	D ₆₀ = 1.0508 D ₁₅ = C _c =				
	Remarks	.				
As recieved MC =	4.0%					
Date Received:	1/30/18 Da	ate Tested: 1/31/18				
Tested By:	SB					
Checked By:	Checked By: MP					
Title: Laboratory Manager						

Source of Sample: B-13 Sample Number: S-4

Depth: 6-8'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 12/12/17

Boston, Massachusetts

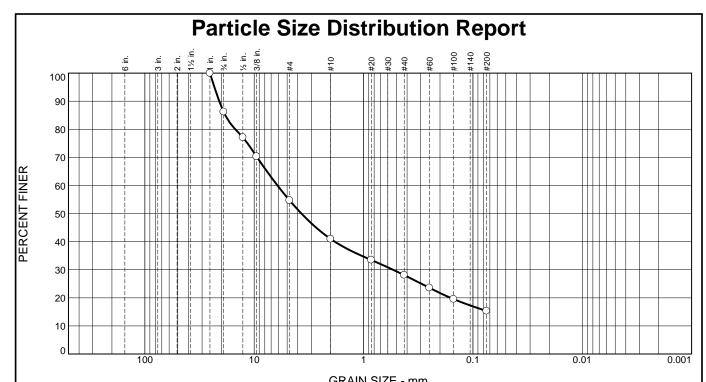
Project No: 101038.102170

				(<u> - RAIN SIZE</u>	· mm.		
0/ .2"		% Gı	Gravel % Sand		% Fines			
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	12.7	26.4	12.6	16.0	15.6	16.7	

Test Results (ASTM D422 & ASTM D1140)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
1"	100.0						
.75"	87.3						
.5"	80.7						
.375"	74.6						
#4	60.9						
#10	48.3						
#20	39.1						
#40	32.3						
#60	28.4						
#100	22.3						
#200	16.7						

	Material Description						
Brown silty sand v	vith gravel						
Δ++	erberg Limits (ASTM	D 4318)					
PL=	LL=	PI=					
	Classification						
USCS (D 2487)=	SM AASHTO (I	M 145)= A-1-b					
	Coefficients						
D₉₀= 20.5433 D₅₀= 2.2920	D₈₅= 17.3554 D₃₀= 0.3019	D ₆₀ = 4.5101 D ₁₅ =					
D ₁₀ = 2.2720	C _u =	C _c =					
	Remarks						
As received MC =	7.5%						
Date Received:		ested: 12/13/17					
Tested By:	KZ						
Checked By:	MP						
Title:	Laboratory Manager						

Source of Sample: B-14 Sample Number: S-2 **Depth:** 2-2.5'


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 11/7/17

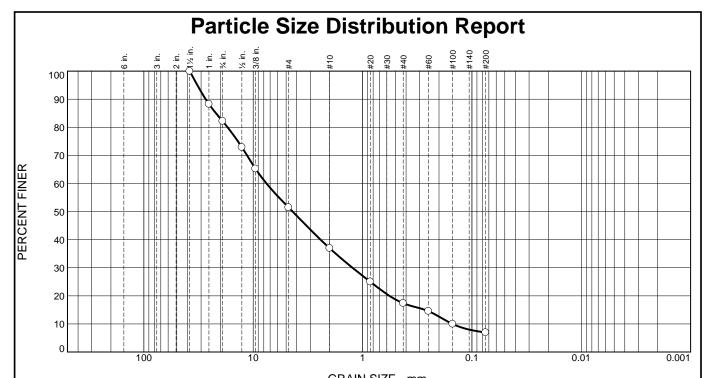
ı		GRAIN SIZE - MM.						
I	0/ - 21	% Gravel % Sand		I % Fines				
ı	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
ĺ	0.0	13.8	31.5	13.7	12.9	12.8	15.3	

Test R	esults (ASTM I	0422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
.75"	86.2		
.5"	77.1		
.375"	70.3		
#4	54.7		
#10	41.0		
#20	33.5		
#40	28.1		
#60	23.6		
#100	19.5		
#200	15.3		

	Material Descripti	<u>on</u>
Brown silty grave	l with sand	
Δ++.	erberg Limits (ASTM	D 4318)
PL=	LL=	PI=
USCS (D 2487)=	GM Classification AASHTO	(M 145)= A-1-a
D ₉₀ = 20.8855 D ₅₀ = 3.6958 D ₁₀ =	Coefficients D ₈₅ = 18.3864 D ₃₀ = 0.5376 C _u =	D ₆₀ = 6.1286 D ₁₅ = C _c =
	Remarks	
As received MC =	9.1%	
Date Received:	12/8/17 Date T	ested: 12/12/17
Tested By:	RZ	
Checked By:	MP	
Title:	Laboratory Manager	

Source of Sample: B-16 Dept Sample Number: S-2

Depth: 2-4'


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 11/21/17

			(<u> JRAIN SIZE -</u>	mm.		
0/ - 211	% Gravel % Sand		% Fines				
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	17.8	30.7	14.6	19.5	10.5	6.9	

Test R	esults (ASTM I	0422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1.5"	100.0		
1"	88.3		
.75"	82.2		
.5"	72.9		
.375"	65.3		
#4	51.5		
#10	36.9		
#20	25.0		
#40	17.4		
#60	14.5		
#100	10.0		
#200	6.9		
* /		1)	l

Gray-brown well-graded gravel with silt and sand

Atterberg Limits (ASTM D 4318)
LL= PI=

PL=

Classification

USCS (D 2487)= GW-GM AASHTO (M 145)= A-1-a

Coefficients

 D90=
 27.2148
 D85=
 21.9000
 D60=
 7.5619

 D50=
 4.3591
 D30=
 1.2356
 D15=
 0.2684

 D10=
 0.1507
 Cu=
 50.18
 Cc=
 1.34

Remarks

As received MC = 8.5%

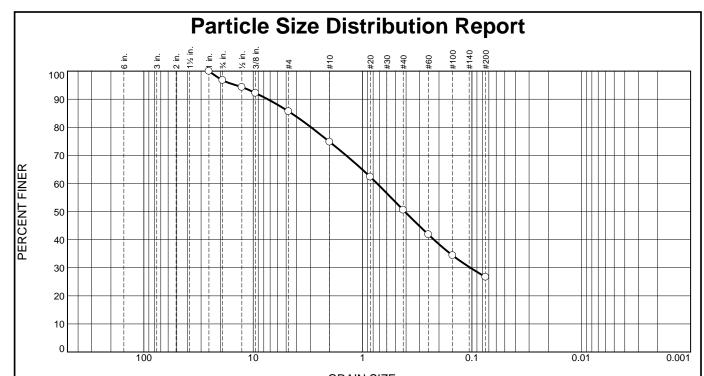
Date Received: 12/8/17 Date Tested: 12/12/17

Tested By: RZ
Checked By: MP

Title: Laboratory Manager

* (no specification provided)

CDM Smith


Source of Sample: B-17 Sample Number: S-3 **Depth:** 4-6'

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 11/7/17

			(<u> JRAIN SIZE -</u>	mm.		
0/ - 21	% G	% Gravel % Sand		% Fines			
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	3.2	11.1	10.9	24.2	23.9	26.7	

Test F	Results (ASTM D	6913 & ASTM I	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1	100.0		
.75	96.8		
.5	94.3		
.375	92.2		
#4	85.7		
#10	74.8		
#20	62.3		
#40	50.6		
#60	41.8		
#100	34.4		
#200	26.7		
*			

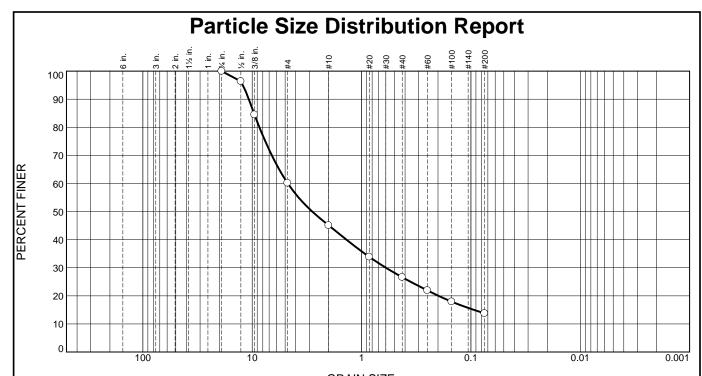
	Material Desc	<u>ription</u>
Brown silty sand		
Atte	erberg Limits (A	STM D 4318)
PL=	LL=	Pl=
USCS (D 2487)=	SM Classificat	i <u>on</u> TO (M 145)= A-2-4(0)
D ₉₀ = 7.3800 D ₅₀ = 0.4110 D ₁₀ =	Coefficier D ₈₅ = 4.4718 D ₃₀ = 0.1033 C _u =	D ₆₀ = 0.7369 D ₁₅ = C _c =
	Remarks	i
As recieved MC =	11.6%	
Date Received:	1/30/18 Da	te Tested: 1/31/18
Tested By:	SB	
Checked By:	MP	
		er

Date Sampled: 12/15/17

(no specification provided)

Source of Sample: B-18 Sample Number: S-5

Depth: 9-10.5'


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts Project No: 101038.102170

			(<u>GRAIN SIZE -</u>	mm.		
0/ - 211	% G	% Gravel % Sand		% Fines			
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	39.8	15.1	18.5	12.8	13.8	

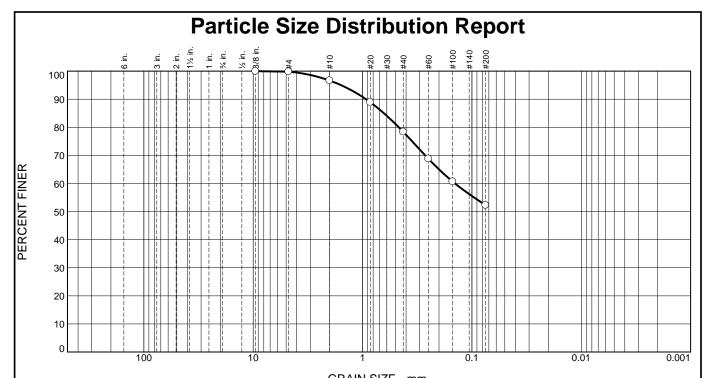
Test R	esults (ASTM D	6913 & ASTM [D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.75	100.0		
.5	96.4		
.375	84.5		
#4	60.2		
#10	45.1		
#20	33.9		
#40	26.6		
#60	21.9		
#100	17.9		
#200	13.8		
* ,	.:c:		

	Material Desc	<u>cription</u>
Brown silty sand v	vith gravel	
A 44 -		OTM D 4040)
PL=	erberg Limits (A LL=	13 N D 43 18 Pl=
-	Classifies	 41am
USCS (D 2487)=	SM AASI	HTO (M 145)= A-1-a
	Coefficie	nts
D₉₀= 10.7458	D ₈₅ = 9.6325	D ₆₀ = 4.7194
D ₅₀ = 2.8244 D ₁₀ =	D ₃₀ = 0.5985 C _u =	D ₁₅ = 0.0937 C _c =
- 10-	-	· ·
As recieved MC =	Remark	S
As recieved MC =	9.170	
Date Received:	1/30/18 D	ate Tested: 1/31/18
Tested By:	SB	
Checked By:		
Title:	Laboratory Manag	ger

Source of Sample: B-19 Sample Number: S-3

Depth: 4-6'

CDM Smith


Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 12/14/17

Boston, Massachusetts Project No: 101038.102170

			(<u> - RAIN SIZE</u>	mm.		
0/ - 211	% Gı	ravel		% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.2	3.2	18.2	26.1	52.3	

Test Re	esults (ASTM D	6913 & ASTM I	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.375	100.0		
#4	99.8		
#10	96.6		
#20	88.9		
#40	78.4		
#60	68.8		
#100	60.7		
#200	52.3		
*			

Gray-brown sandy silt with organics Atterberg Limits (ASTM D 4318) PL= LL= Pl=

Material Description

 $\begin{array}{ccc} & & \underline{\textbf{Classification}} \\ \textbf{USCS (D 2487)=} & & \text{ML} & & \textbf{AASHTO (M 145)=} & \text{A-4}(0) \end{array}$

Coefficients

Remarks

As recieved MC = 22.9%

Date Received: 1/30/18 Date Tested: 1/31/18
Tested By: SB

Checked By: MP

Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-20 Depth: 2-4' Sample Number: S-2

CDM Smith Client: Mass

Client: Massachusetts Water Resources Authority (MWRA)

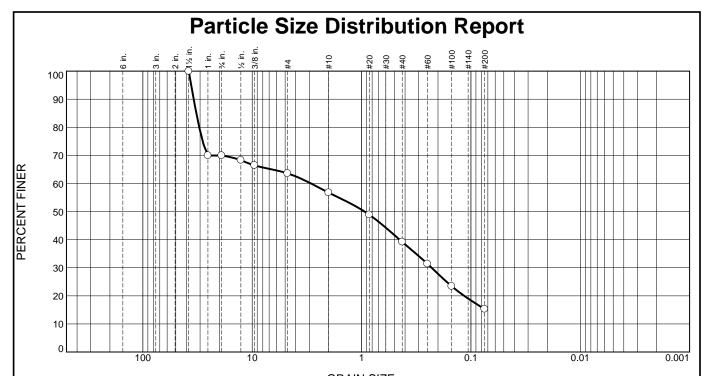
ct: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 12/13/17

Boston, Massachusetts Project No: 101038.102170

CDM Smith


Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client: Massachusetts Water Resources Authority Weston Aqueduct Supply Main 3 Tested By: Project Name: MWRA line, MA Test Date: 1/31/2017 Project Location: Project Number: 101038-102170 Boring Number: B-20 Procedure: S-2 Temperature: 440° C Sample Number: Sample Depth (ft): 2-4 Sample Date: 12/13/2017

AS RECEIVED MOISTURE CONTENT	
Tin Mass (g)	126.70
Wet Mass of Sample & Tin (g)	212.00
Dry Mass of Sample & Tin (g)	196.26
Mass of Water (g)	15.74
Mass of Dry Soil (g)	69.56
Moisture Content (%)	22.6

ASH CONTENT	
Porcelain Dish Mass (g)	126.70
Porcelain Dish + Oven Dried Soil (g)	196.26
Mass of Oven Dried Soil (g)	69.56
Mass of Dish & Burned Soil (g)	194.00
Mass of Burned Soil (g)	67.30
Mass of Organic Material (g)	2.26
Ash Content (%)	96.8
Organic Content (%)	3.2

				<u>GRAIN SIZE -</u>	· mm.			
0/ - 2	% Gı	ravel	% Sand			% Fines		
% + 3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	30.0	6.4	6.8	17.6	23.9	15.3		

Test R	esults (ASTM D	6913 & ASTM [D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1.5	100.0		
1	70.0		
.75	70.0		
.5	68.3		
.375	66.5		
#4	63.6		
#10	56.8		
#20	48.9		
#40	39.2		
#60	31.4		
#100	23.4		
#200	15.3		
*			

Brown silty sand with gravel and brick fragments

Atterberg Limits (ASTM D 4318)

PL=

Classification

USCS (D 2487)= SM AASHTO (M 145)= A-1-b

Coefficients

D₉₀= 34.3126 D₈₅= 32.4495 D₆₀= 2.9007 D₅₀= 0.9393 D₃₀= 0.2287 D₁₅= C_c=

Remarks

As recieved MC = 13.8%

Date Tested: 1/31/18

Date Sampled: 12/15/17

Date Received: 1/30/18 Tested By: SB

rested by. 5b

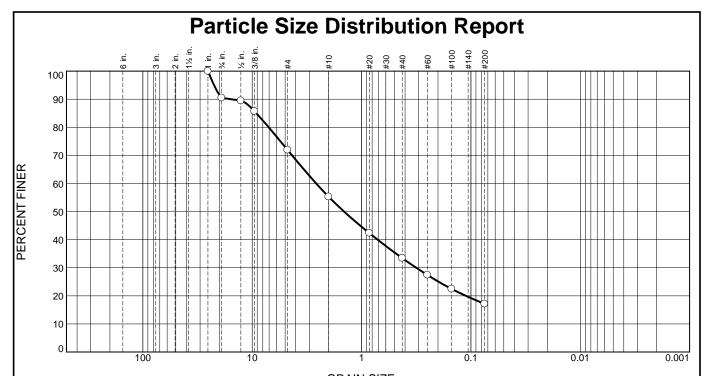
Checked By: MP

Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-21 Sample Number: S-5 **Depth:** 8-10'

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts

CDM Smith

Project No: 101038.102170

				(<u>GRAIN SIZE -</u>	mm.		
ſ	% +3"	% G	ravel		% Sand		% Fines	
		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	9.5	18.6	16.6	21.9	16.3	17.1	

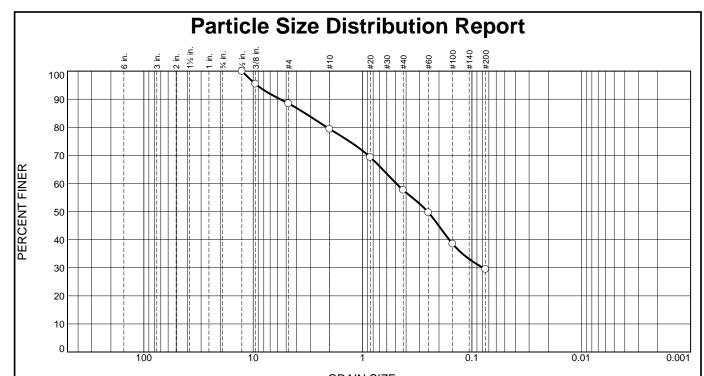
Test Re	esults (ASTM D	6913 & ASTM I	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1	100.0		
.75	90.5		
.5	89.5		
.375	85.7		
#4	71.9		
#10	55.3		
#20	42.4		
#40	33.4		
#60	27.4		
#100	22.5		
#200	17.1		

	Material Desc	<u>cription</u>	
Brown silty sand v	vith gravel		
Λ++	rhora Limite (A	STM D 4219)	
PL=	erberg Limits (A LL=	PI=	
	Classificat	tion_	
USCS (D 2487)=	SM AASH	HTO (M 145)= A-1-b	
	Coefficier		
D₉₀= 15.6606 D₅₀= 1.4458	D₈₅= 9.1673 D₃₀= 0.3161	D ₆₀ = 2.5985	
D ₁₀ = 1.4436	C _u =	D ₁₅ = C _c =	
	Remarks	s	
As recieved MC =	11.0%	-	
Date Received:		ate Tested: 1/31/18	
Tested By:	SB		
Checked By: 1	MP		
Title: 1	Laboratory Manag	er	

Source of Sample: B-22 Sample Number: S-3 **Depth:** 4-6'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 12/13/17

Boston, Massachusetts

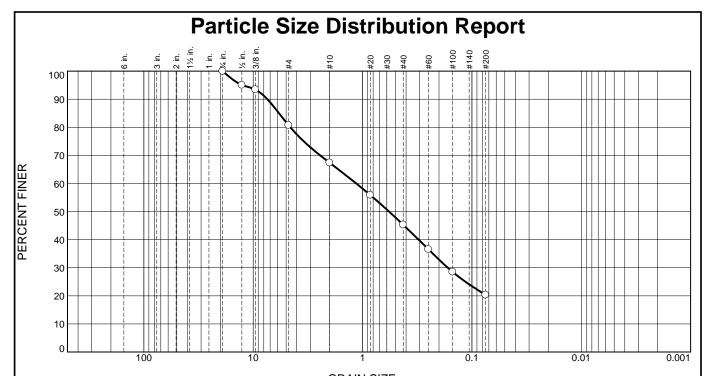
Project No: 101038.102170

				(<u> JRAIN SIZE -</u>	mm.		
Ī	% +3"	% Gı	ravel	% Sand			% Fines	
		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	11.5	9.1	21.7	28.2	29.5	

Test F	Results (ASTM D	0422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.5"	100.0		
.375"	95.4		
#4	88.5		
#10	79.4		
#20	69.3		
#40	57.7		
#60	49.7		
#100	38.5		
#200	29.5		

	<u>Material</u>	Descript	<u>ion</u>
Brown silty sand			
At PL=	terberg Lim	its (ASTN	<u>/I D 4318)</u> Pl=
rL=			• •
USCS (D 2487)=		sification AASHTO	(M 145)= A-2-4(0)
D ₉₀ = 5.6639 D ₅₀ = 0.2543 D ₁₀ =	D ₈₅ = 3.0 D ₃₀ = 0.0 C _u =	officients 3553 0792	D ₆₀ = 0.4919 D ₁₅ = C _c =
As received MC		emarks	
715 received ivic	- 13.070		
Date Received:		Date '	Tested: 12/14/17
Tested By:			
Tested By: Checked By:	MP		

Source of Sample: B-24 Sample Number: S-V-1 **Depth:** 2-2.5'


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/11/17

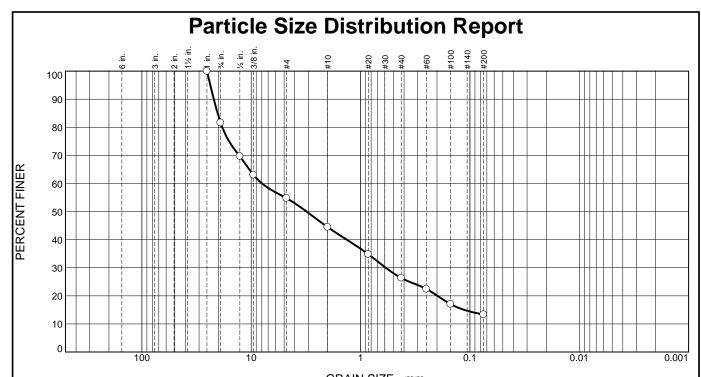
			(<u>GRAIN SIZE -</u>	mm.		
0/ - 21	% G	% Gravel % Sand % Fines					
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	19.3	13.3	22.1	25.0	20.3	

Test R	esults (ASTM I	0422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.75"	100.0		
.5"	95.1		
.375"	93.4		
#4	80.7		
#10	67.4		
#20	55.9		
#40	45.3		
#60	36.6		
#100	28.5		
#200	20.3		
*			

	Material De	<u>scription</u>	
Brown silty sand	with gravel		
A.,		/A CTM D 4040	,
PL=	erberg Limits (LL=	(<u>ASTWLD 4318</u> PI=)
	Classifia	ation	
USCS (D 2487)=	SM AA	SHTO (M 145)=	A-1-b
	Coeffic	ients	
D₉₀= 7.4288	D ₈₅ = 5.8075		1.1427
D ₅₀ = 0.5728 D ₁₀ =	D ₃₀ = 0.1662 C ₁₁ =	2 D ₁₅ = C _c =	
10	Rema	•	
As received MC =		NS .	
Date Received:	12/8/17	Date Tested:	12/12/17
Tested By:	RZ		
Checked By:	MP		
Title:	Laboratory Man	ager	
	•		

Source of Sample: B-24 **Sample Number:** S-V-2

Depth: 4.5-5'


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 11/22/17

			(<u> GRAIN SIZE -</u>	· mm.		
0/ - 211	% Gravel % Sand			% Fines			
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	18.4	26.8	10.3	18.1	13.1	13.3	

Test R	esults (ASTM I	0422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
.75"	81.6		
.5"	69.7		
.375"	63.1		
#4	54.8		
#10	44.5		
#20	34.8		
#40	26.4		
#60	22.4		
#100	17.1		
#200	13.3		

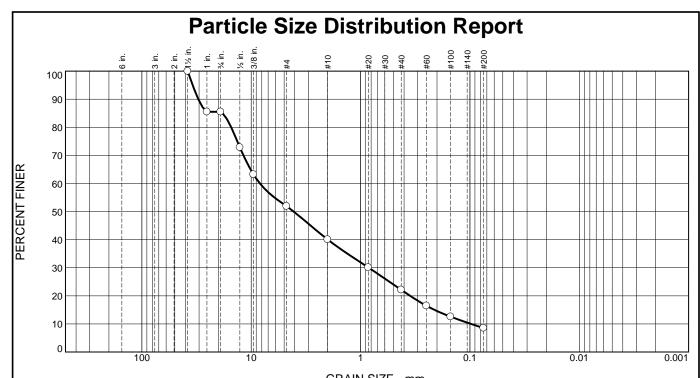
	Material Descrip	<u>otion</u>
Dark brown silty g	ravel with sand	
		TM D 4040)
<u>Atte</u> PL=	erberg Limits (AST LL=	NI D 4318) Pl=
_	Classificatio	m
USCS (D 2487)=	GM AASHT	O (M 145)= A-1-a
	Coefficients	<u> </u>
D90= 21.9989	D ₈₅ = 20.2959	D ₆₀ = 7.9574
D ₅₀ = 3.1169 D ₁₀ =	D ₃₀ = 0.5884 C ₁₁ =	D ₁₅ = 0.1125 C _C =
	Remarks	·
As received MC =		
Date Received:		Tested: 12/12/17
Tested By: 1	RZ	
Checked By: 1	MP	
Title: 1	Laboratory Manager	
-		

Source of Sample: B-25 Sample Number: S-V-1

Depth: 2-2.5'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/23/17

Project No: 101038.102170 **Figure**

Boston, Massachusetts

			(<u>GRAIN SIZE -</u>	mm.		
0/ - 211	% Gı	% Gravel % Sand % Fines					
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	14.5	33.6	11.8	18.0	13.6	8.5	

Test R	esults (ASTM I	0422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1.5"	100.0		
1"	85.5		
.75"	85.5		
.5"	72.8		
.375"	63.2		
#4	51.9		
#10	40.1		
#20	30.1		
#40	22.1		
#60	16.5		
#100	12.6		
#200	8.5		
*		1	

Dark brown poorly graded gravel with silt and sand

Atterberg Limits (ASTM D 4318)
LL= PI=

PL=

Classification

USCS (D 2487)= GP-GM AASHTO (M 145)= A-1-a

Coefficients

 D90=
 30.4787
 D85=
 18.2613
 D60=
 8.3201

 D50=
 4.0955
 D30=
 0.8422
 D15=
 0.2108

 D10=
 0.0975
 Cu=
 85.33
 Cc=
 0.87

Remarks

As received MC = 11.4%

Date Tested: 12/12/17

Date Received: 12/8/17 Tested By: RZ

Checked By: MP

Title: Laboratory Manager

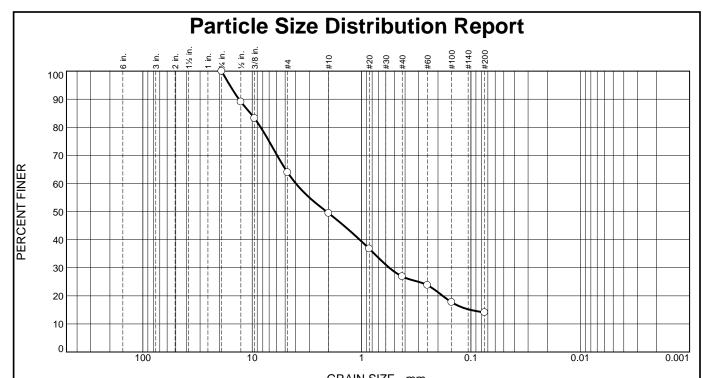
* (no specification provided)

Source of Sample: B-25 Sample Number: S-1 **Depth:** 6-8'

Date Sampled: 10/23/17

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts

Project No: 101038.102170

Figure

			(<u> GRAIN SIZE -</u>	· mm.		
0/ - 211	% G	ravel	% Sand Coarse Medium Fine		I	% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	36.1	14.5	22.5	12.8	14.1	

Brown silty sand with gravel

Date Received: 12/8/17

Tested By: RZ Checked By: MP

Test R	esults (ASTM I	0422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.75"	100.0		
.5"	89.1		
.375"	83.2		
#4	63.9		
#10	49.4		
#20	36.8		
#40	26.9		
#60	23.8		
#100	17.7		
#200	14.1		

Date Tested: 12/12/17

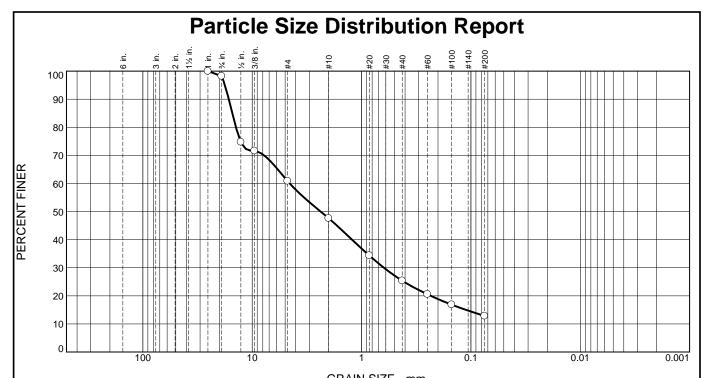
Date Sampled: 10/12/17

Material Description

* (no specification provided)

CDM Smith

Source of Sample: B-26 **Sample Number:** S-V-1


Depth: 2-2.5'

Client: Massachusetts Water Resources Authority (MWRA)

Title: Laboratory Manager

Dject: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

			(<u> GRAIN SIZE -</u>	· mm.		
0/ - 211	% Gravel % Sand % Fines		% Gravel % Sand				
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	1.8	37.3	13.3	22.2	12.6	12.8	

Test R	esults (ASTM I	0422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
.75"	98.2		
.5"	74.8		
.375"	71.6		
#4	60.9		
#10	47.6		
#20	34.4		
#40	25.4		
#60	20.6		
#100	16.9		
#200	12.8		

Material Description Gray-brown silty sand with gravel **Atterberg Limits (ASTM D 4318)** PL= Classification USCS (D 2487)= SM **AASHTO** (M 145)= A-1-a Coefficients D₉₀= 16.3695 D₅₀= 2.3651 D₁₀= D₆₀= 4.5366 D₁₅= 0.1107 C_c= **D₈₅=** 15.2061 D₃₀= 0.6242 C_u= Remarks As received MC = 7.9%Date Received: 12/8/17 **Date Tested:** 12/13/17 Tested By: RZ Checked By: MP Title: Laboratory Manager

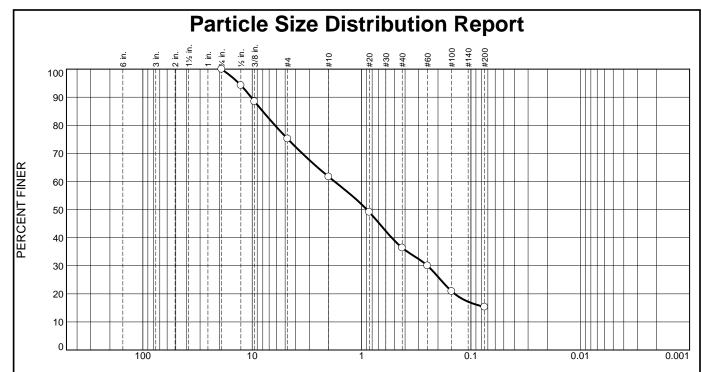
(no specification provided)

Source of Sample: B-26 Sample Number: S-2

Depth: 9-9.7'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/12/17

Project No: 101038.102170 **Figure**

Boston, Massachusetts

			(<u> GRAIN SIZE -</u>	mm.		
0/ - 21	% Gravel		% Sand			% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	24.8	13.5	25.3	21.1	153	

Test R	esults (ASTM I	0422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.75"	100.0		
.5"	94.3		
.375"	88.5		
#4	75.2		
#10	61.7		
#20	49.1		
#40	36.4		
#60	30.0		
#100	20.9		
#200	15.3		

Brown silty sand with gravel **Atterberg Limits (ASTM D 4318)** PL= Classification USCS (D 2487)= SM **AASHTO** (M 145)= A-1-b Coefficients **D₉₀=** 10.2326 **D₅₀=** 0.8945 **D₁₀= D₈₅=** 8.0192 **D₆₀=** 1.7682 D₃₀= 0.2496 C_u= D₁₅= C_C= Remarks As received MC = 6.5%Date Received: 12/8/17 **Date Tested:** 12/13/17 Tested By: RZ Checked By: MP Title: Laboratory Manager

Material Description

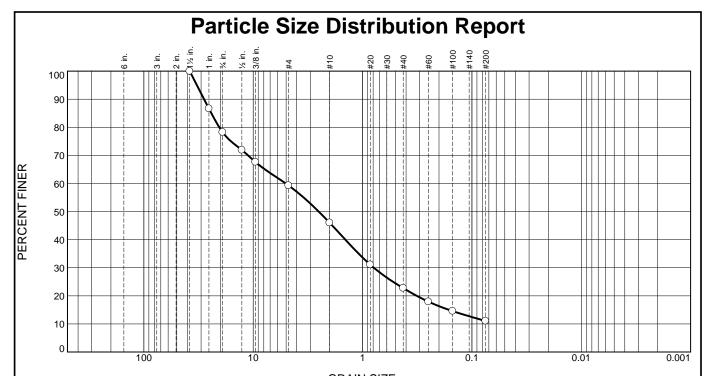
(no specification provided)

Source of Sample: B-27 Sample Number: S-1

Depth: 0.5-2'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/16/17

Project No: 101038.102170 **Figure**

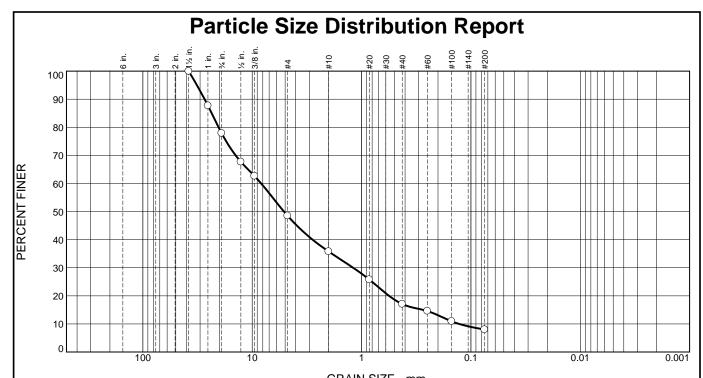
Boston, Massachusetts

			(<u> JRAIN SIZE -</u>	mm.		
0/ - 211	% G	ravel		% Sand		% Fines	
% +3"	Coarse Fine Coarse Medium		Medium	Fine	Silt	Clay	
0.0	21.8	18.9	13.3	23.2	11.7	11.1	

Test R	esults (ASTM I	0422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1.5"	100.0		
1"	86.6		
.75"	78.2		
.5"	71.9		
.375"	67.6		
#4	59.3		
#10	46.0		
#20	31.1		
#40	22.8		
#60	17.9		
#100	14.6		
#200	11.1		

	Material Description							
Gray poorly grade	Gray poorly graded sand with silt and gravel							
Λ++	erberg Limits (ASTM D	1318)						
PL=	LL=	PI=						
	Classification							
USCS (D 2487)=	SP-SM AASHTO (M	145)= A-1-a						
	Coefficients							
D₉₀= 28.1526 D₅₀= 2.5190	D₈₅= 24.1488 D₃₀= 0.7887	D₆₀= 5.0381 D₁₅= 0.1616						
D ₁₀ =	C _u =	C _C =						
	Remarks							
As received MC =	7.2%							
Date Received:	12/8/17 Date Te e	sted: 12/13/17						
Tested By:		sieu. 12/13/17						
Checked By:								
Title:	Laboratory Manager							

Source of Sample: B-28 Sample Number: S-4 **Depth:** 9-9.8'


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/16/17

			(<u> GRAIN SIZE -</u>	· mm.		
0/ - 21	% Gı	ravel		% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	22.1	29.4	12.7	18.7	9.1	8.0	

Test R	esults (ASTM I	0422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1.5"	100.0		
1"	87.7		
.75"	77.9		
.5"	67.7		
.375"	62.7		
#4	48.5		
#10	35.8		
#20	25.8		
#40	17.1		
#60	14.6		
#100	10.9		
#200	8.0		
*		15	l

Gray-brown well-graded gravel with silt and sand

Atterberg Limits (ASTM D 4318) LL= PI=

PL=

Classification USCS (D 2487)= GW-GM **AASHTO** (M 145)= A-1-a

Coefficients

D₉₀= 27.2493 **D₅₀=** 5.1239 **D₁₀=** 0.1280 D₆₀= 8.2794 D₁₅= 0.2732 C_c= 1.35 D₈₅= 23.4705 D₃₀= 1.1943 C_u= 64.70

Remarks

As received MC = 10.8%

Date Tested: 12/13/17

Date Received: 12/8/17 Tested By: RZ

Checked By: MP

Title: Laboratory Manager

* (no specification provided)

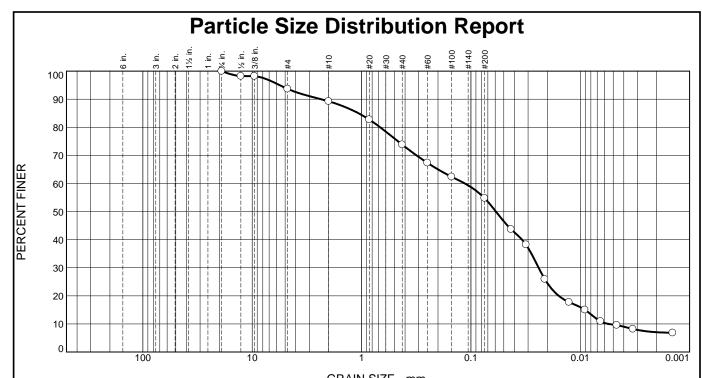
Source of Sample: B-29 Sample Number: S-5

Depth: 8-10'

Date Sampled: 10/13/17

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts

Project No: 101038.102170

Figure

				<u>GRAIN SIZE -</u>	· mm.				
0/ - 2	% Gravel		% Sand		Sand % f		% Fines		
% +3 "	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay		
0.0	0.0	6.3	4.5	15.4	19.0	45.1	9.7		

Test F	Results (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.75"	100.0		
.5"	98.2		
.375"	98.2		
#4	93.7		
#10	89.2		
#20	82.7		
#40	73.8		
#60	67.3		
#100	62.4		
#200	54.8		
0.0429 mm.	43.7		
0.0313 mm.	38.2		
0.0211 mm.	25.9		
0.0127 mm.	17.8		
0.0091 mm.	15.0		
0.0065 mm.	10.9		
0.0046 mm.	9.6		
0.0033 mm.	8.2		
0.0014 mm.	6.8		

Gray-brown sandy silt

Atterberg Limits (ASTM D 4318) LL= 20

PL= 17

Classification

USCS (D 2487)= ML**AASHTO (M 145)=** A-4(0)

Coefficients

D₉₀= 2.3483 **D₅₀=** 0.0590 **D₁₀=** 0.0055 D₆₀= 0.1136 D₁₅= 0.0090 C_c= 0.92 D₈₅= 1.0661 D₃₀= 0.0240 C_u= 20.54

Remarks

As received MC = 20.2%

Date Received: 12/8/17 **Date Tested:** 12/14/17

Tested By: MP/RZ

Checked By: MP

Title: Laboratory Manager

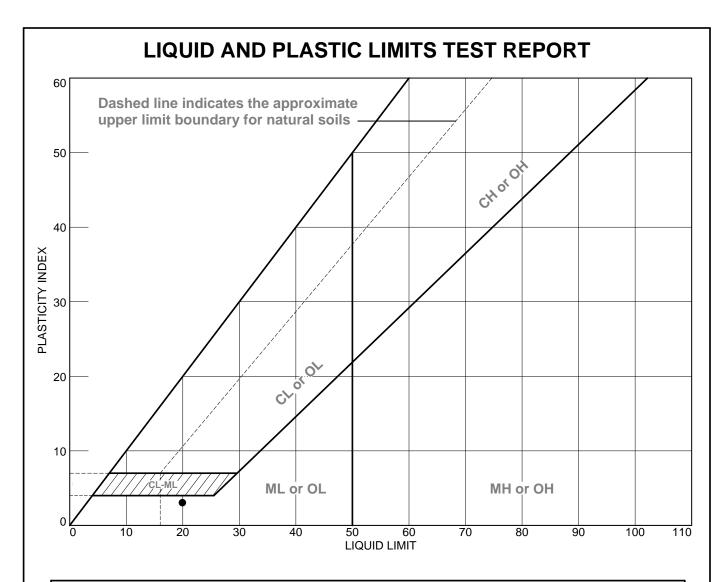
(no specification provided)

Source of Sample: B-30 Sample Number: S-V-2

Depth: 5-5.5'

Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)


Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts Project No: 101038.102170

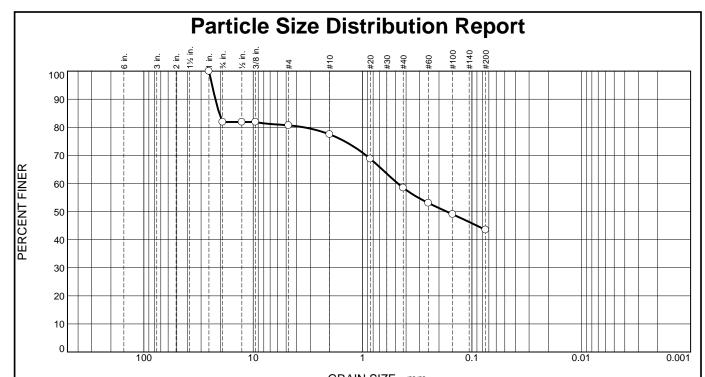
CDM Smith

Figure

Date Sampled: 10/13/17

	SOIL DATA								
SYMBOL SOURCE SAMPL NO.			DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs	
•	B-30	S-V-2	5-5.5'	20.2	17	20	3	ML	

CDM Smith


Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts

Project No.: 101038.102170 Figure

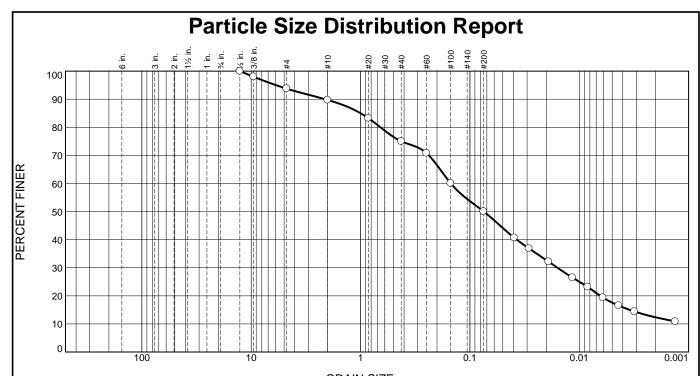
			(<u> - RAIN SIZE</u>	mm.		
0/ - 211	% Gı	ravel		% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	18.1	1.2	3.2	19.0	15.0	43.5	

Test F	Test Results (ASTM D422 & ASTM D1140)							
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X=Fail)					
1"	100.0							
.75"	81.9							
.5"	81.9							
.375"	81.9							
#4	80.7							
#10	77.5							
#20	68.8							
#40	58.5							
#60	53.0							
#100	49.0							
#200	43.5							
*								

Material Description					
Brown silty sand v	vith gravel				
A 44 c	rhara Limita	/ACTM D /210	`		
PL=	LL=	<u>(ASTM D 4318</u> PI=	1		
	Classif	ication			
USCS (D 2487)=		ASHTO (M 145)=	A-4(0)		
	Coeffi	cients			
D₉₀= 22.1958	D ₈₅ = 20.44		0.4757		
D ₅₀ = 0.1701 D ₁₀ =	D ₃₀ = C ₁₁ =	D ₁₅ = C _c =			
210-	u				
As received MC =	20.3% Rem	arks			
713 received ivic =	20.570				
Date Received:	12/8/17	Date Tested:	12/13/17		
Tested By: 1	RZ				
Checked By: 1	MP				
-	Laboratory Ma	nager			
Title.	Laboratory ivia	nagei			

Source of Sample: B-31 Sample Number: S-V-1

Depth: 2-2.5'


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/12/17

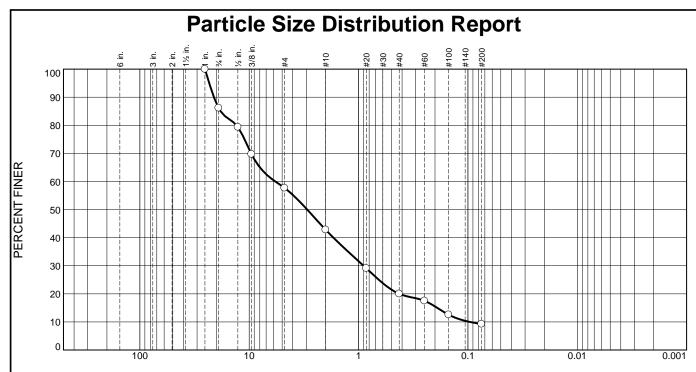
					<u>GRAIN SIZE -</u>	· mm.		
	0/ - 2	% Gravel		% Sand		% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
	0.0	0.0	6.2	4.1	14.7	24.9	32.5	17.6

Test Results (ASTM D422 & ASTM D1140)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
.5"	100.0						
.375"	98.0						
#4	93.8						
#10	89.7						
#20	83.3						
#40	75.0						
#60	70.9						
#100	60.1						
#200	50.1						
0.0394 mm.	40.7						
0.0289 mm.	36.9						
0.0191 mm.	32.2						
0.0116 mm.	26.5						
0.0084 mm.	23.2						
0.0061 mm.	19.4						
0.0044 mm.	16.6						
0.0031 mm.	14.4						
0.0013 mm.	10.9						

	Material Descri	<u>ption</u>				
Brown sandy silt						
A 44.		FM D 4040\				
PL=	erberg Limits (AS LL=	PI=				
	Classification					
USCS (D 2487)=		O (M 145)= A-4(0)				
. ,	Coefficient					
D₉₀= 2.1107	D ₈₅ = 0.9990	D ₆₀ = 0.1494				
D₅₀= 0.0746 D₁₀=	D ₃₀ = 0.0158 C ₁₁ =	D ₁₅ = 0.0035 C _c =				
D ₁₀ -	u	о _с -				
As received MC =	Remarks					
As received wic =	11.070					
Date Received:	12/8/17 Dat	e Tested: 12/15/17				
Tested By:	MP/RZ					
Checked By:	MP					
	Title: Laboratory Manager					
i itie.	Laboratory Wallager					

Source of Sample: B-31 Sample Number: S-3

Depth: 14-14.7'


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/12/17

			(<u> GRAIN SIZE -</u>	mm.		
0/ - 211	% Gr	avel % Sand		% Fines			
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	13.8	28.5	14.9	22.8	10.8	9.2	

Test Results (ASTM D422 & ASTM D1140)						
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
1"	100.0					
.75"	86.2					
.5"	79.4					
.375"	69.7					
#4	57.7					
#10	42.8					
#20	29.1					
#40	20.0					
#60	17.5					
#100	12.6					
#200	9.2					

Brown well-graded sand with silt and gravel

Atterberg Limits (ASTM D 4318) LL= PI=

PL=

CC- FIE

 $\begin{array}{cc} & \underline{\text{Classification}} \\ \text{USCS (D 2487)=} & \mathrm{SW-SM} & \underline{\text{AASHTO (M 145)=}} & \mathrm{A-1-a} \end{array}$

Coefficients

 D90=
 21.0220
 D85=
 18.2593
 D60=
 5.7680

 D50=
 2.9506
 D30=
 0.9004
 D15=
 0.1904

 D10=
 0.0961
 Cu=
 60.02
 Cc=
 1.46

Remarks

As received MC = 9.0%

Date Received: 12/8/17 Date Tested: 12/13/17

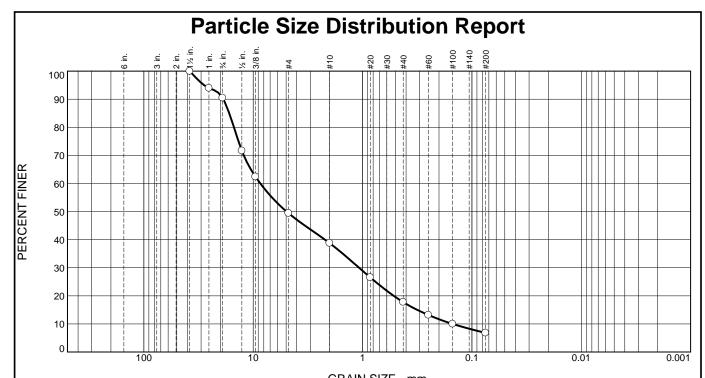
Tested By: RZ

Checked By: MP

Title: Laboratory Manager

* (no specification provided)

CDM Smith


Source of Sample: B-32 Sample Number: S-2 **Depth:** 8-10'

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 11/30/17

			(<u> JRAIN SIZE -</u>	mm.		
9/ .2"		avel % Sand		% Fines			
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	9.5	41.1	10.6	21.0	11.0	6.8	

Test Results (ASTM D422 & ASTM D1140)						
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
1.5"	100.0					
1"	94.0					
.75"	90.5					
.5"	71.6					
.375"	62.4					
#4	49.4					
#10	38.8					
#20	26.6					
#40	17.8					
#60	13.2					
#100	10.0					
#200	6.8					

Gray poorly graded gravel with silt and sand

Atterberg Limits (ASTM D 4318)
LL= PI=

PL=

LL= P|=

Coefficients

 D90=
 18.7522
 D85=
 16.5644
 D60=
 8.6017

 D50=
 4.9512
 D30=
 1.0764
 D15=
 0.3162

 D10=
 0.1503
 Cu=
 57.24
 Cc=
 0.90

Remarks

As received MC = 5.6%

Date Received: 12/8/17 Date Tested: 12/13/17

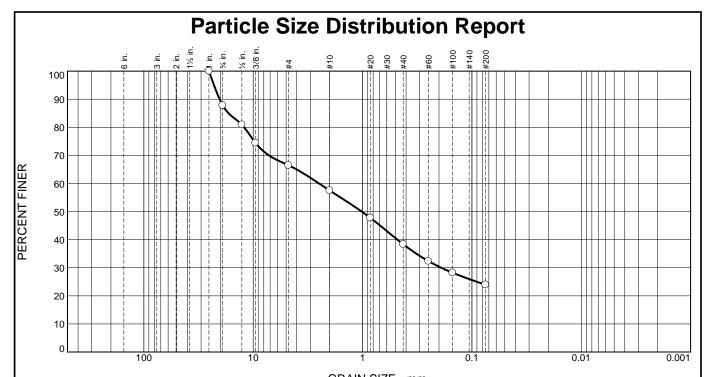
Tested By: RZ

Checked By: MP

Title: Laboratory Manager

(no specification provided)

CDM Smith


Source of Sample: B-33 Sample Number: S-2 **Depth:** 2-4'

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/17/17

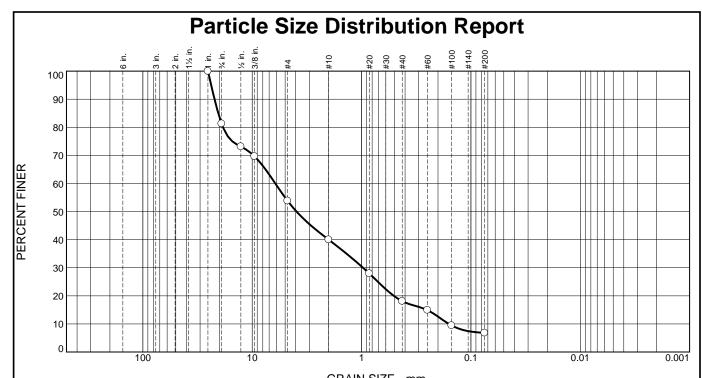
			(<u> - RAIN SIZE</u>	· mm.		
% (3"		ravel	el % Sand			% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	12.2	21.3	9.0	19.1	14.5	23.9	

Test Results (ASTM D422 & ASTM D1140)						
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
1"	100.0					
.75"	87.8					
.5"	80.9					
.375"	74.4					
#4	66.5					
#10	57.5					
#20	47.8					
#40	38.4					
#60	32.4					
#100	28.2					
#200	23.9					

	<u>iviateriai Descri</u>	<u> ption</u>			
Dark brown silty s	and with gravel				
Atte	erberg Limits (AS	ГМ D 4318)			
PL=	LĽ=	PI=			
USCS (D 2487)=	SM Classificatio	on O (M 145)= A-1-b			
D ₉₀ = 20.3132 D ₅₀ = 1.0173 D ₁₀ =	Coefficients D ₈₅ = 16.8408 D ₃₀ = 0.1905 C _u =	D ₆₀ = 2.4980 D ₁₅ = C _c =			
As received MC =	Remarks 13.1%				
Date Received: Tested By:		e Tested: 12/14/17			
Checked By:	MP				
Title: Laboratory Manager					

* (no specification provided)

Source of Sample: B-34 Sample Number: S-V-1 **Depth:** 2-2.5'


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/6/17

	GRAIN SIZE - mm.							
	0/ - 211	% Gravel		% Sand			% Fines	
ı	% +3 "	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	18.7	27.5	13.8	21.9	11.3	6.8	

Test F	Results (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
.75"	81.3		
.5"	73.2		
.375"	69.7		
#4	53.8		
#10	40.0		
#20	28.0		
#40	18.1		
#60	14.9		
#100	9.4		
#200	6.8		
*			

Brown poorly graded sand with silt and gravel

Atterberg Limits (ASTM D 4318)
LL= Pl=

PL=

Classification

USCS (D 2487)= SP-SM AASHTO (M 145)= A-1-a

Coefficients

 D90=
 22.1212
 D85=
 20.4452
 D60=
 6.1462

 D50=
 3.9328
 D30=
 0.9697
 D15=
 0.2528

 D10=
 0.1589
 Cu=
 38.69
 Cc=
 0.96

Remarks

As received MC = 6.3%

Tested By: RZ
Checked By: MP

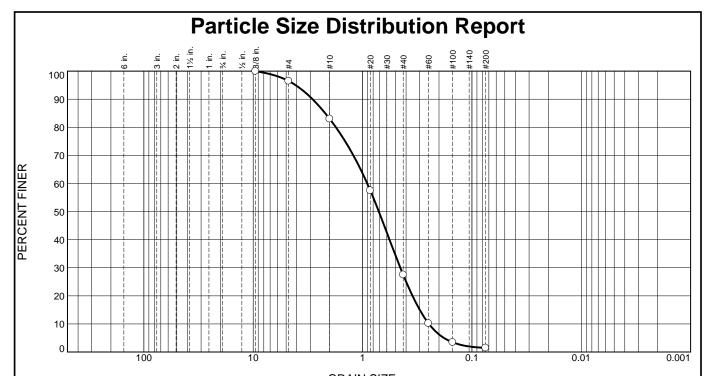
Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-35 Sample Number: S-2 **Depth:** 2-3.5'

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)


Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts Project No: 101038.102170

Figure

Date Sampled: 10/19/17

CDM Smith

	GRAIN SIZE - mm.							
	0/ - 211	% Gravel		% Sand			% Fines	
١	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0 3.5 13.5 55.5 26.0		1.5				

Test Re	esults (ASTM D	6913 & ASTM I	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.375	100.0		
#4	96.5		
#10	83.0		
#20	57.5		
#40	27.5		
#60	10.2		
#100	3.5		
#200	1.5		
*			

Brown poorly graded sand	
Atterberg Limits (ASTM D 4318) PL= LL= Pl= Classification USCS (D 2487)= SP AASHTO (M 145)=	
Coefficients D90= 2.8675 D85= 2.1955 D60= 0 D50= 0.7101 D30= 0.4514 D15= 0 D10= 0.2475 Cu= 3.66 Cc= 0	0.9062 0.2998 .91
Date Received: 1/30/18 Date Tested: Tested By: SB	1/31/18
Checked By: MP	

(no specification provided)

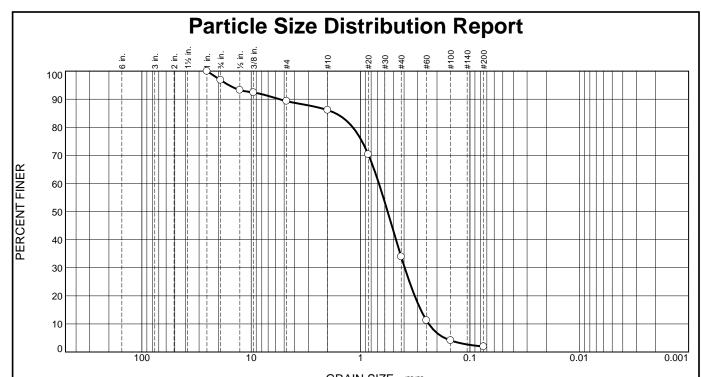
Source of Sample: B-36 **Sample Number:** S-3

Depth: 4-6'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Title: Laboratory Manager


Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/19/17

Project No: 101038.102170

Boston, Massachusetts

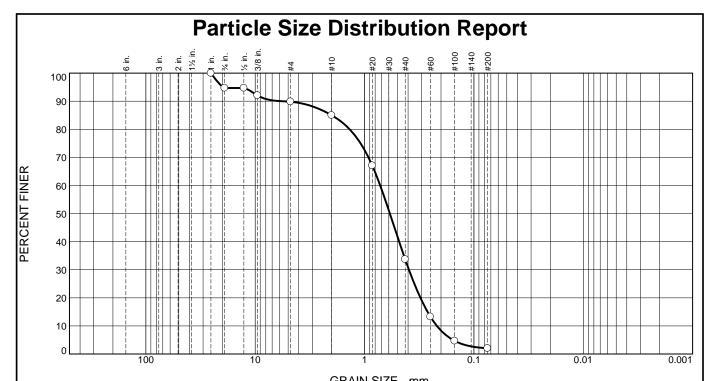
GRAIN SIZE - mm.							
0/ - 211	% Gravel		% Sand			% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	3.2 7.5 3.2 52.2 32.0		1.9				

Test R	esults (ASTM D	6913 & ASTM I	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1	100.0		
.75	96.8		
.5	93.3		
.375	92.4		
#4	89.3		
#10	86.1		
#20	70.4		
#40	33.9		
#60	11.3		
#100	4.1		
#200	1.9		

	Material Descri	ption
Brown poorly gra	ded sand	
Δ++	erberg Limits (AS	TM D 4318)
PL=	LL=	PI=
USCS (D 2487)=	SP Classification SP AASHT	<u>on</u> O (M 145)= A-1-b
D ₉₀ = 5.5138 D ₅₀ = 0.5657 D ₁₀ = 0.2379	Coefficient D₈₅= 1.6965 D₃₀= 0.3946 C_u= 2.86	S D₆₀= 0.6797 D₁₅= 0.2814 C_c= 0.96
As recieved MC =	Remarks	
As recieved MC =	5.1%	
Date Received:	1/30/18 Dat	e Tested: 1/31/18
Tested By:	SB	
Checked By:	MP	
Title:	Laboratory Manager	

Source of Sample: B-37 Sample Number: S-V-1 **Depth:** 2-2.5'

CDM Smith


Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/18/17

Boston, Massachusetts Project No: 101038.102170

	GRAIN SIZE - IIIIII.							
% +3"	0/ - 211	% Gravel % Sand			% Fines			
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
	0.0	5.3	4.9	4.8	51.3	31.7	2.0	

Test Re	esults (ASTM D	6913 & ASTM I	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1	100.0		
.75	94.7		
.5	94.7		
.375	92.0		
#4	89.8		
#10	85.0		
#20	67.1		
#40	33.7		
#60	13.3		
#100	4.7		
#200	2.0		
*	::e::		

Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= SP **AASHTO (M 145)=** A-1-b Coefficients

Material Description

D₆₀= 0.7197 D₁₅= 0.2656 C_c= 0.98 **D₉₀=** 5.6976 **D₅₀=** 0.5868 **D₁₀=** 0.2181 D₈₅= 2.0000 D₃₀= 0.3928 C_u= 3.30

Remarks

As recieved MC = 6.3%

Brown poorly graded sand

Date Received: 1/30/18 **Date Tested:** 1/31/18 Tested By: SB Checked By: MP

Title: Laboratory Manager

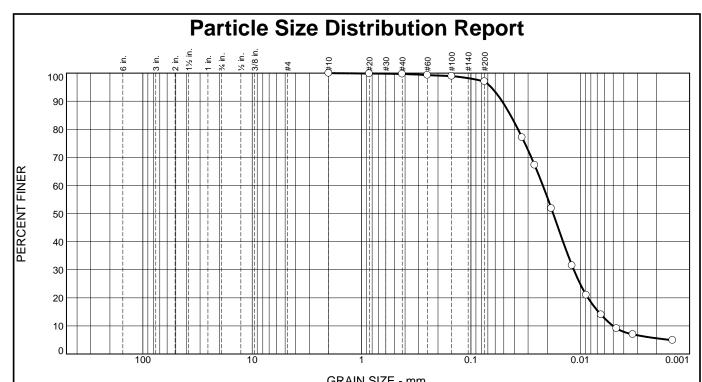
(no specification provided)

Source of Sample: B-38 Sample Number: S-V-1

Depth: 3-3.5'

Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)


Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/18/17

Project No: 101038.102170

CDM Smith

Boston, Massachusetts

GRAIN SIZE - IIIII.								
0/ .2"		% G	Gravel % Sand		% Sand % Fine		% Fines	
% +3"	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	0.0	0.0	0.3	2.6	87.1	10.0

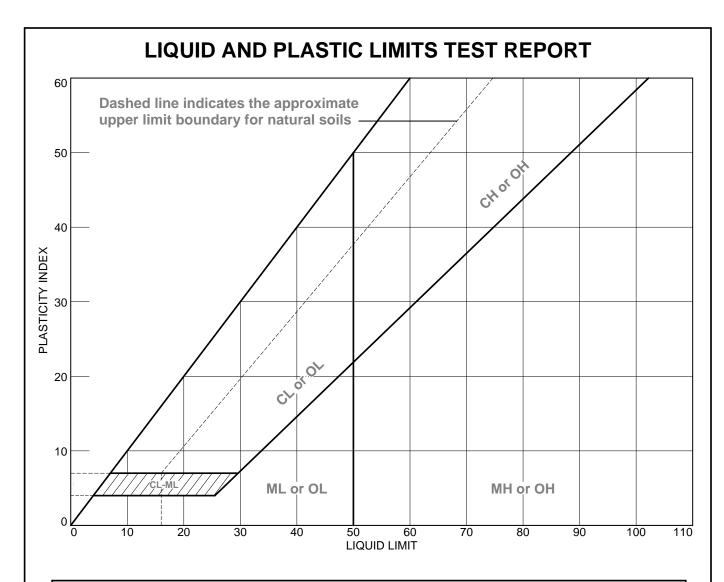
Test Results (ASTM D6913 & D7928 & ASTM D1140)								
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X=Fail)					
#10	100.0							
#20	99.9							
#40	99.7							
#60	99.3							
#100	98.9							
#200	97.1							
0.0341 mm.	77.1							
0.0261 mm.	67.3							
0.0184 mm.	51.9							
0.0119 mm.	31.5							
0.0088 mm.	21.0							
0.0064 mm.	14.0							
0.0047 mm.	9.1							
0.0033 mm.	7.0							
0.0014 mm.	4.9							

	Material Descrip	<u>otion</u>
Gray-brown silt		
Δ++	erberg Limits (AST	'M D 4318\
PL= NP	LL= NV	PI= NP
USCS (D 2487)=	Classification ML AASHTO	<u>n</u> O (M 145)= A-4(0)
	Coefficients	<u>i</u>
D₉₀= 0.0519 D₅₀= 0.0177	D₈₅ = 0.0434	D₆₀= 0.0220 D₁₅= 0.0068
D ₁₀ = 0.0050	D₃₀= 0.0115 C_u= 4.38	C_c= 1.19
	Remarks	
As recieved MC =	28.6%	
Date Received:	1/30/18 Date	Tested: 1/31/18
Tested By:	MP	
Checked By:	MP	
Title:	Laboratory Manager	
	Zacoratory Wanager	

Source of Sample: B-38 Sample Number: S-3

Depth: 14-16'

CDM Smith


Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

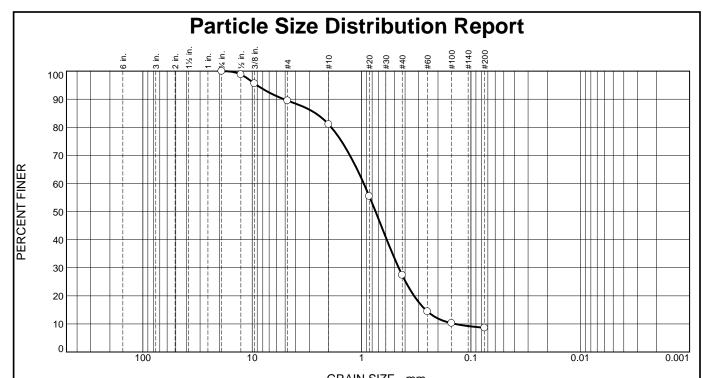
Date Sampled: 10/18/17

Boston, Massachusetts Project No: 101038.102170

	SOIL DATA							
SYMBOL SOURCE SAMPLE DEPTH WATER PLASTIC LIQUID CONTENT LIMIT (%) (%) (%)						PLASTICITY INDEX (%)	uscs	
•	B-38	S-3	14-16'	28.6	NP	NV	NP	ML

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Project No.: 101038.102170

Boston, Massachusetts

Tested By: MP

GRAIN SIZE - mm.							
0/ - 211	% Gı	% Gravel % Sand			% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	10.5	8.5	53.6	18.8	8.6	

Test Results (ASTM D6913 & ASTM D1140)									
Opening	Percent	Spec.*	Pass?						
Size	Finer	(Percent)	(X=Fail)						
.75	100.0								
.5	98.8								
.375	95.6								
#4	89.5								
#10	81.0								
#20	55.5								
#40	27.4								
#60	14.4								
#100	10.3								
#200	8.6								

Brown well-graded sand with silt

Atterberg Limits (ASTM D 4318) LL= PI=

PL=

 $\begin{array}{ccc} & & & & & \\ \text{USCS (D 2487)=} & & \text{SW-SM} & & \text{AASHTO (M 145)=} & & \text{A-1-b} \end{array}$

Coefficients

D₆₀= 0.9549 **D₁₅=** 0.2594 **C_c=** 1.57 **D₉₀=** 5.1345 **D₅₀=** 0.7444 **D₁₀=** 0.1397 D₈₅= 2.6338 D₃₀= 0.4576 C_u= 6.83

Remarks

As recieved MC = 6.4%

Date Received: 1/30/18 **Date Tested:** 1/31/18

Tested By: SB Checked By: MP

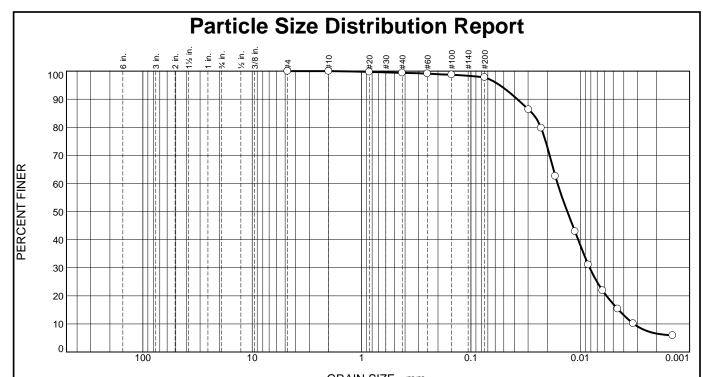
Title: Laboratory Manager

(no specification provided)

Source of Sample: B-39 Sample Number: S-5

CDM Smith

Depth: 8-10'


Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/23/17

Boston, Massachusetts Project No: 101038.102170

GRAIN SIZE - mm.							
0/ - 211	% Gı	% Gravel % Sand			% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.0	0.6	1.6	80.7	17.1

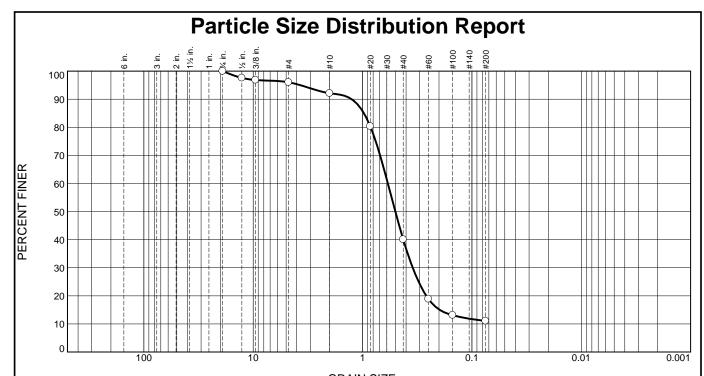
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
#4	100.0		
#10	100.0		
#20	99.7		
#40	99.4		
#60	99.1		
#100	98.7		
#200	97.8		
0.0298 mm.	86.4		
0.0228 mm.	79.8		
0.0169 mm.	62.6		
0.0112 mm.	42.9		
0.0084 mm.	31.1		
0.0063 mm.	21.9		
0.0045 mm.	15.4		
0.0033 mm.	10.2		
0.0014 mm.	5.9		

Material Description							
Gray silt							
Att	erberg Limits (ASTM LL=	D 4318) PI=					
USCS (D 2487)=	Classification ML AASHTO (M 145)= A-4(0)					
D₉₀= 0.0376 D₅₀= 0.0131 D₁₀= 0.0032	Coefficients D ₈₅ = 0.0274 D ₃₀ = 0.0082 C _u = 4.98	D₆₀= 0.0161 D₁₅= 0.0045 C_c= 1.29					
Remarks As received MC = 27.4%							
Date Received: Tested By:		'ested: 2/5/18					
Checked By:	MP						
Title: Laboratory Manager							

Source of Sample: B-40 Sample Number: S-6

Depth: 14-16'

CDM Smith


Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 1/11/18

Boston, Massachusetts Project No: 101038.102170

GRAIN SIZE - mm.							
0/ - 211	% G	% Gravel % Sand		% Fines			
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	4.0	3.9	52.0	29.0	11.1	

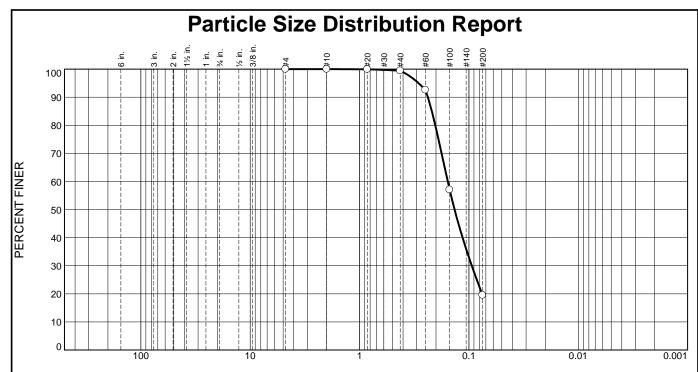
Test R	esults (ASTM I	0422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.75"	100.0		
.5"	97.6		
.375"	96.8		
#4	96.0		
#10	92.1		
#20	80.4		
#40	40.1		
#60	18.9		
#100	13.1		
#200	11.1		

Material Description							
Brown poorly grad	Brown poorly graded sand with silt						
Λ++	rhora Limite	/A STM D /219	,				
PL=	LL=	(<u>ASTM D 4318)</u> PI=	,				
USCS (D 2487)=	<u>Classific</u> SP-SM AA		A-1-b				
, ,	Coeffic	ionte					
D₉₀= 1.2577 D₅₀= 0.5013	$D_{85} = 0.9711$	D ₆₀ =	0.5867				
D ₅₀ = 0.5013 D ₁₀ =	D ₃₀ = 0.3477 C _u =	7 D ₁₅ = C _c =	0.1970				
210-		•					
As received MC =	Rema	rks					
713 received ivic =	20.070						
Date Received:	12/8/17	Date Tested:	12/13/17				
Tested By:	RZ						
Checked By:	Checked By: MP						
Title: Laboratory Manager							
- Laboratory Manager							

Source of Sample: B-41 Sample Number: S-V-2 **Depth:** 5.5-6'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts Project No: 101038.102170

Figure

Date Sampled: 11/21/17

GRAIN SIZE - mm.									
0/ .3"	% Gı	Gravel % Sand		l	% Fines				
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay		
0.0	0.0	0.0	0.0	0.6	79 9	19.5			

Test I	422 & ASTM D	1140)	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
#4	100.0		
#10	100.0		
#20	99.9		
#40	99.4		
#60	92.6		
#100	57.1		
#200	19.5		

Gray-brown silty sand

Atterberg Limits (ASTM D 4318) PL=

Classification USCS (D 2487)= SM **AASHTO** (M 145)= A-2-4(0)

Coefficients

D₉₀= 0.2372 D₅₀= 0.1352 D₁₀= **D₆₀=** 0.1561 **D₈₅=** 0.2181 D₃₀= 0.0941 C_u= D₁₅= C_C=

Remarks

As received MC = 28.5%

Date Received: 12/8/17 **Date Tested:** 12/13/17

Tested By: RZ

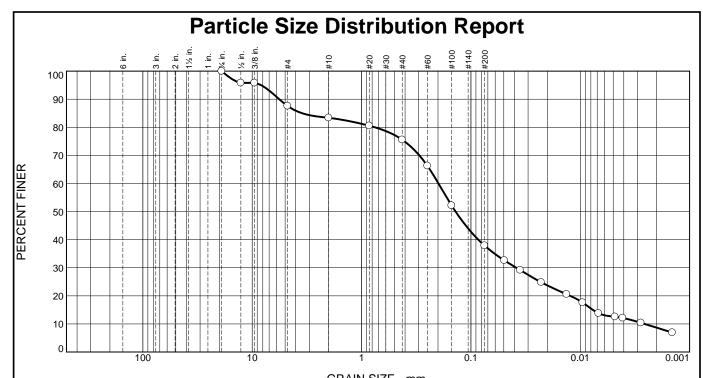
Checked By: MP

Title: Laboratory Manager

(no specification provided)

CDM Smith

Source of Sample: B-41 Sample Number: S-2


Depth: 8-10'

Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 11/21/17

				(<u>GRAIN SIZE -</u>	· mm.		
0/ .3"		% Gravel		% Sand			% Fines	
% +3"	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	12.4	4.2	7.8	37.7	25.3	12.6

Test Resul	ts (ASTM D6913	& D7928 & AS	TM D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.75"	100.0		
.5"	95.8		
.375"	95.8		
#4	87.6		
#10	83.4		
#20	80.5		
#40	75.6		
#60	66.3		
#100	52.2		
#200	37.9		
0.0494 mm.	32.6		
0.0354 mm.	29.2		
0.0228 mm.	24.8		
0.0133 mm.	20.6		
0.0095 mm.	17.6		
0.0068 mm.	13.8		
0.0048 mm.	12.6		
0.0041 mm.	12.1		
0.0028 mm.	10.4		
0.0014 mm.	6.9		

Dark brown silty sand with organics

Atterberg Limits (ASTM D 4318)

PL=

Classification

USCS (D 2487)= SM **AASHTO (M 145)=** A-4(0)

Coefficients

D₉₀= 5.6616 D₅₀= 0.1380 D₁₀= 0.0026 D₈₅= 3.4915 D₃₀= 0.0385 C_u= 76.65 **D₆₀=** 0.1979 D₁₅= 0.0077 C_c= 2.90

Remarks

As received MC = 80.6%

Date Tested: 2/2/18

Date Received: 1/31/18 Tested By: MP/SB

Checked By: MP

Title: Laboratory Manager

(no specification provided)

Source of Sample: B-42 Sample Number: S-2

Depth: 8-10'

Date Sampled: 11/2/17

Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)

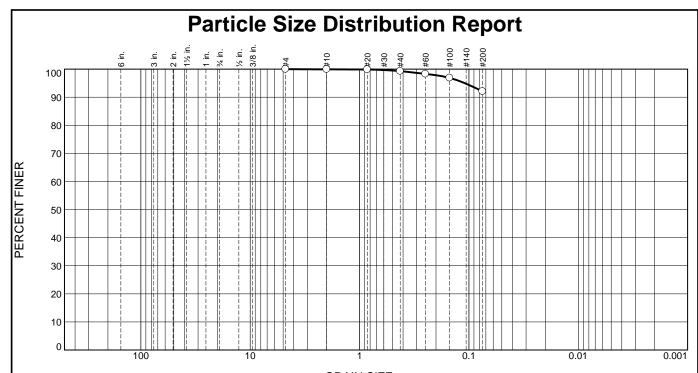
Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts

CDM Smith

Project No: 101038.102170

CDM Smith


Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client: Massachusetts Water Resources Authority Weston Aqueduct Supply Main 3 Tested By: Project Name: Test Date: 1/31/2017 MWRA line, MA Project Location: Project Number: 101038-102170 Boring Number: B-42 Procedure: S-2 Temperature: 440° C Sample Number: Sample Depth (ft): 8-10 Sample Date: 11/2/2017

AS RECEIVED MOISTURE CONTENT	
Tin Mass (g)	96.89
Wet Mass of Sample & Tin (g)	173.07
Dry Mass of Sample & Tin (g)	139.08
Mass of Water (g)	33.99
Mass of Dry Soil (g)	42.19
Moisture Content (%)	80.6

ASH CONTENT							
Porcelain Dish Mass (g)	96.89						
Porcelain Dish + Oven Dried Soil (g)	139.08						
Mass of Oven Dried Soil (g)	42.19						
Mass of Dish & Burned Soil (g)	135.11						
Mass of Burned Soil (g)	38.22						
Mass of Organic Material (g)	3.97						
Ash Content (%)	90.6						
Organic Content (%)	9.4						

				(<u> GRAIN SIZE -</u>	mm.		
9/ .3"		% Gravel		% Sand			% Fines	
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	0.0	0.1	0.6	7.2	92.1	

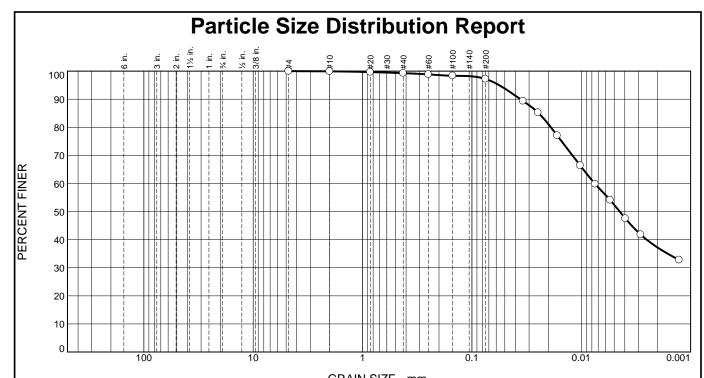
Test Re	esults (ASTM D	6913 & ASTM I	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
#4	100.0		
#10	99.9		
#20	99.9		
#40	99.3		
#60	98.3		
#100	96.9		
#200	92.1		
* /	cification provided	1	

	<u>Materia</u>	l Description	
Gray-brown silt			
PL= NP	erberg Lin LL= N	nits (ASTM D 4318) V Pl= Ni	
USCS (D 2487)=		ssification AASHTO (M 145)=	A-4(0)
D ₉₀ = D ₅₀ = D ₁₀ =	<u>Co</u> D ₈₅ = D ₃₀ = C _u =	efficients D ₆₀ = D ₁₅ = C _c =	
As recieved MC =		Remarks	
Date Received:	1/30/18	Date Tested:	1/31/18
Tested By:	SB		

Source of Sample: B-42 Sample Number: S-3

Depth: 14-16'

CDM Smith


Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 11/2/17

Boston, Massachusetts Project No: 101038.102170

					<u>GRAIN SIZE -</u>	· mm.		
9/ .3"		% Gravel		% Sand			% Fines	
	% +3 "	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	0.0	0.1	0.6	2.1	44.8	52.4

Opening	Percent	\$ & D7928 & AS Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
#4	100.0	,	,
#10	99.9		
#20	99.7		
#40	99.3		
#60	98.8		
#100	98.3		
#200	97.2		
0.0341 mm.	89.4		
0.0248 mm.	85.3		
0.0166 mm.	77.1		
0.0102 mm.	66.4		
0.0075 mm.	59.8		
0.0054 mm.	54.1		
0.0039 mm.	47.5		
0.0029 mm.	41.8		
0.0013 mm.	32.8		

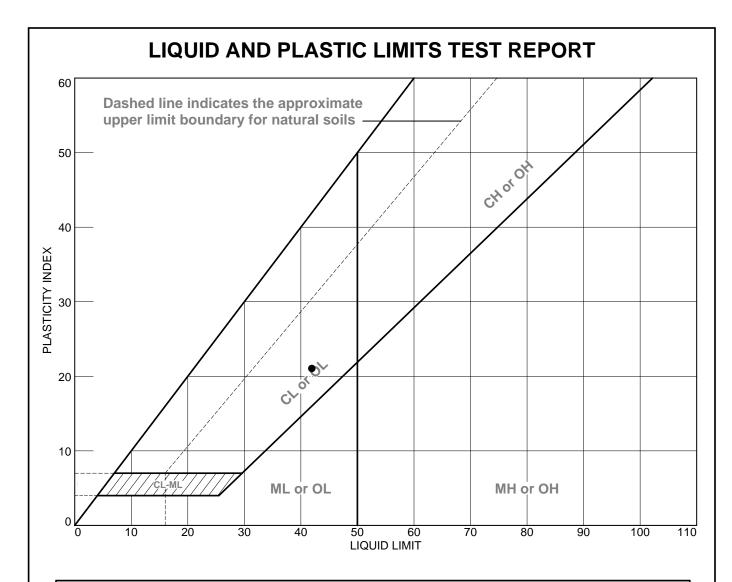
Gray lean clay Atterberg Limits (ASTM D 4318) **PL=** 21 LL= 42 Classification USCS (D 2487)= CL**AASHTO** (M 145)= A-7-6(22) Coefficients D₉₀= 0.0360 D₅₀= 0.0044 D₁₀= **D₆₀=** 0.0075 **D₈₅=** 0.0245 D₃₀= D₁₅= C_C= Remarks As recieved MC = 25.7%Date Received: 1/30/18 **Date Tested:** 1/31/18 Tested By: MP Checked By: MP Title: Laboratory Manager

Material Description

* (no specification provided)

Source of Sample: B-43 **Depth:** 8-10' Sample Number: S-5

CDM Smith


Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

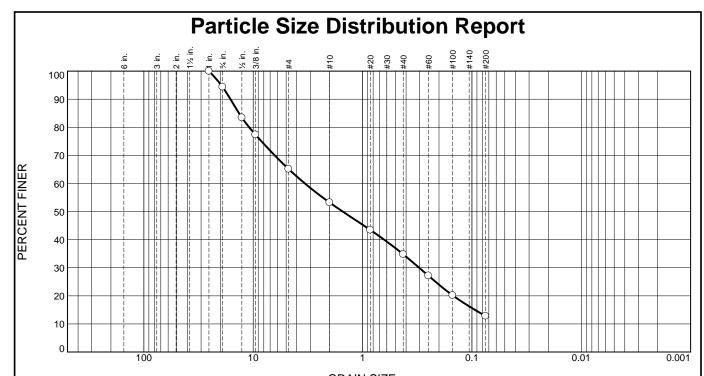
Date Sampled: 10/26/17

Boston, Massachusetts Project No: 101038.102170

	SOIL DATA									
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs		
•	B-43	S-5	8-10'	25.7	21	42	21	CL		

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts Pro

Project No.: 101038.102170

Tested By: AS Checked By: MP

				(<u>GRAIN SIZE -</u>	mm.		
0/ .2"		% Gravel		% Sand			% Fines	
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	5.6	29.2	12.0	18.4	22.0	12.8	

Test Re	esults (ASTM D	6913 & ASTM I	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1	100.0		
.75	94.4		
.5	83.4		
.375	77.4		
#4	65.2		
#10	53.2		
#20	43.5		
#40	34.8		
#60	27.2		
#100	20.2		
#200	12.8		

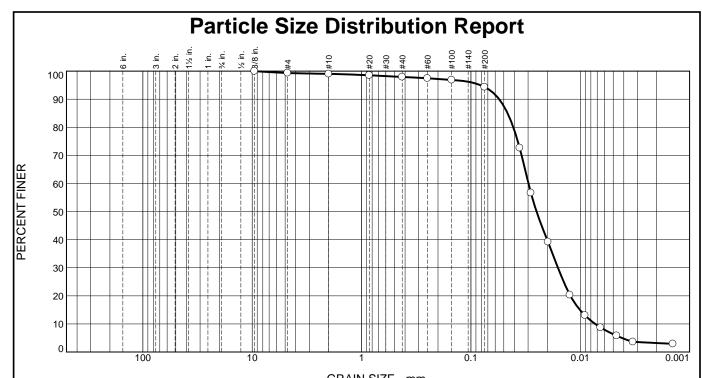
Atterberg Limits (ASTM D 4318) PL
PL= LL= PI= Classification USCS(D 2487)= SM AASHTO (M 145)= A-1-b Coefficients D90= 16.1416 D85= 13.4888 D60= 3.3678 D50= 1.5183 D30= 0.3036 D15= 0.0936 Cu= Remarks As recieved MC = 14.4%
PL= LL= PI= USCS(D 2487)= SM
USCS(D 2487)= SM AASHTO (M 145)= A-1-b Coefficients D90= 16.1416 D85= 13.4888 D60= 3.3678 D50= 1.5183 D30= 0.3036 D15= 0.0936 Cu= Cc= Remarks As recieved MC = 14.4%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
As recieved MC = 14.4%
Date Received: 1/30/18 Date Tested: 2/1/18 Tested By: SB
Checked By: MP
Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-44 Sample Number: S-1

Depth: 6-8'

CDM Smith


Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/31/17

Boston, Massachusetts Project No: 101038.102170

GRAIN SIZE - mm.							
% +3"	% Gravel			% Sand		% Fines	
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.7	0.3	1.1	3.6	87.9	6.4

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.375	100.0		
#4	99.3		
#10	99.0		
#20	98.5		
#40	97.9		
#60	97.5		
#100	96.8		
#200	94.3		
0.0358 mm.	72.7		
0.0283 mm.	56.7		
0.0197 mm.	39.2		
0.0124 mm.	20.3		
0.0091 mm.	13.1		
0.0065 mm.	8.7		
0.0046 mm.	5.8		
0.0033 mm.	3.6		
0.0014 mm.	2.9		

Gray-brown silt

Atterberg Limits (ASTM D 4318)

PL=

Classification

USCS (D 2487)= ML

AASHTO (M 145)= A-4(0)

Coefficients

D₆₀= 0.0298 **D₁₅=** 0.0101 **C_c=** 1.18 **D₉₀=** 0.0551 **D₅₀=** 0.0251 **D₁₀=** 0.0073 D₈₅= 0.0462 D₃₀= 0.0160 C_u= 4.08

Remarks

As recieved MC = 24.1%

Date Tested: 1/31/18

Date Received: 1/30/18 Tested By: MP

Checked By: MP

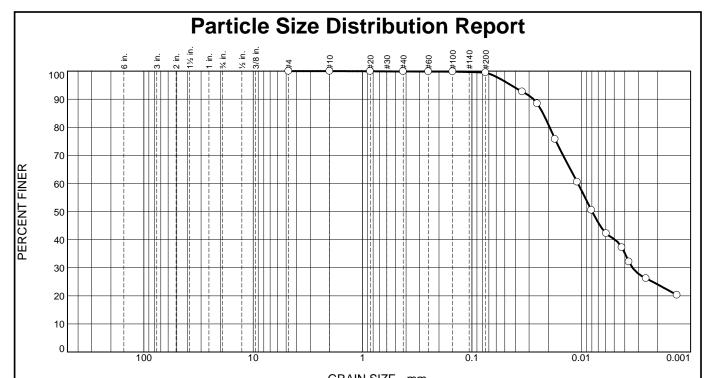
Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-45 Sample Number: S-3

Depth: 10-12'

Date Sampled: 10/31/17


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts

GRAIN SIZE - mm.								
% +3"	% Gravel			% Sand	I	% Fines	% Fines	
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	0.0	0.0	0.1	0.4	59.3	40.2	

Opening	Percent	Spec.*	Pass?	
Size	Finer	(Percent)	(X=Fail)	
#4	100.0			
#10	100.0			
#20	99.9			
#40	99.9			
#60	99.8			
#100	99.8			
#200	99.5			
0.0347 mm.	92.7			
0.0253 mm.	88.5			
0.0174 mm.	75.8			
0.0109 mm.	60.5			
0.0081 mm.	50.5			
0.0059 mm.	42.2			
0.0043 mm.	37.2			
0.0037 mm.	32.1			
0.0026 mm.	26.2			
0.0013 mm.	20.3			

Gray lean clay Atterberg Limits (ASTM D 4318) **PL=** 18 LL= 30 Classification USCS (D 2487)= CL**AASHTO** (M 145)= A-6(11) Coefficients D₉₀= 0.0273 D₅₀= 0.0079 D₁₀= **D₆₀=** 0.0107 **D₈₅=** 0.0224 D₃₀= 0.0034 C_u= D₁₅= C_C= Remarks As recieved MC = 24.8%Date Received: 1/30/18 **Date Tested:** 2/1/18 Tested By: MP

Material Description

* (no specification provided)

Source of Sample: B-45 Sample Number: S-4

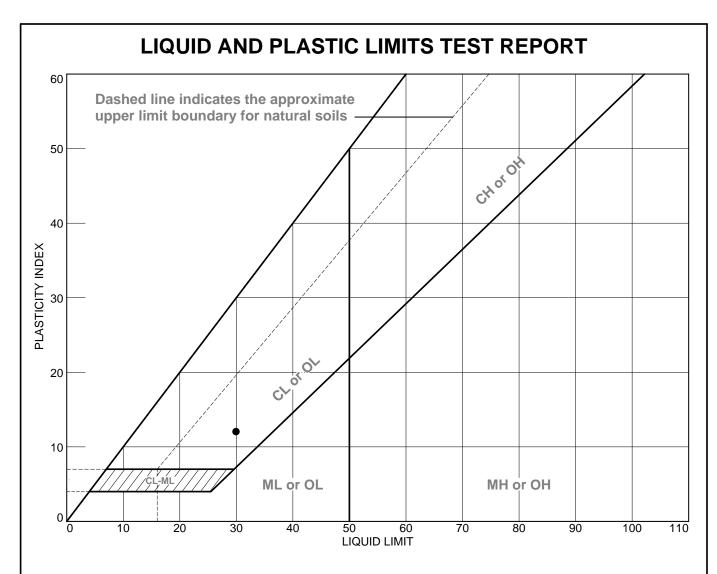
Depth: 14-16'

Client: Massachusetts Water Resources Authority (MWRA)

Title: Laboratory Manager

Checked By: MP

Weston Aqueduct Supply Main 3 (WASM3)


Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/31/17

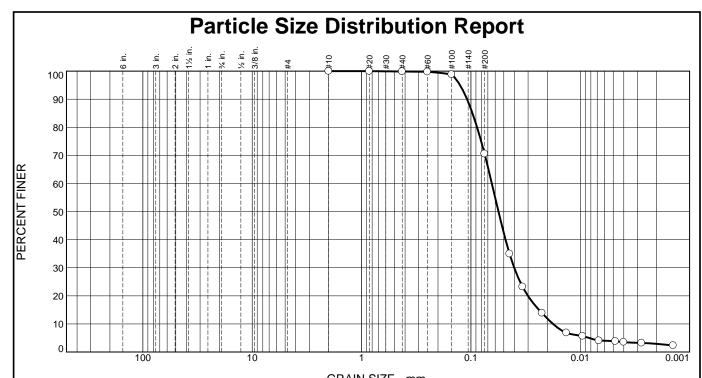
Project No: 101038.102170

CDM Smith

Boston, Massachusetts

SOIL DATA									
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs	
•	B-45	S-4	14-16'	24.8	18	30	12	CL	

CDM Smith


Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts Project No.: 101038.102170

Tested By: AS Checked By: MP

GRAIN SIZE - mm.							
% +3"	% Gravel			% Sand	i	% Fines	
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.0	0.1	29.3	66.7	3.9

Test Result	s (ASTM D6913	& D7928 & ASTM D1140)					
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
#10	100.0						
#20	100.0						
#40	99.9						
#60	99.8						
#100	98.8						
#200	70.6						
0.0443 mm.	35.0						
0.0337 mm.	23.2						
0.0224 mm.	13.9						
0.0134 mm.	6.8						
0.0095 mm.	5.7						
0.0068 mm.	4.1						
0.0048 mm.	3.8						
0.0040 mm.	3.5						
0.0027 mm.	3.2						
0.0014 mm.	2.3						

Brown silt with sand

Atterberg Limits (ASTM D 4318)

PL=

Classification

USCS (D 2487)= ML

AASHTO (M 145)= A-4(0)

Coefficients

D₆₀= 0.0644 **D₁₅=** 0.0238 **C_c=** 1.41 D₉₀= 0.1084 D₅₀= 0.0560 D₁₀= 0.0177 D₈₅= 0.0967 D₃₀= 0.0402 C_u= 3.63

Remarks

As received MC = 26.0%

Date Tested: 2/2/18

Date Received: 1/31/18 Tested By: MP/SB

Checked By: MP

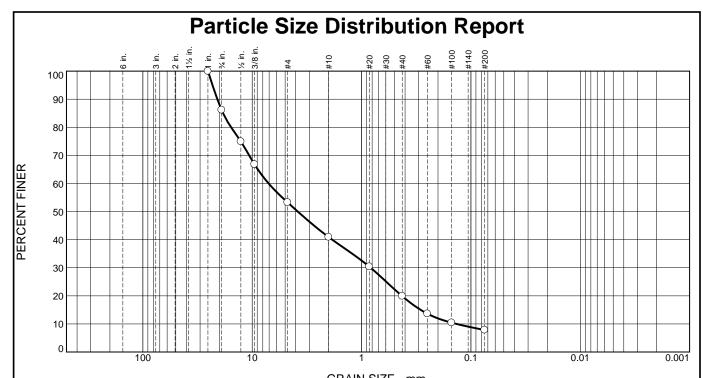
Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-46 Sample Number: S-2

Depth: 8-10'

Date Sampled: 11/16/18


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts

GRAIN SIZE - mm.								
% +3"	% G	% Gravel % Sand				% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	13.8		12.4	21.0	12.1	7.8		

Test Re	esults (ASTM D	6913 & ASTM I	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1	100.0		
.75	86.2		
.5	74.9		
.375	66.8		
#4	53.3		
#10	40.9		
#20	30.4		
#40	19.9		
#60	13.6		
#100	10.4		
#200	7.8		

Brown poorly graded gravel with silt and sand

Atterberg Limits (ASTM D 4318) LL= PI=

PL=

Coefficients

 D90=
 20.8441
 D85=
 18.4565
 D60=
 7.0810

 D50=
 3.8326
 D30=
 0.8261
 D15=
 0.2880

 D10=
 0.1355
 Cu=
 52.24
 Cc=
 0.71

Remarks

As recieved MC = 5.4%

Date Received: 1/30/18

Date Tested: 2/1/18

Tested By: SB

Checked By: MP

Title: Laboratory Manager

(no specification provided)

Source of Sample: B-47 Sample Number: S-V-1

Depth: 2-2.5'

Date Sampled: 11/2/17

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts Project No:

	GRAIN SIZE - mm.								
	% +3"	% Gı	ravel		% Sand	i	% Fines		
		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
	0.0	0.0	0.0	0.1	1.7	76.8	21.4		

Test R	esults (ASTM De	6913 & ASTM I	D1140)		
Opening	Percent	Spec.*	Pass?		
Size	Finer	(Percent)	(X=Fail)		
#4	100.0				
#10	99.9				
#20	99.8				
#40	98.2				
#60	82.9				
#100	54.9				
#200	21.4				

Gray/red brown silty sand

Atterberg Limits (ASTM D 4318)

PL=

USCS (D 2487)=

Classification SM **AASHTO** (M 145)= A-2-4(0)

Coefficients

D₉₀= 0.2988 D₅₀= 0.1371 D₁₀= **D₈₅=** 0.2620

D₆₀= 0.1641

D₃₀= 0.0908 C_u=

D₁₅= C_C=

Remarks

As recieved MC = 9.2%

Date Tested: 2/1/18

Date Received: 1/30/18 Tested By: SB

Checked By: MP

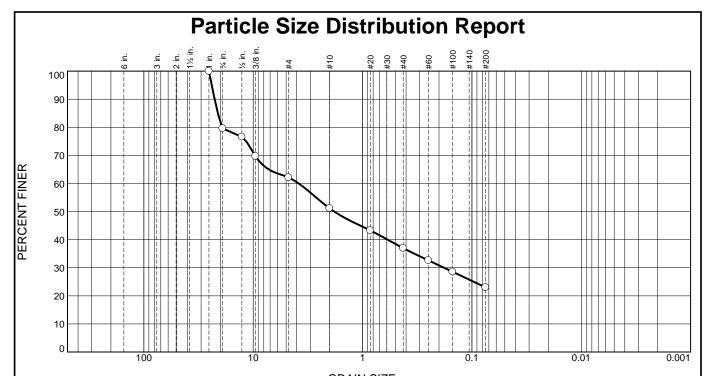
Title: Laboratory Manager

(no specification provided)

Source of Sample: B-48 Sample Number: S-4

Depth: 6-8'

Date Sampled: 10/24/17


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts

GRAIN SIZE - mm.								
% +3"	% Gravel			% Sand		% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	20.4	17.5	11.0	14.1	14.0	23.0		

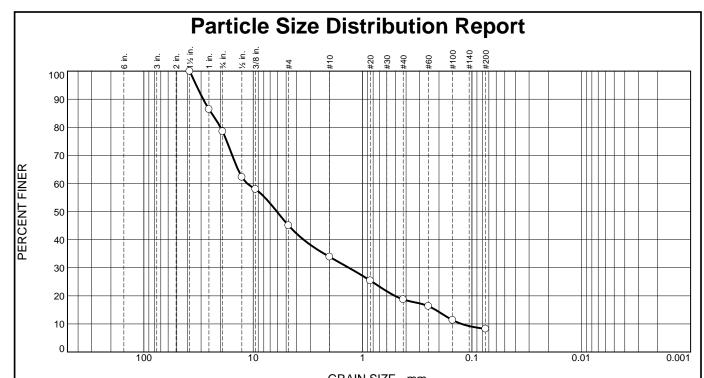
Test R	esults (ASTM I	0422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
.75"	79.6		
.5"	76.6		
.375"	69.7		
#4	62.1		
#10	51.1		
#20	43.3		
#40	37.0		
#60	32.6		
#100	28.6		
#200	23.0		

	Material Descri	<u>ption</u>
Brown silty sand v	vith gravel	
A 44.	uhaua Limita (AC	TM D 4240)
PL=	erberg Limits (AS LL=	PI=
	Classification	nn.
USCS (D 2487)=		O (M 145)= A-1-b
	Coefficient	s
D₉₀= 22.5460	D ₈₅ = 21.0526	D ₆₀ = 3.8366
D ₅₀ = 1.8161 D ₁₀ =	D ₃₀ = 0.1798 C ₁₁ =	D ₁₅ = C _c =
D ₁₀ -	u	OC-
As received MC =	Remarks	
As received ivic =	11.770	
Date Received:	12/8/17 Dat	e Tested: 12/13/17
Tested By:	RZ	
Checked By:		
ı itle:	Laboratory Manager	

* (no specification provided)

Source of Sample: B-50 Sample Number: S-2

Depth: 2-4'


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/25/17

	GRAIN SIZE - mm.							
0/. 13"		% Gravel		% Sand		% Fines		
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	21.5	33.5	11.1	15.2	10.5	8.2	

	Test Results (ASTM D422 & ASTM D1140)							
	Opening	Percent	Spec.*	Pass?				
	Size	Finer	(Percent)	(X=Fail)				
ſ	1.5"	100.0						
	1"	86.4						
	.75"	78.5						
	.5"	62.3						
	.375"	57.9						
	#4	45.0						
	#10	33.9						
	#20	25.4						
	#40	18.7						
	#60	16.3						
	#100	11.3						
	#200	8.2						
l								
l								
	*							

Gray well-graded gravel with silt and sand

Atterberg Limits (ASTM D 4318) LL= PI=

PL=

LL- FI=

Coefficients

 D₉₀=
 28.6676
 D₈₅=
 24.0368
 D₆₀=
 11.3650

 D₅₀=
 6.0736
 D₃₀=
 1.3364
 D₁₅=
 0.2147

 D₁₀=
 0.1242
 C_u=
 91.51
 C_c=
 1.27

Remarks

As received MC = 6.3%

Date Received: 12/8/17 Date Tested: 12/12/17

Tested By: RZ

Checked By: MP

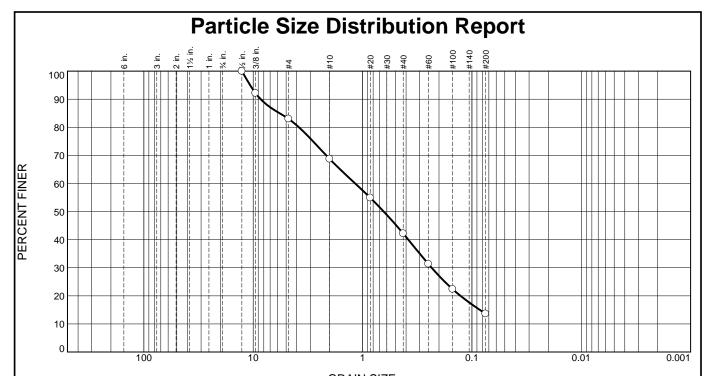
Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-51 Sample Number: S-4 **Depth:** 6-8'

Date Sampled: 10/25/17

CDM Smith


Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts Project No: 101038.102170

Figure

		GRAIN SIZE - mm.						
9/ .3"		% G	% Gravel % Sand		% Fines			
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	17.0	14.3	26.5	28.6	13.6	

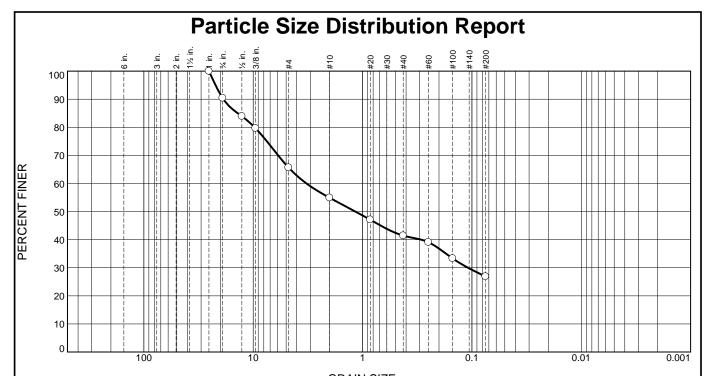
Test Results (ASTM D422 & ASTM D1140)								
Opening	Percent Spec.* Pa							
Size	Finer	(Percent)	(X=Fail)					
.5"	100.0							
.375"	92.2							
#4	83.0							
#10	68.7							
#20	54.9							
#40	42.2							
#60	31.3							
#100	22.4							
#200	13.6							
*								

	Material D	<u> Descriptio</u>	<u>n</u>
Brown silty sand v	vith gravel		
A 44 -		- /A OTNA I	D 4040\
PL=	erberg Limit LL=	S (ASTIVIT	<u>ט 4318)</u> Pl=
	Classi	fication	
USCS (D 2487)=		<u>fication</u> NASHTO (N	// 145)= A-1-b
	Coeff	icients	
D₉₀= 8.5434	$D_{85} = 5.72$	48	D₆₀= 1.1682
D₅₀= 0.6405	D₃₀= 0.23	34	D₁₅= 0.0846
D ₁₀ =	c _u =		C _C =
		narks	
As received MC =	13.4%		
Date Received:	12/8/17	Date Te	ested: 12/14/17
Tested By:		Date 10	12/14/17
-			
Checked By:	MP		
Title: 1	Laboratory M	anager	

(no specification provided)

Source of Sample: B-52 **Sample Number:** S-3

Depth: 4-5'


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/26/17

		GRAIN SIZE - mm.						
9/ .2"		% G	ravel % Sand		% Fines			
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
	0.0	9.6	24.7	10.8	13.5	14.5	26.9	

Test R	esults (ASTM I	0422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
.75"	90.4		
.5"	83.9		
.375"	79.7		
#4	65.7		
#10	54.9		
#20	47.1		
#40	41.4		
#60	39.1		
#100	33.3		
#200	26.9		

Gray-brown silty	Material Description sand with gravel	<u>n</u>
•		
PL=	erberg Limits (ASTM [LL=	<u>PI=</u>
USCS (D 2487)=	SM Classification AASHTO (M	I 145)= A-2-4(0)
D ₉₀ = 18.7379 D ₅₀ = 1.1635 D ₁₀ =	Coefficients D ₈₅ = 13.8487 D ₃₀ = 0.1086 C _u =	D ₆₀ = 3.2574 D ₁₅ = C _c =
As received MC =	Remarks = 10.3%	
Date Received: Tested By:		sted: 12/14/17
Checked By:	MP	
Title:	Laboratory Manager	

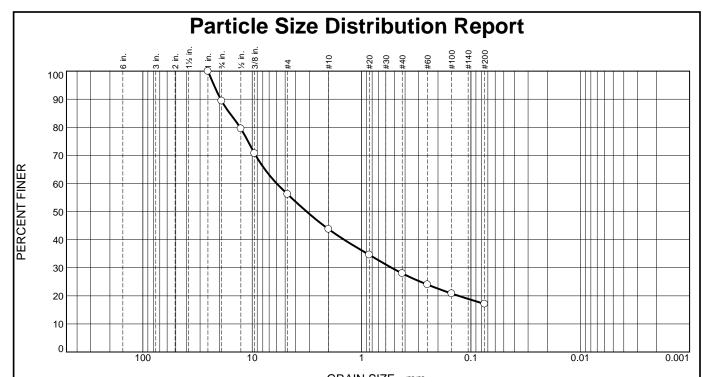
(no specification provided)

Source of Sample: B-53 Sample Number: S-2

Depth: 2-2.9'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 11/3/17

Project No: 101038.102170 **Figure**

Boston, Massachusetts

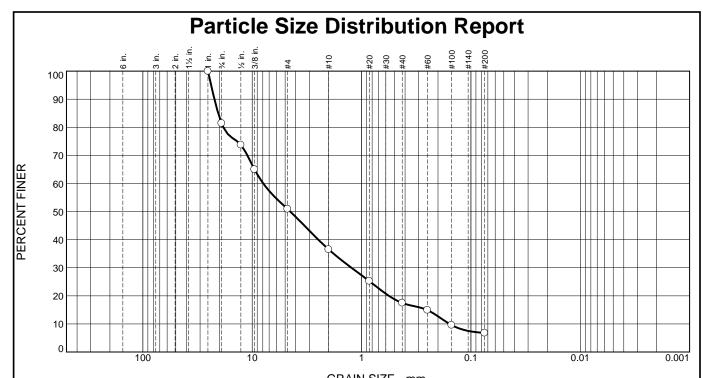
		GRAIN SIZE - mm.						
9/ .2"		% Gı	ravel % Sand		% Fines			
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	10.6	33.2	12.5	15.7	10.9	17.1	

Test R	esults (ASTM I	0422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
.75"	89.4		
.5"	79.5		
.375"	70.7		
#4	56.2		
#10	43.7		
#20	34.6		
#40	28.0		
#60	24.0		
#100	20.8		
#200	17.1		
*			

	Material Description	
Brown silty grave	l with sand	
Δ++	erberg Limits (ASTM D 43	R18)
PL=	LL= Pl	
USCS (D 2487)=	Classification GM AASHTO (M 14	5)= A-1-b
	Coefficients	
D₉₀= 19.4225 D₅₀= 3.1787		0= 5.9678
D ₅₀ = 3.1787 D ₁₀ =	D ₃₀ = 0.5313 D ₁ C _u = C _c	
	Remarks	
As received MC =	= 10.3%	
Date Received:	12/8/17 Date Teste	d : 12/14/17
Tested By:	RZ	
Checked By:	MP	
Title:	Laboratory Manager	
	-	

* (no specification provided)

Source of Sample: B-54 Sample Number: S-3 **Depth:** 4-6'


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/24/17

	GRAIN SIZE - mm.							
% +3" % Gravel % Sand				% Fines				
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	18.6	30.5	14.4	19.0	10.7	6.8		

Test Results (ASTM D422 & ASTM D1140)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
1"	100.0						
.75"	81.4						
.5"	73.7						
.375"	65.0						
#4	50.9						
#10	36.5						
#20	25.2						
#40	17.5						
#60	14.9						
#100	9.6						
#200	6.8						
*							

Gray-brown well-graded gravel with silt and sand

Atterberg Limits (ASTM D 4318) LL= PI=

PL=

Classification USCS (D 2487)= GW-GM **AASHTO** (M 145)= A-1-a

Coefficients

D₉₀= 22.1623 **D₅₀=** 4.4857 **D₁₀=** 0.1568 D₆₀= 7.9258 D₁₅= 0.2524 C_c= 1.23 D₈₅= 20.4709 D₃₀= 1.2377 C_u= 50.55

Remarks

As received MC = 9.4%

Date Received: 12/8/17 **Date Tested:** 12/14/17

Tested By: RZ Checked By: MP

Title: Laboratory Manager

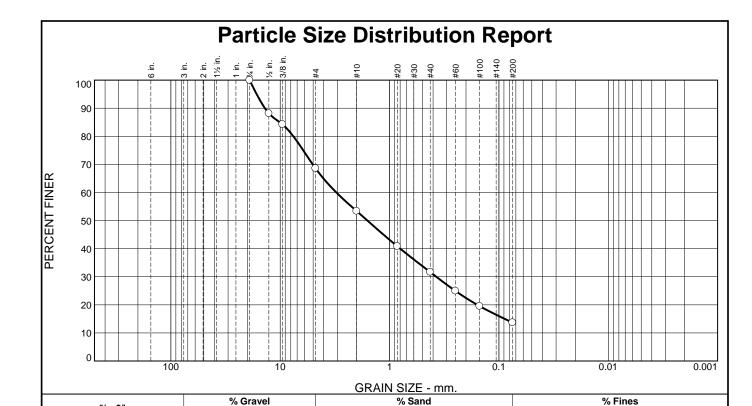
(no specification provided)

Source of Sample: B-55 **Depth: 2-4'** Sample Number: S-1

Date Sampled: 10/27/17

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts

Project No: 101038.102170

Figure

0.0		0.0	31.4	4 1	5.2
Test F	Results (ASTI	M D422 & AS	TM D114	40)	7
Opening	Percent	Spec.	*	Pass?	1
Size	Finer	(Perce	nt) ((X=Fail)	
.75"	100.0				7
.5"	88.1				
.375"	84.2				
#4	68.6				
#10	53.4				
#20	40.8				
#40	31.7				
#60	25.0				
#100	19.5				
#200	13.7				
* (no spe	cification prov	ided)			_

Coarse

Fine

Coarse

Medium

21.7

Fine

18.0

Dark brown silty sand with gravel Atterberg Limits (ASTM D 4318)
Atterhera Limits (ASTM D 4318)
PL= LL= PI=
USCS (D 2487)= SM Classification AASHTO (M 145)= A-1-b
Coefficients D ₉₀ = 13.8305 D ₈₅ = 10.0865 D ₆₀ = 3.0679 D ₅₀ = 1.5945 D ₃₀ = 0.3739 D ₁₅ = 0.0885 D ₁₀ = C _u = C _c =
Remarks As received $MC = 9.6\%$
Date Received: 12/8/17 Date Tested: 12/14/17 Tested By: RZ
Checked By: MP
Title: Laboratory Manager

Material Description

Silt

13.7

Date Sampled: 10/27/17

Clay

Source of Sample: B-56 Sample Number: S-2

% +3"

Depth: 2-3.3'

CDM Smith

Boston, Massachusetts

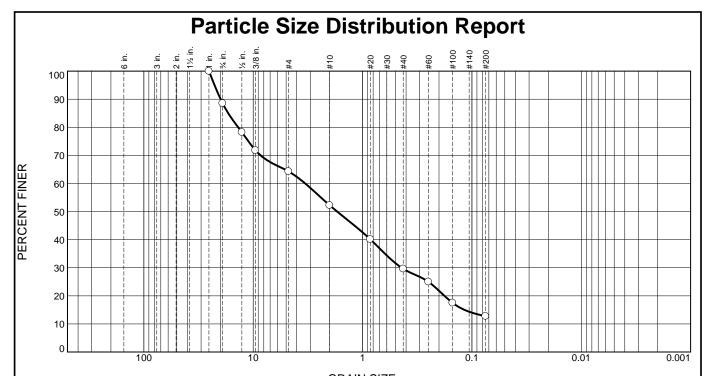
Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Project No: 101038.102170 **Figure**

CDM Smith


Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client: Massachusetts Water Resources Authority Weston Aqueduct Supply Main 3 Project Name: Tested By: MP MWRA line, MA Test Date: 12/14/2017 Project Location: Project Number: 101038-102170 Boring Number: B-56 Procedure: S-2 Temperature: 440° C Sample Number: Sample Depth (ft): 2-3.3 Sample Date: 10/27/2017

AS RECEIVED MOISTURE CONTENT	
Tin Mass (g)	126.66
Wet Mass of Sample & Tin (g)	215.45
Dry Mass of Sample & Tin (g)	208.00
Mass of Water (g)	7.45
Mass of Dry Soil (g)	81.34
Moisture Content (%)	9.2

ASH CONTENT						
Porcelain Dish Mass (g)	126.66					
Porcelain Dish + Oven Dried Soil (g)	208.00					
Mass of Oven Dried Soil (g)	81.34					
Mass of Dish & Burned Soil (g)	205.85					
Mass of Burned Soil (g)	79.19					
Mass of Organic Material (g)	2.15					
Ash Content (%)	97.4					
Organic Content (%)	2.6					

	GRAIN SIZE - mm.							
0/ - 211	% Gravel % Sand					% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	11.5	24.2	12.1	22.6	16.8	12.8		

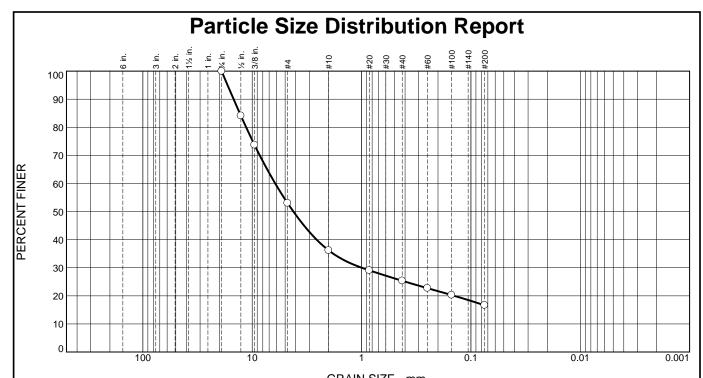
Test R	esults (ASTM I	0422 & ASTM D	1140)
Opening	pening Percent Spe		Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
.75"	88.5		
.5"	78.2		
.375"	71.8		
#4	64.3		
#10	52.2		
#20	40.1		
#40	29.6		
#60	25.0		
#100	17.5		
#200	12.8		

	<u>iviateriai Descrip</u>	<u> Mion</u>				
Gray silty sand wit	th gravel					
Δttc	erberg Limits (AST	'M D 4318)				
PL=	LL=	Pl=				
USCS (D 2487)=	SM Classificatio	<u>n</u> O (M 145)=				
D ₉₀ = 19.8714 D ₅₀ = 1.7080 D ₁₀ =	Coefficients D ₈₅ = 16.9275 D ₃₀ = 0.4404 C _u =	D ₆₀ = 3.3467 D ₁₅ = 0.1170 C _c =				
As received MC =	Remarks 10.1%					
Date Received: 1		P Tested: 12/14/17				
Checked By: 1	MP					
Title: 1	Title: Laboratory Manager					

(no specification provided)

Source of Sample: B-56 **Sample Number:** S-3

Depth: 11-13'


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/27/17

	GRAIN SIZE - mm.							
% Gravel % Sand					% Fines			
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	47.0	16.8	10.8	8.7	16.7		

PL=

Test Re	esults (ASTM D	422 & ASTM D	1140)		
Opening	Percent	Spec.*	Pass?		
Size	Finer	(Percent)	(X=Fail)		
3/4"	100.0				
1/2"	84.1				
3/8"	73.7				
#4	53.0				
#10	36.2				
#20	29.1				
#40	25.4				
#60	22.7				
#100	20.3				
#200	16.7				

Material Description

Dark-brown silty gravel with sand

Atterberg Limits (ASTM D 4318)

<u>Classification</u>

USCS (D 2487)= GM AASHTO (M 145)= A-1-b

Coefficients

Remarks

As received MC = 10.9%

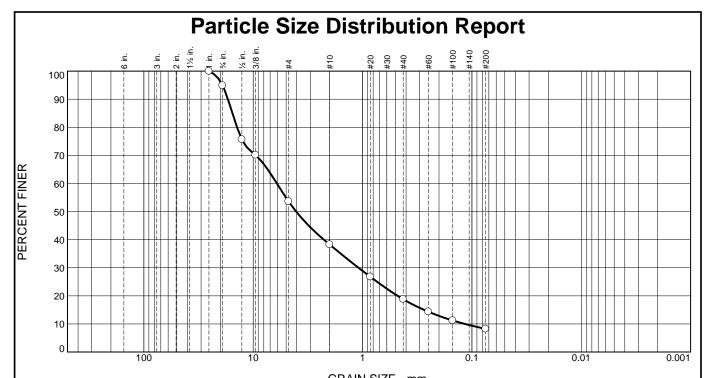
Tested By: GW Checked By: MP

Title: Laboratory Manager

(no specification provided)

CDM Smith

Source of Sample: B-57 Sample Number: S-3


Depth: 5-5.5

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/20/2017

GRAIN SIZE - mm.								
% Gravel			% Sand		% Fines			
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	5.1	41.3	15.3	19.5	10.6	8.2	

Test R	esults (ASTM [0422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
.75"	94.9		
.5"	75.7		
.375"	70.1		
#4	53.6		
#10	38.3		
#20	26.8		
#40	18.8		
#60	14.3		
#100	11.2		
#200	8.2		
*			

Brown well-graded gravel with silt and sand

Atterberg Limits (ASTM D 4318) LL= Pl=

PL=

Classification

USCS (D 2487)= GW-GM AASHTO (M 145)= A-1-a

Coefficients

 D90=
 17.0273
 D85=
 15.4805
 D60=
 6.0706

 D50=
 4.0469
 D30=
 1.0899
 D15=
 0.2736

 D10=
 0.1159
 Cu=
 52.37
 Cc=
 1.69

Remarks

As received MC = 5.1%

Date Received: 12/8/17 Date Tested: 12/14/17

Tested By: RZ
Checked By: MP

Title: Laboratory Manager

* (no specification provided)

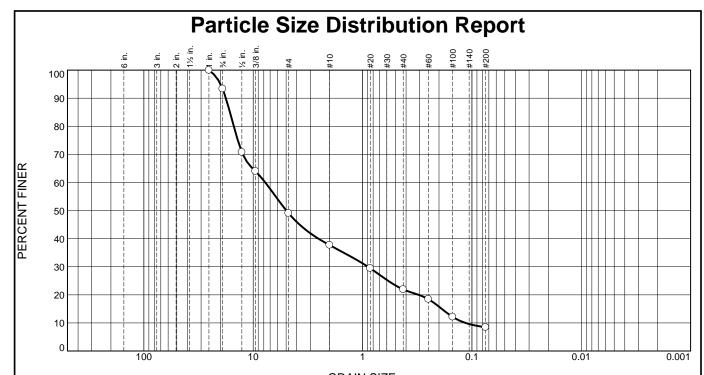
Source of Sample: B-58 Sample Number: S-V-1

Depth: 2-3'

Date Sampled: 9/28/17

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts

Project No: 101038.102170

<u>Figure</u>

GRAIN SIZE - mm.								
	0/ - 21	% G	ravel		% Sand		% Fines	
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	6.6	44.3	11.4	15.8	13.5	8.4	

PL=

Test F	Results (ASTM D	422 & ASTM D	1140)		
Opening	Percent	Spec.*	Pass?		
Size	Finer	(Percent)	(X=Fail)		
1"	100.0				
.75"	93.4				
.5"	70.8				
.375"	64.0				
#4	49.1				
#10	37.7				
#20	29.4				
#40	21.9				
#60	18.5				
#100	12.2				
#200	8.4				

Material Description

Dark brown poorly graded gravel with silt and sand

Atterberg Limits (ASTM D 4318)

LL= PI=

Classification

USCS (D 2487)= GP-GM AASHTO (M 145)= A-1-a

Coefficients

 D90=
 17.7748
 D85=
 16.3113
 D60=
 7.7587

 D50=
 4.9744
 D30=
 0.8940
 D15=
 0.1885

 D10=
 0.1145
 Cu=
 67.74
 Cc=
 0.90

Remarks

As received MC = 6.1%

Date Received: 12/8/17 Date Tested: 12/14/17

Tested By: RZ

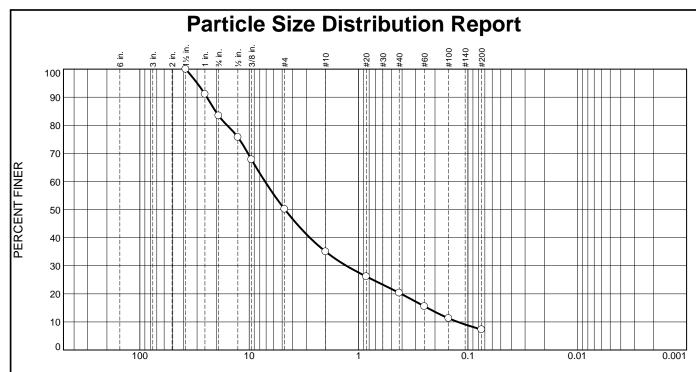
Checked By: MP

Title: Laboratory Manager

* (no specification provided)

CDM Smith

Source of Sample: B-59 Sample Number: S-V-2


Depth: 5-6'

Client: Massachusetts Water Resources Authority (MWRA)

roject: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 9/27/17

				(<u> GRAIN SIZE -</u>	mm.		
9/ .3"		% Gravel		% Sand			% Fines	
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	16.6	33.2	15.2	14 7	13.0	7.3	

Test F	Results (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1.5"	100.0		
1"	91.1		
.75"	83.4		
.5"	75.8		
.375"	67.8		
#4	50.2		
#10	35.0		
#20	26.2		
#40	20.3		
#60	15.6		
#100	11.3		
#200	7.3		

Gray well-graded gravel with silt and sand

Atterberg Limits (ASTM D 4318)
LL= PI=

PL=

Classification

USCS (D 2487)= GW-GM **AASHTO** (M 145)= A-1-a

Coefficients

D₉₀= 24.3942 **D₅₀=** 4.7120 **D₁₀=** 0.1238 D₆₀= 7.1742 D₁₅= 0.2351 C_c= 1.88 D₈₅= 20.3218 D₃₀= 1.2935 C_u= 57.96

Remarks

Date Sampled: 9/27/17

As received MC = 7.8%

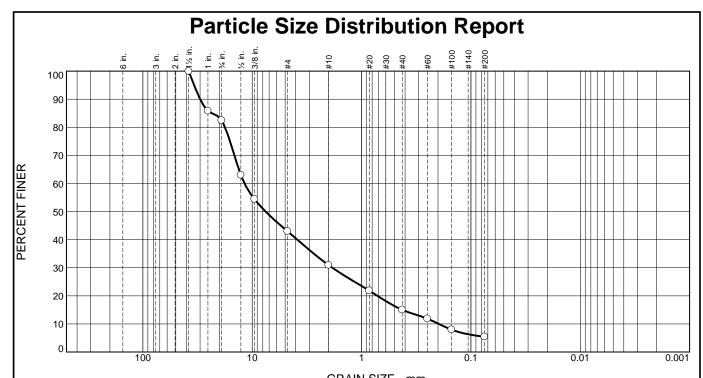
Date Received: 12/8/17 **Date Tested:** 12/14/17

Tested By: RZ Checked By: MP

Title: Laboratory Manager

Source of Sample: B-59 Sample Number: S-3

(no specification provided)


CDM Smith Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA **Figure**

Boston, Massachusetts Project No: 101038.102170

Depth: 14-16'

				(<u> - RAIN SIZE</u>	· mm.		
9/ .3"		% Gravel			% Sand		% Fines	
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	17.5	39.5	12.1	15.9	9.6	5.4	

Test R	esults (ASTM D	422 & ASTM D	1140)		
Opening	Percent	Spec.*	Pass?		
Size	Finer	(Percent)	(X=Fail)		
1.5"	100.0				
1"	85.8				
3/4"	82.5				
1/2"	63.0				
3/8"	54.4				
#4	43.0				
#10	30.9				
#20	21.8				
#40	15.0				
#60	11.9				
#100	8.0				
#200	5.4				

Dark gray well-graded gravel with silt and sand

Atterberg Limits (ASTM D 4318)
LL= PI=

PL=

<u>Classification</u>

USCS (D 2487)= GW-GM AASHTO (M 145)= A-1-a

Coefficients

 D90=
 29.9204
 D85=
 23.4335
 D60=
 11.7627

 D50=
 7.5401
 D30=
 1.8491
 D15=
 0.4234

 D10=
 0.1965
 Cu=
 59.86
 Cc=
 1.48

Remarks

As received MC = 6.8%

Date Received: 10/5/2017 **Date Tested:** 10/6/2017

Tested By: **GW**

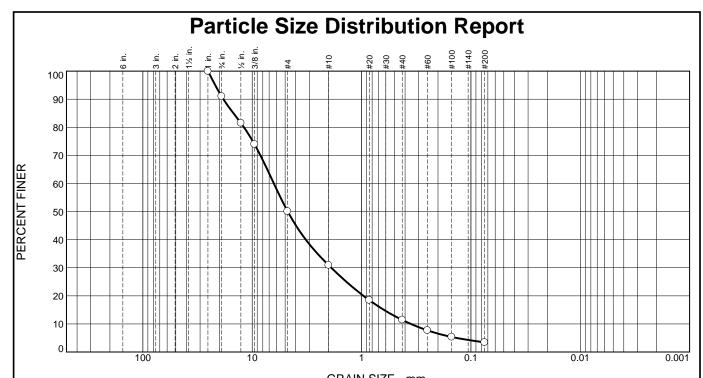
Checked By: MP

Title: Laboratory Manager

* (no specification provided)

CDM Smith

Source of Sample: B-60 **Sample Number:** S-2


Depth: 2-3.3

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/21/2017

GRAIN SIZE - mm.								
9/ .3"		% Gravel			% Sand		% Fines	
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	9.0	40.9	19.2	19.5	8.0	3.4	

Test R	esults (ASTM D		1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
3/4"	91.0		
1/2"	81.5		
3/8"	74.0		
#4	50.1		
#10	30.9		
#20	18.5		
#40	11.4		
#60	7.7		
#100	5.4		
#200	3.4		

Dark gray well-graded gravel with sand

Atterberg Limits (ASTM D 4318)

PL=

GW Classification USCS (D 2487)= **AASHTO (M 145)=** A-1-a

Coefficients

D₉₀= 18.3483 **D₅₀=** 4.7336 **D₁₀=** 0.3542 **D₆₀=** 6.3401 **D₁₅=** 0.6243 **C_c=** 1.60 **D₈₅=** 14.8403 D₃₀= 1.8930 C_u= 17.90

Remarks

As received MC = 12.4%

Date Received: 10/5/2017 **Date Tested:** 10/6/2017

Tested By: GW Checked By: MP

Title: Laboratory Manager

(no specification provided)

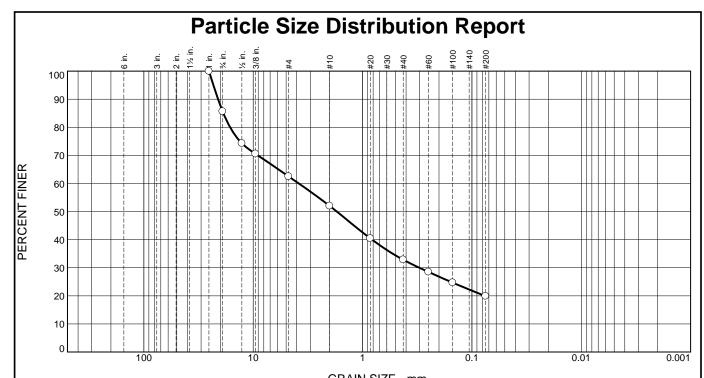
CDM Smith

Source of Sample: B-61 Sample Number: S-3

Depth: 4-6

Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)


Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Boston, Massachusetts

Project No: 101038.102170

Figure

Date Sampled: 9/21/2017

GRAIN SIZE - mm.								
% +3" % Gravel			% Sand		% Fines			
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	14.3	23.2	10.5	19.1	13.0	19.9	

Test Re	esults (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
3/4"	85.7		
1/2"	74.3		
3/8"	70.6		
#4	62.5		
#10	52.0		
#20	40.5		
#40	32.9		
#60	28.5		
#100	24.7		
#200	19.9		

Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= SM **AASHTO** (M 145)= A-1-b Coefficients **D₉₀=** 20.9614 **D₅₀=** 1.7201 **D₁₀= D₈₅=** 18.7504 **D₆₀=** 3.8309 D₃₀= 0.3024 C_u= D₁₅= C_C= Remarks As received MC = 18.4%**Date Received:** 10/5/2017 **Date Tested:** 10/6/2017 Tested By: GW

Material Description

(no specification provided)

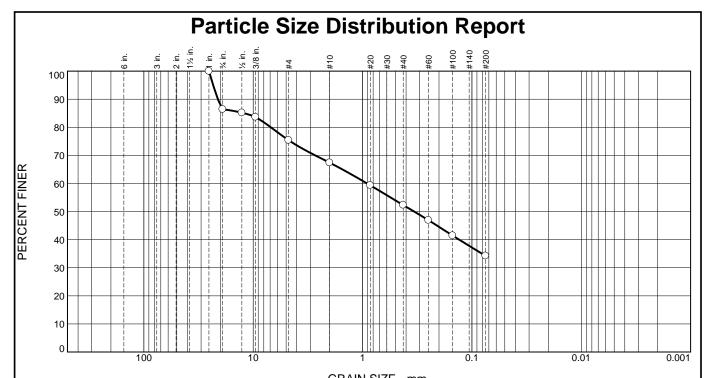
Source of Sample: B-63 Sample Number: S-3

Depth: 4-6

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Title: Laboratory Manager


Weston Aqueduct Supply Main 3 (WASM3)

Checked By: MP

Dark brown silty sand with gravel

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/20/2017

GRAIN SIZE - mm.							
0/ - 211	% Gravel			% Sand		% Fines	
% +3 "	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	13.6	11.0	8.0	15.1	18.1	34.2	

Test R	esults (ASTM D	6913 & ASTM D1140)			
Opening	Percent	Spec.*	Pass?		
Size	Finer	(Percent)	(X=Fail)		
1	100.0				
.75	86.4				
.5	85.2				
.375	83.7				
#4	75.4				
#10	67.4				
#20	59.3				
#40	52.3				
#60	46.9				
#100	41.5				
#200	34.2				
*					

Gray-brown silty sand with gravel

Atterberg Limits (ASTM D 4318)

PL=

Classification

USCS (D 2487)= SM

AASHTO (M 145)= A-2-4(0)

Coefficients

D₉₀= 21.0374 D₅₀= 0.3373 D₁₀= **D₈₅=** 12.1285 **D₆₀=** 0.9079 D₃₀= D₁₅= C_C=

Remarks

As recieved MC = 10.7%

Date Tested: 2/1/18

Date Received: 1/30/18 Tested By: SB

Date Sampled: 11/20/17

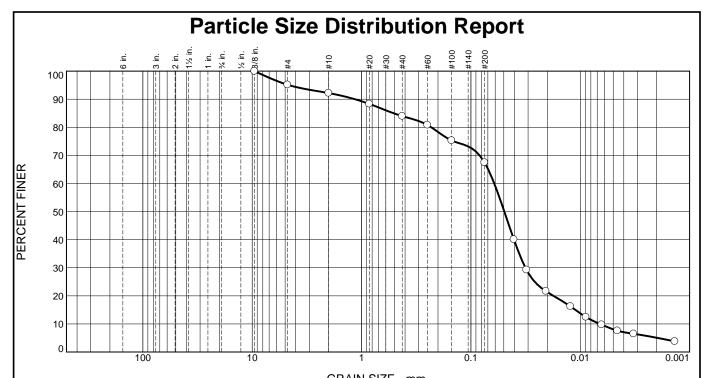
Checked By: MP

Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-64 Sample Number: S-1

Client: Massachusetts Water Resources Authority (MWRA)


Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts Project No: 101038.102170

CDM Smith

Depth: 6-8'

GRAIN SIZE - mm.							
% +3"	% G	% Gravel			I	% Fines	
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	4.8	3.0	8.2	16.5	59.4	8.1

Brown sandy silt

Test R	esults (ASTM D	422 & ASTM D 1140)				
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
3/8"	100.0					
#4	95.2					
#10	92.2					
#20	88.3					
#40	84.0					
#60	80.8					
#100	75.3					
#200	67.5					
0.0404 mm.	40.1					
0.0310 mm.	29.3					
0.0206 mm.	21.7					
0.0123 mm.	16.3					
0.0089 mm.	12.5					
0.0064 mm.	9.8					
0.0046 mm.	7.6					
0.0033 mm.	6.5					
0.0014 mm.	3.8					

Date Tested: 10/10/2017

Date Sampled: 9/19/2017

Material Description

* (no specification provided)

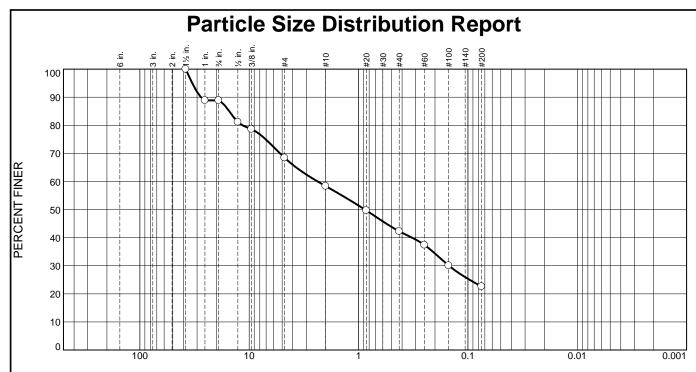
Source of Sample: B-65 Sample Number: S-3

Depth: 4-6'

Client: Massachusetts Water Pascurges Authority (MWPA)

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Received: 10/5/2017

Title: Laboratory Manager

Tested By: RZ Checked By: MP

GRAIN SIZE - mm.								
0/ - 21	% Gravel			% Sand		% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	11.1	20.4	10.1	16.1	19.7	22.6		

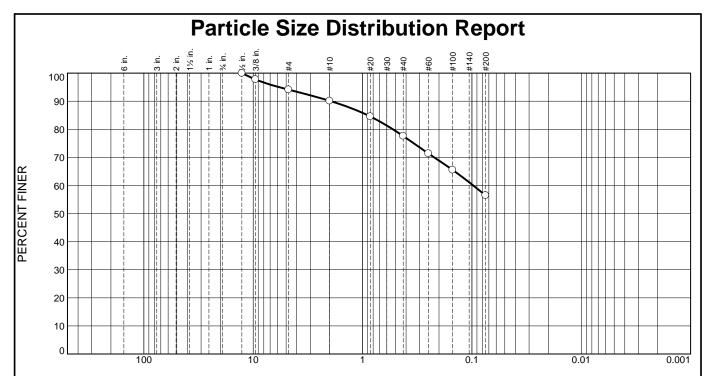
Test Re	esults (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1.5"	100.0		
1"	88.9		
3/4"	88.9		
1/2"	81.2		
3/8"	78.6		
#4	68.5		
#10	58.4		
#20	49.7		
#40	42.3		
#60	37.4		
#100	30.1		
#200	22.6		

Material Description							
Dark brown silty sand with gravel							
Λ++	erberg Limits (AS	TM D 4318)					
PL=	LL=	PI=					
USCS (D 2487)=	SM Classification	<u>on</u> FO (M 145)= A-1-b					
D ₉₀ = 27.6426 D ₅₀ = 0.8741 D ₁₀ =	Coefficient D ₈₅ = 15.2143 D ₃₀ = 0.1489 C _u =	D ₆₀ = 2.3665 D ₁₅ = C _c =					
	Remarks						
As received MC =	= 9.7%						
Date Received:	10/5/2017 Dat	te Tested: 10/6/2017					
Tested By:	GW						
Checked By:	MP						
Title:	Laboratory Manager	<u> </u>					

(no specification provided)

Source of Sample: B-65 Sample Number: S-5

Depth: 8-8.5'


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/19/2017

	GRAIN SIZE - mm.							
Γ	0/ - 21	% Gr	ravel	% Sand			% Fines	
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	5.9	4.0	12.5	21.1	56.5	

Test R	esults (ASTM D	6913 & ASTM I	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.5	100.0		
.375	97.8		
#4	94.1		
#10	90.1		
#20	84.6		
#40	77.6		
#60	71.4		
#100	65.5		
#200	56.5		
*	-: <i>C</i> :: 1-		

Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= ML**AASHTO** (M 145)= A-4(0)Coefficients **D₉₀=** 1.9510 **D₆₀=** 0.0973 **D₈₅=** 0.8966 D₅₀= D₁₀= D₃₀= D₁₅= C_C= Remarks As recieved MC = 48.2%

Date Tested: 2/1/18

Date Sampled: 9/26/17

Material Description

Dark brown sandy silt with organics

(no specification provided)

Source of Sample: B-66 **Depth:** 6-8' Sample Number: S-1

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Title: Laboratory Manager

Weston Aqueduct Supply Main 3 (WASM3)

Date Received: 1/30/18

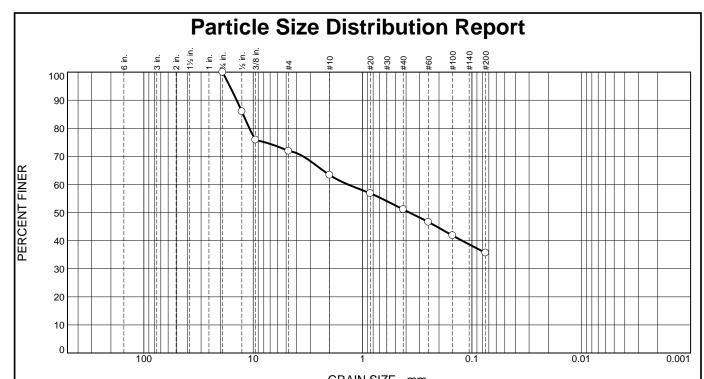
Tested By: SB Checked By: MP

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Project No: 101038.102170

Boston, Massachusetts

CDM Smith


Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client: Massachusetts Water Resources Authority Weston Aqueduct Supply Main 3 Tested By: Project Name: MWRA line, MA Test Date: 1/31/2017 Project Location: Project Number: 101038-102170 Boring Number: B-66 Procedure: Temperature: 440° C S-1 Sample Number: Sample Depth (ft): 6-8 Sample Date: 9/26/2017

AS RECEIVED MOISTURE CONTENT	
Tin Mass (g)	105.32
Wet Mass of Sample & Tin (g)	165.77
Dry Mass of Sample & Tin (g)	146.93
Mass of Water (g)	18.84
Mass of Dry Soil (g)	41.61
Moisture Content (%)	45.3

ASH CONTENT	
Porcelain Dish Mass (g)	105.32
Porcelain Dish + Oven Dried Soil (g)	146.93
Mass of Oven Dried Soil (g)	41.61
Mass of Dish & Burned Soil (g)	144.11
Mass of Burned Soil (g)	38.79
Mass of Organic Material (g)	2.82
Ash Content (%)	93.2
Organic Content (%)	6.8

					<u> - RAIN SIZE</u>	mm.		
	% +3"	% G	% Gravel %			% Sand % Fines		
		Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	28.1	8.5	12.3	15.4	35.7	

Test Results (ASTM D6913 & ASTM D1140)								
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X=Fail)					
.75	100.0							
.5	86.0							
.375	75.9							
#4	71.9							
#10	63.4							
#20	56.8							
#40	51.1							
#60	46.6							
#100	41.8							
#200	35.7							

Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= SM **AASHTO** (M 145)= A-4(0)Coefficients **D₉₀=** 14.1715 **D₅₀=** 0.3720 **D₁₀= D₈₅=** 12.3775 **D₆₀=** 1.3602 D₃₀= D₁₅= C_C= Remarks As recieved MC = 34.0%

Material Description

Brown silty sand with gravel and organics

Date Received: 1/30/18 **Date Tested:** 2/1/18 Tested By: SB Checked By: MP Title: Laboratory Manager

(no specification provided)

Source of Sample: B-67 Sample Number: S-1

Depth: 6-7.1

Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

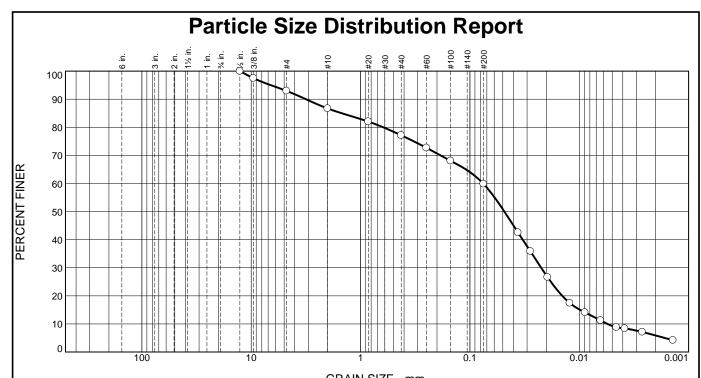
Date Sampled: 10/3/17

Project No: 101038.102170

CDM Smith

Boston, Massachusetts

CDM Smith


Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client: Massachusetts Water Resources Authority Tested By: Project Name: Weston Aqueduct Supply Main 3 MWRA line, MA Test Date: 1/31/2017 Project Location: Project Number: 101038-102170 Boring Number: B-67 Procedure: S-1 Temperature: 440° C Sample Number: 6-7.1 Sample Depth (ft): Sample Date: 10/3/2017

AS RECEIVED MOISTURE CONTENT	
Tin Mass (g)	90.33
Wet Mass of Sample & Tin (g)	154.16
Dry Mass of Sample & Tin (g)	137.96
Mass of Water (g)	16.20
Mass of Dry Soil (g)	47.63
Moisture Content (%)	34.0

ASH CONTENT					
Porcelain Dish Mass (g)	90.33				
Porcelain Dish + Oven Dried Soil (g)	137.96				
Mass of Oven Dried Soil (g)	47.63				
Mass of Dish & Burned Soil (g)	135.14				
Mass of Burned Soil (g)	44.81				
Mass of Organic Material (g)	2.82				
Ash Content (%)	94.1				
Organic Content (%)	5.9				

				(<u>GRAIN SIZE -</u>	· mm.		
0/ 13"		% G	ravel	vel % Sand			% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
	0.0	0.0	7.0	6.3	9.5	17.4	50.5	9.3

Brown sandy silt

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.5"	100.0		
.375"	97.5		
#4	93.0		
#10	86.7		
#20	82.0		
#40	77.2		
#60	72.7		
#100	68.1		
#200	59.8		
0.0363 mm.	42.5		
0.0280 mm.	35.9		
0.0195 mm.	26.6		
0.0122 mm.	17.4		
0.0089 mm.	14.1		
0.0064 mm.	11.3		
0.0046 mm.	8.8		
0.0038 mm.	8.4		
0.0027 mm.	7.1		
0.0014 mm.	4.2		

Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= ML**AASHTO** (M 145)= A-4(0)Coefficients **D₆₀=** 0.0756 **D₁₅=** 0.0098 **C_c=** 1.19 **D₉₀=** 3.1621 **D₅₀=** 0.0484 **D₁₀=** 0.0055 D₈₅= 1.4866 D₃₀= 0.0223 C_u= 13.69 Remarks As received MC = 13.2%Date Received: 1/31/18 **Date Tested:** 2/2/18 Tested By: MP/SB Checked By: MP

Material Description

(no specification provided)

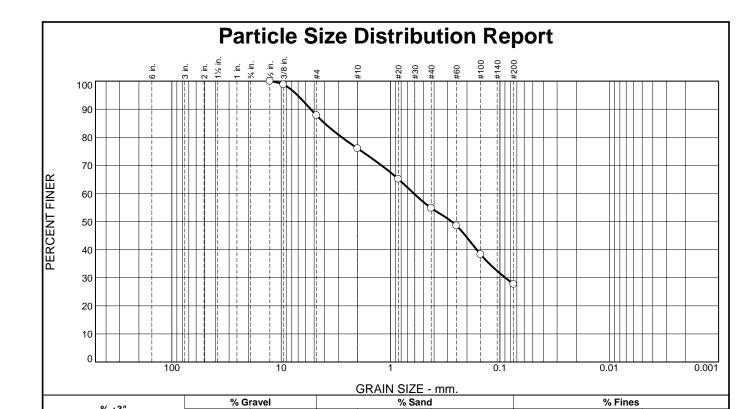
Source of Sample: B-68 Sample Number: S-2

Depth: 8-10'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Title: Laboratory Manager


Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 10/2/17

Project No: 101038.102170

Boston, Massachusetts

		Coarse	Fine	Coarse	Medium	Fine	Silt	Cla
0.0	ı	0.0	12.2	11.8	21.2	27.1	27.7	
Test R	Results (ASTI	/I D 422 & AS	TM D 1140)			Mater	ial Description	
Opening	Percent	Spec.	* Pass	?	Brown silty			
Size	Finer	(Percei	nt) (X=Fa	ail)				
1/2"	100.0							
3/8"	98.8					Atterbera L	imits (ASTM D 4318)	
#4	87.8				PL=	LL=	PI=	
#10	76.0							
#20	65.1						assification	1 2 1(0)
#40	54.8				USCS (D 2	2 487)= SM	AASHTO (M 145)=	A-2-4(0)
#60	48.5					C	oefficients	
#100	38.3				D ₉₀ = 5.37		4.0079 D₆₀= 0.	.6123
#200	27.7				D ₅₀ = 0.27	62 D 30=	0.0891 D₁₅=	

D₅₀= 0.2762 D₁₀= **D₃₀=** 0.0891 Remarks

Clay

As received MC = 11.5%

Date Received: 10/5/2017 **Date Tested:** 10/6/2017 Tested By: GW

Checked By: MP

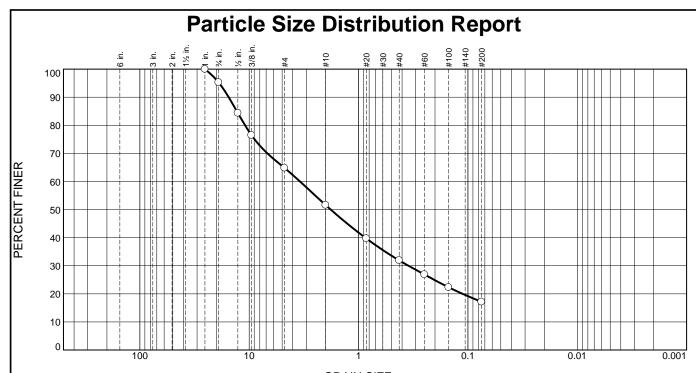
Title: Laboratory Manager

(no specification provided)

% +3"

Source of Sample: B-69 Sample Number: S-3

Depth: 4-6


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/19/2017

			(<u>GRAIN SIZE -</u>	mm.		
0/ - 211	% Gravel % Sand				% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	47	30.5	13.2	19.7	14.8	17.1	

Test Results (ASTM D 422 & ASTM D 1140)								
Opening	Spec.*	Pass?						
Size	Finer	(Percent)	(X=Fail)					
1"	100.0							
3/4"	95.3							
1/2"	84.4							
3/8"	76.5							
#4	64.8							
#10	51.6							
#20	39.7							
#40	31.9							
#60	26.9							
#100	22.3							
#200	17.1							
*								

Redish brown silty sand with gravel **Atterberg Limits (ASTM D 4318)** PL= Classification USCS (D 2487)= SM **AASHTO** (M 145)= A-1-b Coefficients **D₉₀=** 15.4074 **D₅₀=** 1.7983 **D₁₀= D₈₅=** 12.9788 **D₆₀=** 3.4332 D₃₀= 0.3496 C_u= D₁₅= C_C= Remarks As received MC = 8.0%**Date Received:** 10/5/2017 **Date Tested:** 10/6/2017 Tested By: GW Checked By: MP Title: Laboratory Manager

Material Description

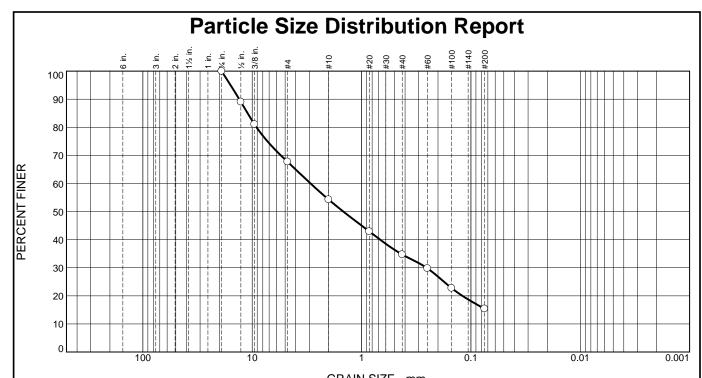
* (no specification provided)

Source of Sample: B-70 Sample Number: S-2 **Depth:** 2-4

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)


Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Boston, Massachusetts

Project No: 101038.102170

Figure

Date Sampled: 9/18/2017

	%+3" Coarse Fine Coarse Medium Fine Silt						
0/ - 2	% G	ravel		% Sand	i	% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	32.3	13.4	19.6	19.3	15.4	

Test R	esults (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/4"	100.0		
1/2"	89.0		
3/8"	81.1		
#4	67.7		
#10	54.3		
#20	42.9		
#40	34.7		
#60	29.8		
#100	22.7		
#200	15.4		
*			

Dark gray silty sand with gravel

Atterberg Limits (ASTM D 4318)

PL=

Classification

USCS (D 2487)= SM AASHTO (M 145)= A-1-b

Coefficients

Remarks

As received MC = 8.8%

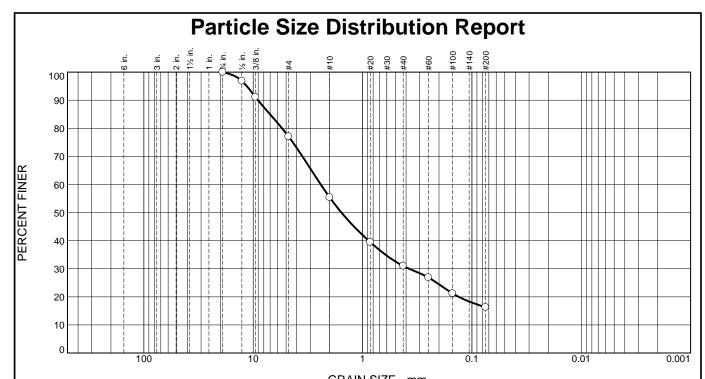
Tested By: **GW**

Checked By: MP

Title: Laboratory Manager

* (no specification provided)

CDM Smith


Source of Sample: B-70 Sample Number: S-4 Depth: 6-8

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/18/2017

	GRAIN SIZE - mm.							
0/ .2"	% G	Gravel % Sand		% Fines				
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	22.9	21.7	24.4	14.7	16.3		

Test Results (ASTM D 422 & ASTM D 1140)									
Opening Percent Spec.* P									
Size	Finer	(Percent)	(X=Fail)						
3/4"	100.0								
1/2"	96.9								
3/8"	91.1								
#4	77.1								
#10	55.4								
#20	39.5								
#40	31.0								
#60	26.9								
#100	21.2								
#200	16.3								

Dark brown silty sand with gravel

Atterberg Limits (ASTM D 4318) PL=

Classification USCS (D 2487)= SM **AASHTO** (M 145)= A-1-b

Coefficients

D₈₅= 7.0232 D₃₀= 0.3747 C_u= **D₉₀=** 9.0409 **D₆₀=** 2.4129 D₅₀= 1.5604 D₁₀= D₁₅= C_C=

Remarks

As received MC = 15.4%

Date Received: 10/5/2017 **Date Tested:** 10/6/2017

Tested By: GW Checked By: MP

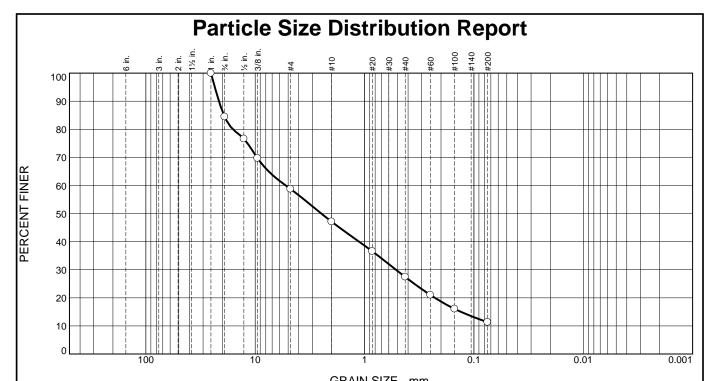
Title: Laboratory Manager

(no specification provided)

Depth: 14-15.5

Source of Sample: B-71 Sample Number: S-4

Client: Massachusetts Water Resources Authority (MWRA)


Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/25/2017

Boston, Massachusetts Project No: 101038.102170 **Figure**

CDM Smith

GRAIN SIZE - IIIII.							
% +3"	% Gravel		% Sand			% Fines	
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	15.5	25.8	11.6	19.7	16.1	11.3	

Test Results (ASTM D 422 & ASTM D 1140)					
Opening Percent		Spec.*	Pass?		
Size	Finer	(Percent)	(X=Fail)		
1"	100.0				
3/4"	84.5				
1/2"	76.6				
3/8"	69.7				
#4	58.7				
#10	47.1				
#20	36.6				
#40	27.4				
#60	21.0				
#100	16.1				
#200	11.3				

Brown gray poorly graded sand with silt and gravel

Atterberg Limits (ASTM D 4318)
LL= PI=

PL=

Classification

USCS (D 2487)= SP-SM AASHTO (M 145)= A-1-a

Coefficients

D₉₀= 21.4646 D₈₅= 19.3109 D₆₀= 5.2564 D₅₀= 2.4840 D₃₀= 0.5161 D₁₅= 0.1312 C_u= C_c=

Remarks

As received MC = 6.8%

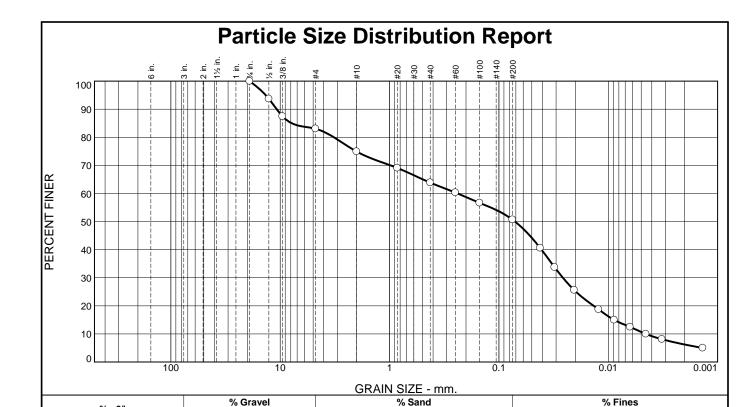
Date Received: 10/5/2017 **Date Tested:** 10/6/2017

Tested By: $\underline{\mathrm{GW}}$ Checked By: $\underline{\mathrm{MP}}$

Title: Laboratory Manager

* (no specification provided)

CDM Smith


Source of Sample: B-71 Sample Number: V-1 **Depth:** 1-5

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/22/2017

Test R				
Opening	Percent	Spec.*	Pass?	Brown sand
Size	Finer	(Percent)	(X=Fail)	
3/4"	100.0			
1/2"	93.7			
3/8"	87.4			PL=
#4	83.1			
#10	74.9			
#20	69.1			USCS (D 24
#40	63.9			
#60	60.3			Don= 10.77
#100	56.6			D₉₀= 10.77 D₅₀= 0.071
#200	50.7			D ₁₀ = 0.004
0.0419 mm.	40.6			
0.0309 mm.	33.7			, , ,
0.0205 mm.	25.6			As received
0.0123 mm.	18.7			
0.0088 mm.	15.0			
0.0063 mm.	12.5			Date Recei
0.0045 mm.	10.0			Date Necei

Coarse

0.0

Fine

16.9

Coarse

8.2

<u>Materi</u>	al D	escr	ip	<u>tion</u>	
			•		

dy silt with gravel

Fine

13.2

Atterberg Limits (ASTM D 4318)

Medium

11.0

Classification

Silt

40.0

Clay

10.7

487)= ML**AASHTO** (M 145)= A-4(0)

Coefficients

D₆₀= 0.2387 **D₁₅=** 0.0088 **C_c=** 0.62 D₈₅= 7.8514 D₃₀= 0.0260 C_u= 52.67 7774 112 145

Remarks

d MC = 23.9%

eived: 10/5/2017 **Date Tested:** 10/10/2017

Tested By: RZ

Checked By: MP

Title: Laboratory Manager

(no specification provided)

8.1

5.0

Source of Sample: B-72 Sample Number: S-2

0.0032 mm.

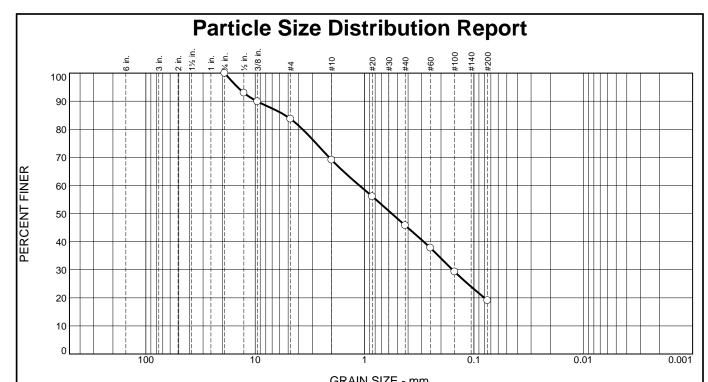
0.0014 mm.

% +3"

0.0

Depth: 2-4'

Date Sampled: 9/15/2017 Client: Massachusetts Water Resources Authority (MWRA)


Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Boston, Massachusetts Project No: 101038.102170

Figure

CDM Smith

GRAIN SIZE - IIIII.								
0/ - 211	% Gravel % Sand % Fines		% Sand					
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	16.3	14.6	23.3	26.7	19.1		

Test Re	esults (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/4"	100.0		
1/2"	93.0		
3/8"	89.9		
#4	83.7		
#10	69.1		
#20	56.1		
#40	45.8		
#60	37.8		
#100	29.3		
#200	19.1		

Brown silty sand w		<u>Descriptio</u>							
Drown sinty saint w	ith gravel	Brown silty sand with gravel							
Atte PL=	rberg Limi	ts (ASTM I	<u>) 4318)</u> Pl=						
·			· -						
USCS (D 2487)=		<u>ification</u> AASHTO (N	1 145)= A-1-b						
	Coef	ficients							
D₉₀= 9.6599	D₈₅= 5.3	292	D₆₀= 1.1139						
D ₅₀ = 0.5643 D ₁₀ =	D ₃₀ = 0.1	800	D ₁₅ = C _c =						
10	4		-0						
As received MC =		marks							
As received ivic =	0.270								
Date Received: 1	0/5/2017	Date Te	sted: 10/6/2017						
Tested By: (GW								
Checked By: N									
-									
Title: Laboratory Manager									

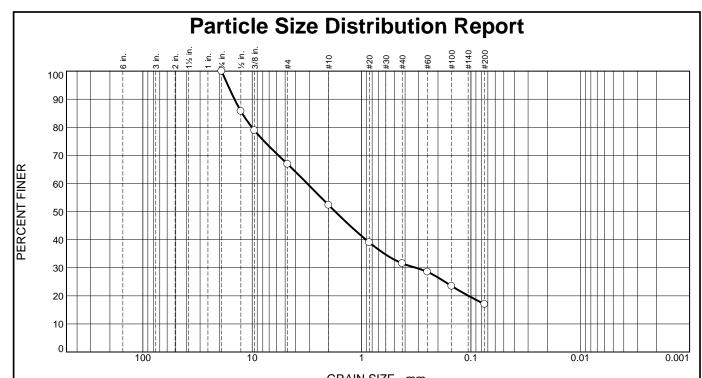
(no specification provided)

Source of Sample: B-73 Sample Number: S-2 **Depth: 2-4**

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)


Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Boston, Massachusetts

Project No: 101038.102170

Figure

Date Sampled: 9/15/2017

%+3" Coarse Fine Coarse Medium Fine Silt								
	0/ - 2	% G	ravel		% Sand	i	% Fines	
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	33.1	14.6	20.7	14.6	17.0	

Test R	Test Results (ASTM D 422 & ASTM D 1140)									
Opening	Percent	Spec.*	Pass?							
Size	Size Finer		(X=Fail)							
3/4"	100.0									
1/2"	85.7									
3/8"	78.9									
#4	66.9									
#10	52.3									
#20	39.0									
#40	31.6									
#60	28.5									
#100	23.5									
#200	17.0									
*										

Brown gray silty sand with gravel **Atterberg Limits (ASTM D 4318)** PL= Classification USCS (D 2487)= SM **AASHTO (M 145)=** A-1-b Coefficients D₉₀= 14.5261 D₅₀= 1.7423 D₁₀= **D₈₅=** 12.3723 **D₆₀=** 3.1422 D₃₀= 0.3200 C_u= D₁₅= C_C= Remarks As received MC = 9.5%**Date Received:** 10/5/2017 **Date Tested:** 10/6/2017 Tested By: GW Checked By: MP Title: Laboratory Manager

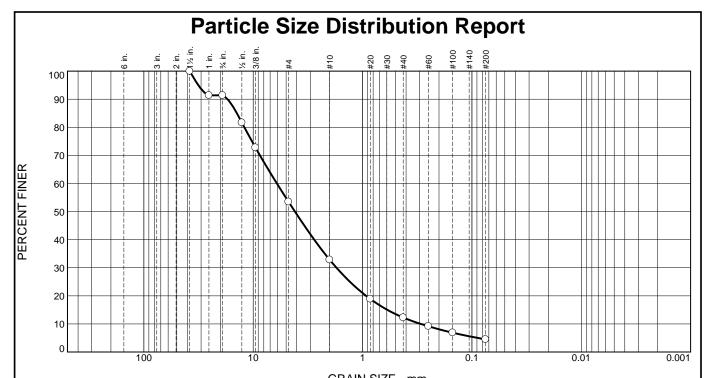
Material Description

* (no specification provided)

Source of Sample: B-74 Sample Number: S-1 **Depth:** 0.5-1.7

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Boston, Massachusetts Project No: 101038.102170

Figure

Date Sampled: 9/14/2017

GRAIN SIZE - mm.								
0/ - 211	% Gı	avel % San			% Sand % Fines			
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	8.6	37.9	20.7	20.5	7.8	4.5		

Test Results (ASTM D 422 & ASTM D 1140)									
Opening	Percent	Spec.*	Pass?						
Size	Finer	(Percent)	(X=Fail)						
1.5"	100.0								
1"	91.4								
3/4"	91.4								
1/2"	81.7								
3/8"	72.8								
#4	53.5								
#10	32.8								
#20	18.9								
#40	12.3								
#60	9.2								
#100	6.9								
#200	4.5								

Atterberg Limits (ASTM D 4318) PL= LL= Pl= Classification USCS (D 2487)= SW AASHTO (M 145)= A-1-a Coefficients D90= 17.1353 D85= 14.1094 D60= 6.0734 D50= 4.1535 D30= 1.7322 D15= 0.5927 D10= 0.2936 Cu= 20.69 Cc= 1.68 Remarks As received MC = 8.3% Date Received: 10/5/2017 Date Tested: 10/6/2017

Material Description

Dark-gray well-graded sand with gravel

(no specification provided)

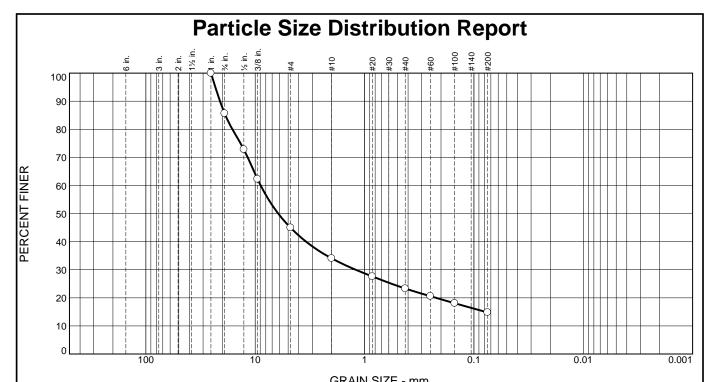
Source of Sample: B-74 Sample Number: S-5 **Depth:** 8-9.3

Client: Massachusetts Water Resources Authority (MWRA)

Tested By: GW Checked By: MP

ect: Weston Aqueduct Supply Main 3 (WASM3)

Title: Laboratory Manager


Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/14/2017

Project No: 101038.102170 Figure

CDM Smith

Boston, Massachusetts

	GRAIN SIZE - IIIII.							
% +3"	% G	% Gravel % Sand		% Sand		% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	14.4	40.6	10.9	10.8	8.5	14.8		

Test Re	esults (ASTM D	6913 & ASTM I	D1140)
Opening Percent		Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
.75"	85.6		
.5"	72.8		
.375"	62.3		
#4	45.0		
#10	34.1		
#20	27.6		
#40	23.3		
#60	20.6		
#100	18.1		
#200	14.8		

	Material Description							
Brown silty gravel	Brown silty gravel with sand							
Λ++	erberg Limits (A	A STM D /318)						
PL=	LL=	PI=						
USCS (D 2487)=	Classifica	ation SHTO (M 145)=	Δ _{-1-a}					
0000 (D 2401)=		` '	1-1-4					
D ₉₀ = 20.9938 D ₅₀ = 6.1619 D ₁₀ =	Coefficie D ₈₅ = 18.7445 D ₃₀ = 1.2043 C _u =		130 779					
	Remark	ks						
As received MC =	14.0%							
Date Received:	1/31/18	Date Tested: 2/	/5/18					
Tested By:	MP/SB							
Checked By:	MP							
Title:]	Title: Laboratory Manager							

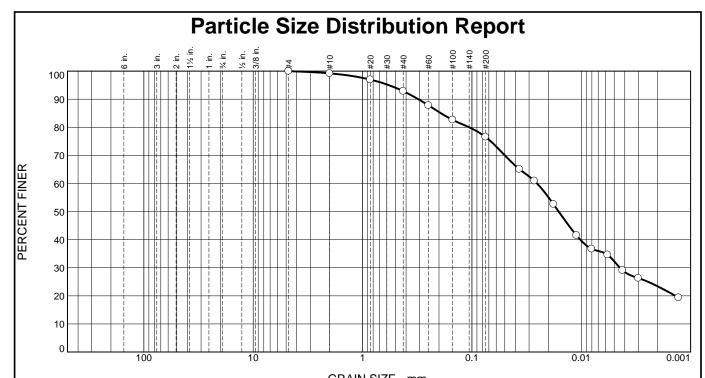
(no specification provided)

Source of Sample: B-75A Sample Number: S-1

Depth: 6-8'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 11/15/18

Boston, Massachusetts

Project No: 101038.102170

	GRAIN SIZE - mm.								
9/ .3"	0/ - 211	% G	Gravel % Sand		I	% Fines			
	% +3 "	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
	0.0	0.0	0.0	0.8	6.3	16.3	44.3	32.3	

Test R	esults (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
#4	100.0		
#10	99.2		
#20	97.0		
#40	92.9		
#60	87.8		
#100	82.7		
#200	76.6		
0.0368 mm.	65.1		
0.0269 mm.	61.0		
0.0180 mm.	52.6		
0.0111 mm.	41.6		
0.0080 mm.	36.7		
0.0057 mm.	34.6		
0.0042 mm.	29.1		
0.0030 mm.	26.3		
0.0013 mm.	19.4		

Brown lean clay with sand

Atterberg Limits (ASTM D 4318)

PL= LL= PI=

Coefficients

D₉₀= 0.3091 D₈₅= 0.1917 D₆₀= 0.0254
D₅₀= 0.0161 D₃₀= 0.0044 D₁₅=
D₁₀= C_u= C_c=

Remarks

As received MC = 20.4%

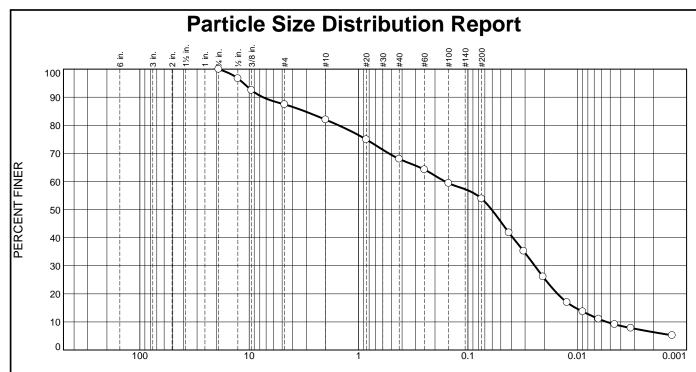
Tested By: RZ

Checked By: MP

Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-76 Sample Number: S-2 Depth: 2-4'


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/13/2017

			(<u> GRAIN SIZE -</u>	mm.		
0/ - 211	% Gı	ravel		% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	12.6	5.4	14 0	14 1	44.3	9.6

Dark brown sandy silt

Test R	esults (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/4"	100.0		
1/2"	96.7		
3/8"	92.5		
#4	87.4		
#10	82.0		
#20	75.0		
#40	68.0		
#60	64.2		
#100	59.4		
#200	53.9		
0.0421 mm.	41.8		
0.0310 mm.	35.2		
0.0206 mm.	26.1		
0.0124 mm.	17.0		
0.0089 mm.	13.7		
0.0064 mm.	11.1		
0.0046 mm.	9.1		
0.0032 mm.	7.8		
0.0014 mm.	5.2		

Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= ML**AASHTO** (M 145)= A-4(0)Coefficients **D₉₀=** 7.5058 **D₅₀=** 0.0607 **D₁₀=** 0.0054 D₈₅= 3.1003 D₃₀= 0.0245 C_u= 30.12 **D₆₀=** 0.1618 D₁₅= 0.0104 C_c= 0.69 Remarks As received MC = 40.9%**Date Received:** 10/5/2017 **Date Tested:** 10/10/2017 Tested By: RZ Checked By: MP

Material Description

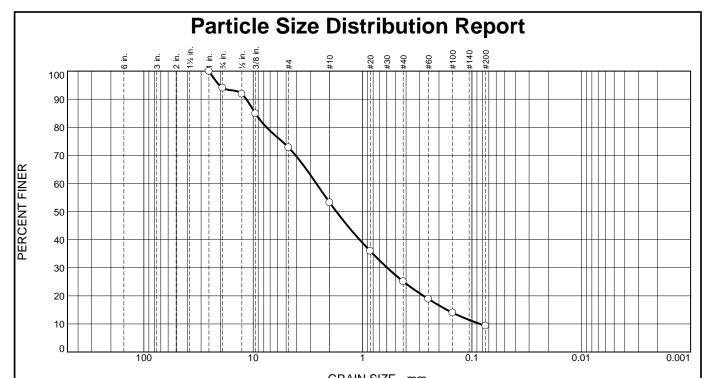
(no specification provided)

Source of Sample: B-77

Depth: 2-4'

Sample Number: S-2

CDM Smith


Client: Massachusetts Water Resources Authority (MWRA)

Title: Laboratory Manager

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/11/2017

			(<u>GRAIN SIZE -</u>	mm.		
0/ - 21	% G	ravel		% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	6.0	21.2	19.6	28.1	15.8	9.3	

Test Re	esults (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
3/4"	94.0		
1/2"	91.9		
3/8"	84.9		
#4	72.8		
#10	53.2		
#20	35.9		
#40	25.1		
#60	18.9		
#100	14.0		
#200	9.3		

Dark brown well-graded sand with silt and gravel

Atterberg Limits (ASTM D 4318) LL= PI=

PL=

 $\begin{array}{ccc} & & & & & \\ \text{USCS (D 2487)=} & & \text{SW-SM} & & \text{AASHTO (M 145)=} & & \text{A-1-b} \end{array}$

Coefficients

D₉₀= 11.5533 **D₅₀=** 1.7374 **D₁₀=** 0.0843 **D₆₀=** 2.6478 **D₁₅=** 0.1690 **C_c=** 1.59 D₈₅= 9.5728 D₃₀= 0.5951 C_u= 31.41

Remarks

Date Tested: 10/9/2017

Date Sampled: 9/13/2017

As received MC = 13.5%

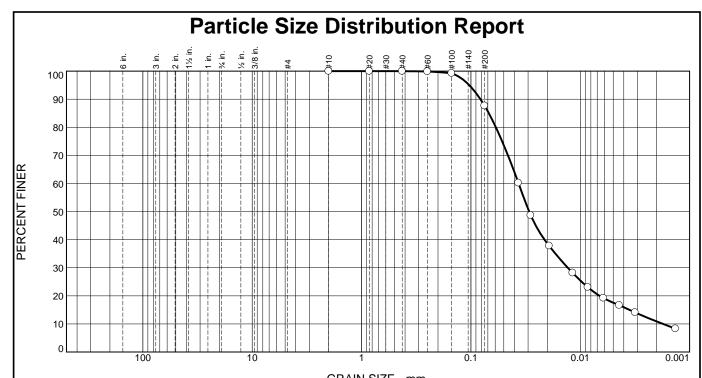
Date Received: 10/5/2017 Tested By: RZ

Checked By: MP

Title: Laboratory Manager

* (no specification provided)

CDM Smith


Source of Sample: B-78 Sample Number: S-2

Depth: 2-4

Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

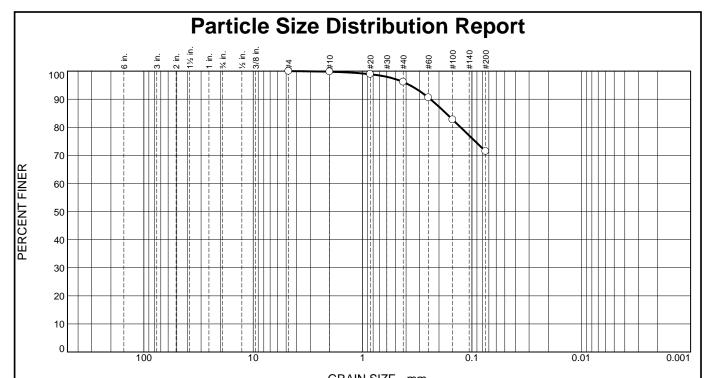
				<u>GRAIN SIZE :</u>	· mm.		
0/ - 2	% G	ravel		% Sand	i	% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.0	0.0	12.3	70.1	17.6

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
#10	100.0		
#20	100.0		
#40	100.0		
#60	99.9		
#100	99.3		
#200	87.7		
0.0368 mm.	60.2		
0.0284 mm.	48.7		
0.0193 mm.	37.8		
0.0117 mm.	28.2		
0.0085 mm.	23.1		
0.0061 mm.	19.2		
0.0044 mm.	16.7		
0.0032 mm.	14.1		
0.0013 mm.	8.3		

Material Description Brown silt **Atterberg Limits (ASTM D 4318)** PL= Classification USCS (D 2487)= ML**AASHTO (M 145)=** A-4(0) Coefficients D₆₀= 0.0366 D₁₅= 0.0035 C_c= 2.64 D₉₀= 0.0818 D₅₀= 0.0293 D₁₀= 0.0017 D₈₅= 0.0686 D₃₀= 0.0130 C_u= 20.94 Remarks As received MC = 21.8%**Date Received:** 10/5/2017 **Date Tested:** 10/10/2017 Tested By: RZ Checked By: MP Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-78 Sample Number: S-5 **Depth:** 8-10'


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/13/2017

				<u>GRAIN SIZE -</u>	· mm.		
0/ - 2	% G	ravel		% Sand	I	% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.2	3.7	24.6	71.5	

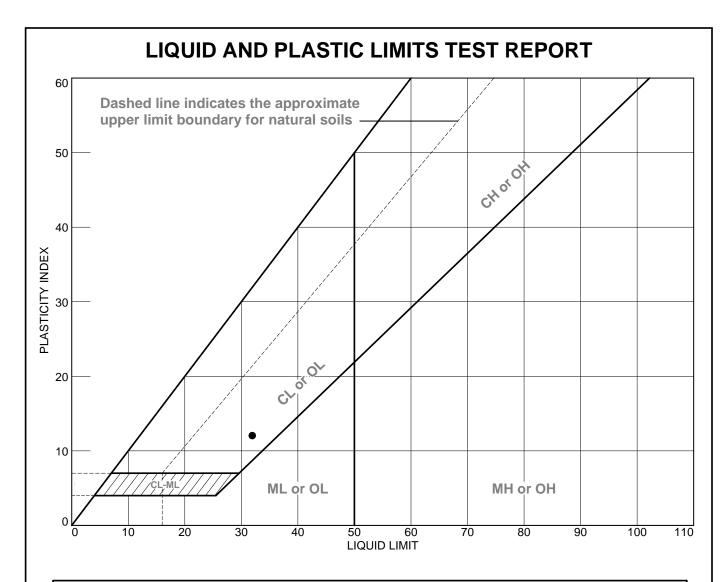
Test Re	esults (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
#4	100.0		
#10	99.8		
#20	98.9		
#40	96.1		
#60	90.6		
#100	82.7		
#200	71.5		
*			

Material Description Gray lean clay with sand **Atterberg Limits (ASTM D 4318) PL=** 20 LL= 32 Classification USCS (D 2487)= CL**AASHTO** (M 145)= A-6(7)Coefficients **D₉₀=** 0.2397 **D₈₅=** 0.1725 $D_{60}=$ D₅₀= D₁₀= D₃₀= D₁₅= C_C= Remarks As received MC = 28.8%**Date Received:** 10/5/2017 **Date Tested:** 10/9/2017 Tested By: RZ Checked By: MP Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-79 **Sample Number:** S-6

Depth: 14-16


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

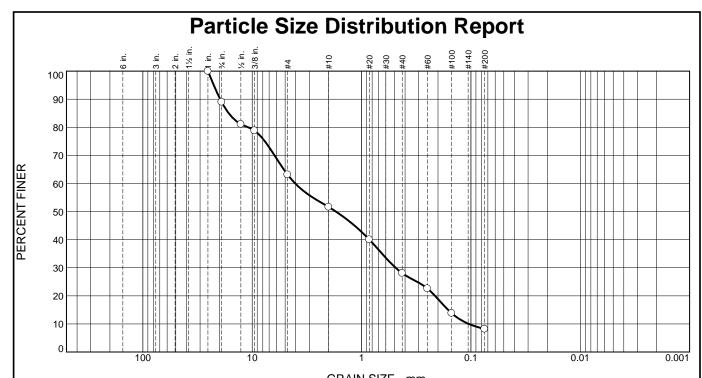
Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/14/2017

				SOIL DATA	1			
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
•	B-79	S-6	14-16	28.8	20	32	12	CL

CDM Smith


Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Boston, Massachusetts

Tested By: RZ Checked By: MP

			(<u> JRAIN SIZE -</u>	mm.		
0/ - 21	% Gı	ravel		% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	11.0	25.8	11.6	23.5	19.9	8.2	

Test Re	esults (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
3/4"	89.0		
1/2"	81.1		
3/8"	78.8		
#4	63.2		
#10	51.6		
#20	40.0		
#40	28.1		
#60	22.6		
#100	13.8		
#200	8.2		

Dark brown poorly graded sand with silt and gravel

Atterberg Limits (ASTM D 4318)
LL= PI=

PL=

Classification

USCS (D 2487)= SP-SM AASHTO (M 145)= A-1-b

Coefficients

 D90=
 19.6392
 D85=
 16.4008
 D60=
 4.0410

 D50=
 1.7172
 D30=
 0.4882
 D15=
 0.1615

 D10=
 0.1046
 Cu=
 38.63
 Cc=
 0.56

Remarks

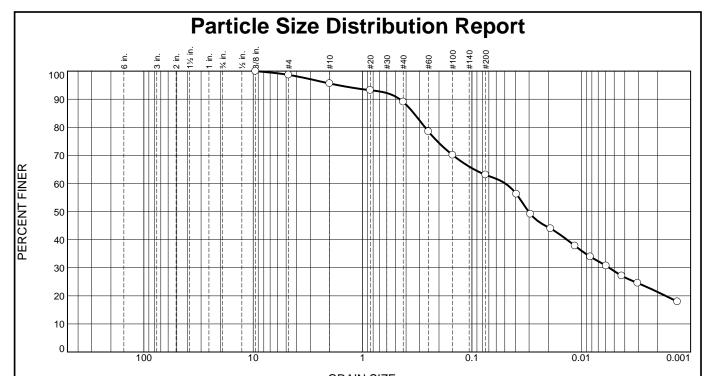
As received MC = 8.2%

Tested By: RZ Checked By: MP

Title: Laboratory Manager

* (no specification provided)

CDM Smith


Source of Sample: B-80 Sample Number: S-2 Depth: 6-8

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/25/2017

			(<u>GRAIN SIZE -</u>	mm.		
0/ - 211	% Gravel % Sand		% Fines				
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	1.3	3.1	6.6	25.9	34.3	28.8

Test Results (ASTM D6913 & D7928 & ASTM D1140)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
.375"	100.0						
#4	98.7						
#10	95.6						
#20	93.2						
#40	89.0						
#60	78.5						
#100	70.1						
#200	63.1						
0.0392 mm.	56.2						
0.0292 mm.	49.1						
0.0191 mm.	44.0						
0.0114 mm.	37.8						
0.0083 mm.	33.9						
0.0059 mm.	30.7						
0.0043 mm.	27.2						
0.0031 mm.	24.6						
0.0013 mm.	17.9						

	Material Desci	<u>ription</u>
Brown sandy silt		
A 44		TIA D 4040)
PL=	erberg Limits (AS	91M D 4318) Pl=
. =-		· ·-
USCS (D 2487)=	Classificati ML AASH	TO (M 145)= A-4(0)
	Coefficien	
D₉₀= 0.4567	D₈₅= 0.3396	D₆₀= 0.0495
D₅₀ = 0.0303 D₁₀ =	D ₃₀ = 0.0056 C _u =	D ₁₅ = C _c =
	Remarks	· ·
As received MC =		
Date Received:	1/31/18 Da	te Tested: 2/5/18
Tested By:	MP/SB	
Checked By:]	MP	
Title:	Laboratory Manage	er

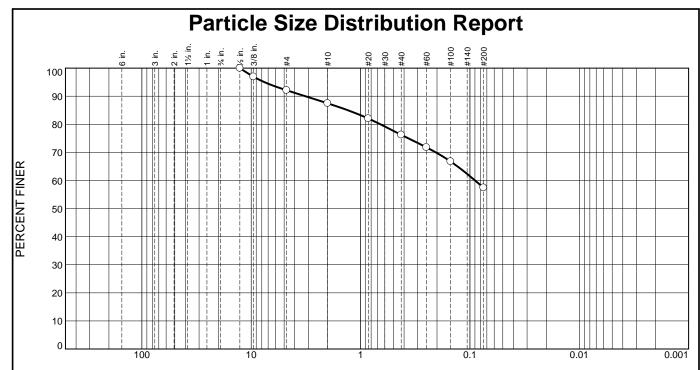
* (no specification provided)

Source of Sample: B-81 Sample Number: S-4B

Depth: 9.5-10'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 12/21/17

Boston, Massachusetts

Project No: 101038.102170

			(<u> GRAIN SIZE -</u>	mm.		
0/ - 211	% Gı	ravel		% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	7.0	1.0	11.2	10.0	57.4	

Test Results (ASTM D6913 & ASTM D1140)								
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X=Fail)					
.5"	100.0							
.375"	97.0							
#4	92.1							
#10	87.5							
#20	82.1							
#40	76.3							
#60	71.8							
#100	66.8							
#200	57.4							
*								

Dark brown sandy silt with organics

Atterberg Limits (ASTM D 4318)

PL=

Classification

USCS (D 2487)= ML

AASHTO (M 145)= A-4(0)

Coefficients

D₉₀= 3.2019 **D₆₀=** 0.0897 **D₈₅=** 1.3049

D₅₀= D₁₀= D₃₀= D₁₅= C_C=

Remarks

As received MC = 32.5%

Date Received: 1/31/18 **Date Tested:** 2/5/18

Tested By: MP/SB

Checked By: MP

Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-82A Sample Number: S-1

Depth: 0.3-2'

Date Sampled: 11/9/18

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

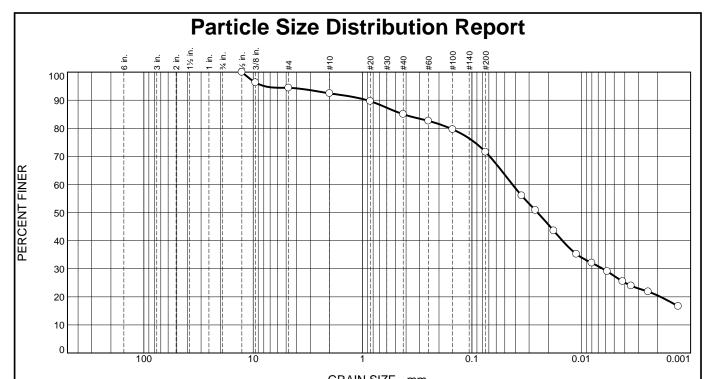
Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts

Project No: 101038.102170

CDM Smith


Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client:	Massachusetts Water Resources Authority		
Project Name:	Weston Aqueduct Supply Main 3	Tested By:	MP
Project Location:	MWRA line, MA	Test Date:	2/1/2018
Project Number:	101038-102170	_	
Boring Number:	B-82A	Procedure:	С
Sample Number:	S-1	Temperature:	440° C
Sample Depth (ft):	0.3-2	_	
Sample Date:	11/9/2017		

AS RECEIVED MOISTURE CONTENT	
Tin Mass (g)	126.65
Wet Mass of Sample & Tin (g)	206.12
Dry Mass of Sample & Tin (g)	186.48
Mass of Water (g)	19.64
Mass of Dry Soil (g)	59.83
Moisture Content (%)	32.8

ASH CONTENT				
Porcelain Dish Mass (g)	126.65			
Porcelain Dish + Oven Dried Soil (g)	186.48			
Mass of Oven Dried Soil (g)	59.83			
Mass of Dish & Burned Soil (g)	183.50			
Mass of Burned Soil (g)	56.85			
Mass of Organic Material (g)	2.98			
Ash Content (%)	95.0			
Organic Content (%)	5.0			

				<u>GRAIN SIZE -</u>	· mm.		
0/ - 211	% G	ravel		% Sand	I	% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	5.6	2.0	7.4	13.4	44.2	27.4

Brown silt with sand

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.5"	100.0		
.375"	96.3		
#4	94.4		
#10	92.4		
#20	89.6		
#40	85.0		
#60	82.6		
#100	79.6		
#200	71.6		
0.0351 mm.	56.0		
0.0263 mm.	50.8		
0.0179 mm.	43.5		
0.0111 mm.	35.2		
0.0080 mm.	32.1		
0.0058 mm.	29.1		
0.0042 mm.	25.5		
0.0035 mm.	23.9		
0.0024 mm.	21.9		
0.0013 mm.	16.7		

Atterberg Limits (ASTM D 4318) PL= Classification USCS (D 2487)= **AASHTO** (M 145)= A-4(0)MLCoefficients D₉₀= 0.9103 D₅₀= 0.0251 D₁₀= **D₆₀=** 0.0426 **D₈₅=** 0.4245 D₃₀= 0.0064 C_u= D₁₅= C_C= Remarks As received MC = 21.3%Date Received: 1/31/18 **Date Tested:** 2/2/18 Tested By: MP/SB Checked By: MP

Material Description

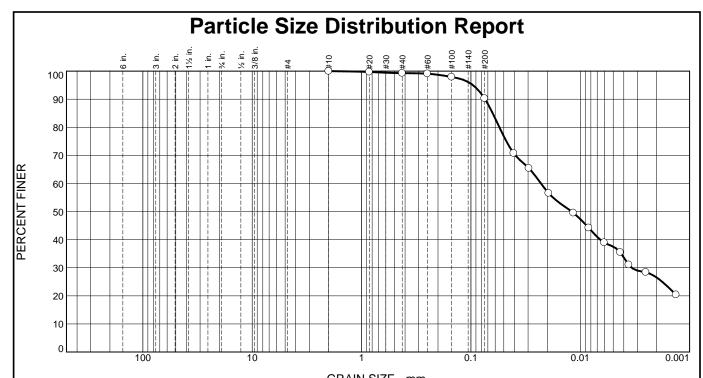
(no specification provided)

Source of Sample: B-82A Sample Number: S-5A

Depth: 8-8.5'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Title: Laboratory Manager

Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 11/9/18

Boston, Massachusetts Project No: 101038.102170

			(<u>GRAIN SIZE -</u>	· mm.		
0/ - 211	% G	ravel		% Sand	I	% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.0	0.7	9.0	52.8	37.5

Opening	s (ASTM D6913 Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
#10	100.0		
#20	99.7		
#40	99.3		
#60	99.1		
#100	97.9		
#200	90.3		
0.0406 mm.	70.8		
0.0295 mm.	65.4		
0.0195 mm.	56.6		
0.0116 mm.	49.5		
0.0084 mm.	44.2		
0.0060 mm.	39.0		
0.0043 mm.	35.5		
0.0036 mm.	31.1		
0.0025 mm.	28.4		
0.0013 mm.	20.4		

Gray-brown lean clay

Atterberg Limits (ASTM D 4318)

Coefficients

D₉₀= 0.0742 D₈₅= 0.0632 D₆₀= 0.0229 D₅₀= 0.0120 D₃₀= 0.0034 D₁₅= C_c=

Remarks

As received MC = 21.0%

Date Received: 1/31/18 Date Tested: 2/2/18

Tested By: MP/SB

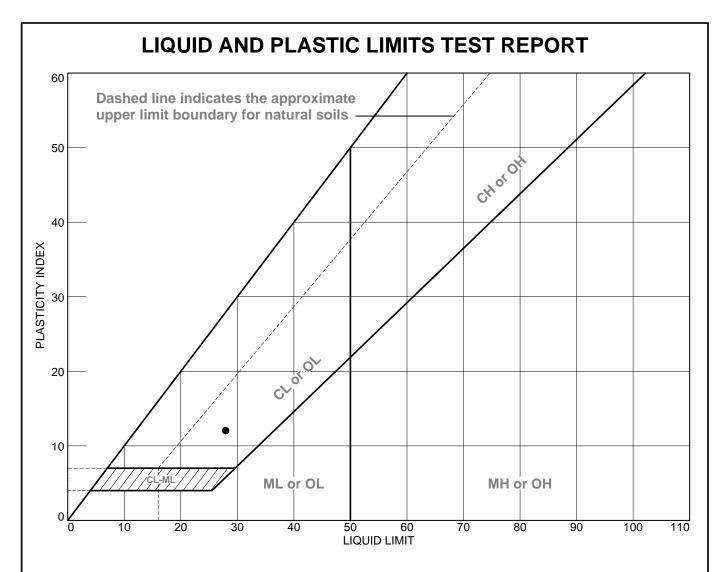
Checked By: MP

Title: Laboratory Manager

* (no specification provided)

CDM Smith

Source of Sample: B-84 Sample Number: S-5 **Depth:** 9-11'


Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

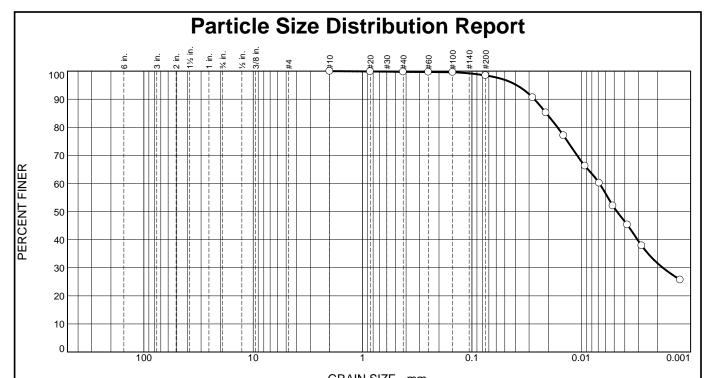
Date Sampled: 10/2/18

Boston, Massachusetts Project No: 101038.102170

	SOIL DATA									
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs		
•	B-84	S-5	9-11'	21.0	16	28	12	CL		

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts

Project No.: 101038.102170

Tested By: AS	Checked Bv: MP

	GRAIN SIZE - mm.									
9/ .3"		% Gı	% Gravel % Sand			% Fines				
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay		
	0.0	0.0	0.0	0.0	0.2	1.3	47.1	51.4		

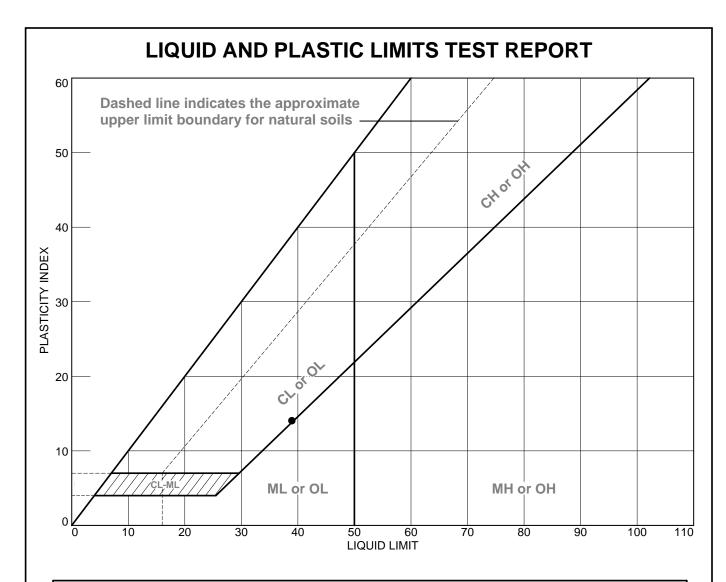
Test Results (ASTM D 422 & ASTM D 1140) Opening Percent Spec.* Pass?										
Size	Finer	(Percent)	(X=Fail)							
#10	100.0	,	, ,							
#20	99.9									
#40	99.8									
#60	99.7									
#100	99.6									
#200	98.5									
0.0278 mm.	90.6									
0.0211 mm.	85.2									
0.0145 mm.	77.1									
0.0093 mm.	66.3									
0.0069 mm.	60.2									
0.0051 mm.	52.1									
0.0038 mm.	45.3									
0.0028 mm.	37.9									
0.0012 mm.	25.7									

Material Description Gray lean clay Atterberg Limits (ASTM D 4318) **PL=** 25 LL= 39 Classification USCS (D 2487)= CL**AASHTO** (M 145)= A-6(16) Coefficients D₉₀= 0.0269 D₅₀= 0.0047 D₁₀= **D₆₀=** 0.0068 **D₈₅=** 0.0209 D₃₀= 0.0018 C_u= D₁₅= C_C= Remarks As received MC = 31.0%**Date Received:** 10/10/2017 **Date Tested:** 10/10/2017 Tested By: RZ Checked By: MP Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-85 Sample Number: S-6

Depth: 14-16'


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)

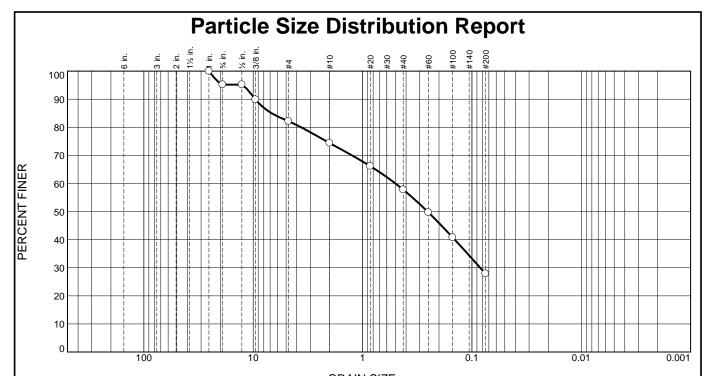
Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/8/2017

	SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS	
•	B-85	S-6	14-16'	31.0	25	39	14	CL	

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Boston, Massachusetts

Project No.: 101038.102170 Figure

Tested By: RZ	Checked Bv: MP
rested by. 1\Z	Checked Dy. v

	GRAIN SIZE - mm.									
% +3"	% Gravel % Sand			% Fines						
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay		
	0.0	4.8	13.0	7.8	16.6	29.9	27.9			

Test Results (ASTM D 422 & ASTM D 1140)										
Opening	g Percent Spec.* Pa									
Size	Finer	(Percent)	(X=Fail)							
1"	100.0									
3/4"	95.2									
1/2"	95.2									
3/8"	89.9									
#4	82.2									
#10	74.4									
#20	66.2									
#40	57.8									
#60	49.7									
#100	40.8									
#200	27.9									

Atte	erberg Limit	s (ASTM D 431	8)			
PL=	LL=	PI=				
USCS (D 2487)=		fication ASHTO (M 145)	= A-2-4(0)			
		<u>icients</u>				
D₉₀= 9.5815	D₈₅= 6.78	06 D 60	= 0.5005			
D ₅₀ = 0.2545 D ₁₀ =	D ₃₀ = 0.08 C _u =	39 D 15: C _c =	=			
	Ren	narks				
As received MC =	30.8%					
Date Received: 10/5/2017 Date Tested: 10/9/2017 Tested By: RZ						

(no specification provided)

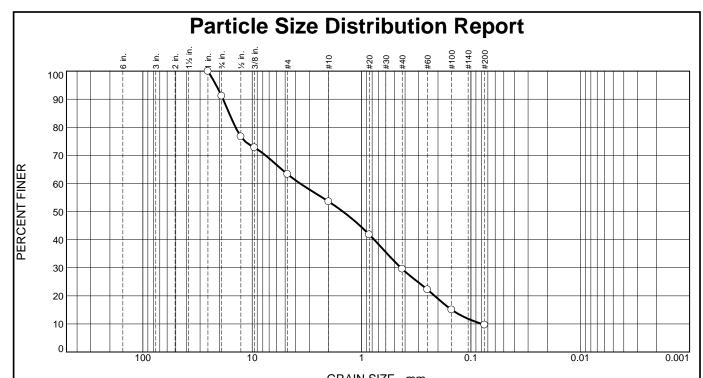
Source of Sample: B-86 **Sample Number:** S-3

Depth: 4-6

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Title: Laboratory Manager


Project: Weston Aqueduct Supply Main 3 (WASM3)

Checked By: MP

Dark brown silty sand with gravel

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/6/2017

	GRAIN SIZE - mm.									
% +3"	% G	% Gravel % Sand			i	% Fines				
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay		
	0.0	8.8	27.9	9.7	24.0	19.9	9.7			

Test Results (ASTM D 422 & ASTM D 1140)									
Opening Percent Spec.* Pass									
Size	Finer	(Percent)	(X=Fail)						
1"	100.0								
3/4"	91.2								
1/2"	76.7								
3/8"	72.8								
#4	63.3								
#10	53.6								
#20	41.8								
#40	29.6								
#60	22.2								
#100	15.1								
#200	9.7								
*									

Brown poorly graded sand with silt and gravel

Atterberg Limits (ASTM D 4318) LL= PI=

PL=

USCS (D 2487)= SP-SM AASHTO (M 145)= A-1-b

Coefficients

 D90=
 18.4570
 D85=
 16.2434
 D60=
 3.6465

 D50=
 1.4814
 D30=
 0.4368
 D15=
 0.1493

 D10=
 0.0796
 Cu=
 45.81
 Cc=
 0.66

Remarks

As received MC = 2.4%

Tested By: RZ

Checked By: MP

Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-87 Sample Number: S-2

Depth: 2-4

Client: Massachusetts Water Resources Authority (MWRA)

oject: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Boston, Massachusetts

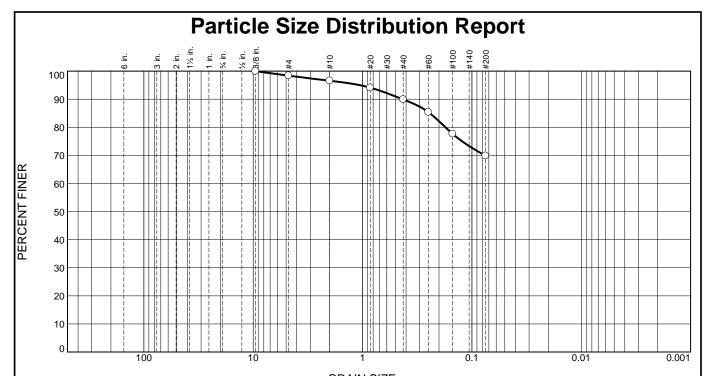
CDM Smith

Project No: 101038.102170

Figure

Date Sampled: 9/8/2017

CDM Smith


Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client: Massachusetts Water Resources Authority Weston Aqueduct Supply Main 3 Project Name: Tested By: MP MWRA line, MA Test Date: 10/9/2017 Project Location: Project Number: 101038-102170 Boring Number: B-88 Procedure: S-1 Temperature: 440° C Sample Number: Sample Depth (ft): 0-2 Sample Date: 9/6/2017

AS RECEIVED MOISTURE CONTENT	
Tin Mass (g)	90.29
Wet Mass of Sample & Tin (g)	133.38
Dry Mass of Sample & Tin (g)	125.72
Mass of Water (g)	7.66
Mass of Dry Soil (g)	35.43
Moisture Content (%)	21.6

ASH CONTENT				
Porcelain Dish Mass (g)	90.29			
Porcelain Dish + Oven Dried Soil (g)	125.72			
Mass of Oven Dried Soil (g)	35.43			
Mass of Dish & Burned Soil (g)	124.20			
Mass of Burned Soil (g)	33.91			
Mass of Organic Material (g)	1.52			
Ash Content (%)	95.7			
Organic Content (%)	4.3			

	GRAIN SIZE - mm.							
0/ - 211	% Gı	ravel	el % Sand			% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	1.6	1.8	6.7	20.0	69.9		

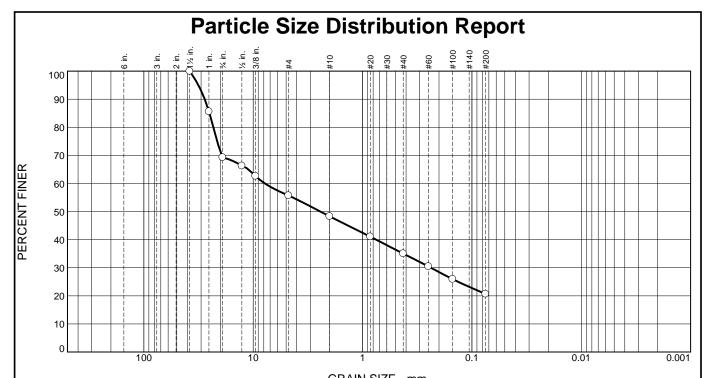
Test Ro	esults (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/8"	100.0		
#4	98.4		
#10	96.6		
#20	94.1		
#40	89.9		
#60	85.4		
#100	77.7		
#200	69.9		
*	aifiantian provide		

	<u>Material</u>	Description	1				
Brown sandy lean clay							
Λ++	rhora Limi	te (ASTM D	1210\				
PL=	LL=	ts (ASTM D	PI=				
USCS (D 2487)=		sification AASHTO (M	145)=	A-4(0)			
D ₉₀ = 0.4304 D ₅₀ = D ₁₀ =	Coef D ₈₅ = 0.2 D ₃₀ = C _u =		D ₆₀ = D ₁₅ = C _c =				
	Re	marks					
As received MC =	29.0%						
Date Received:	10/5/2017	Date Tes	sted:	10/9/2017			
Tested By:	RZ						
Checked By:	Checked By: MP						
Title: Laboratory Manager							

* (no specification provided)

Source of Sample: B-88 Sample Number: S-6 **Depth:** 14-16'

CDM Smith


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/6/2017

GRAIN SIZE - mm.								
0/ - 211	% Gı	ravel	% Sand			% Fines		
% +3 "	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	30.7	13.6	7.4	13.3	14.3	20.7		

Test Results (ASTM D 422 & ASTM D 1140)						
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
1.5"	100.0					
1"	85.6					
3/4"	69.3					
1/2"	66.3					
3/8"	62.6					
#4	55.7					
#10	48.3					
#20	41.1					
#40	35.0					
#60	30.5					
#100	25.9					
#200	20.7					
* (-:¢:4:					

Light brown silty gravel with sand **Atterberg Limits (ASTM D 4318)** PL= Classification USCS (D 2487)= GM **AASHTO (M 145)=** A-1-b Coefficients D₉₀= 27.7408 D₅₀= 2.4277 D₁₀= D₈₅= 25.1189 D₃₀= 0.2374 C_u= **D₆₀=** 7.8166 D₁₅= C_c= Remarks As received MC = 8.9%**Date Received:** 10/5/2017 **Date Tested:** 10/9/2017 Tested By: RZ Checked By: MP Title: Laboratory Manager

Material Description

* (no specification provided)

Source of Sample: B-89 Sample Number: S-3 **Depth:** 9-10.5

CDM Smith

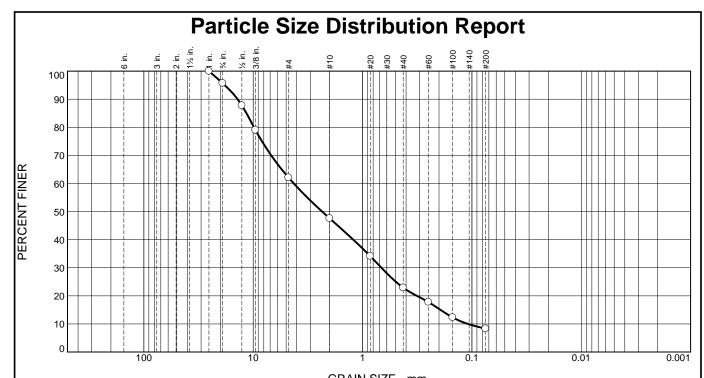
Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/7/2017

CDM Smith


Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client: Massachusetts Water Resources Authority Weston Aqueduct Supply Main 3 Project Name: Tested By: MP MWRA line, MA Test Date: 10/9/2017 Project Location: Project Number: 101038-102170 Boring Number: B-90 Procedure: S-1 Temperature: 440° C Sample Number: Sample Depth (ft): 0-2 Sample Date: 9/6/2017

AS RECEIVED MOISTURE CONTENT	
Tin Mass (g)	126.60
Wet Mass of Sample & Tin (g)	176.13
Dry Mass of Sample & Tin (g)	171.58
Mass of Water (g)	4.55
Mass of Dry Soil (g)	44.98
Moisture Content (%)	10.1

ASH CONTENT				
Porcelain Dish Mass (g)	126.60			
Porcelain Dish + Oven Dried Soil (g)	171.58			
Mass of Oven Dried Soil (g)	44.98			
Mass of Dish & Burned Soil (g)	169.60			
Mass of Burned Soil (g)	43.00			
Mass of Organic Material (g)	1.98			
Ash Content (%)	95.6			
Organic Content (%)	4.4			

	GRAIN SIZE - mm.							
0/ - 211	% G	ravel	% Sand			% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	4.3	33.6	14.5	24.7	14.6	8.3		

Test Results (ASTM D 422 & ASTM D 1140)						
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
1"	100.0					
3/4"	95.7					
1/2"	87.8					
3/8"	79.0					
#4	62.1					
#10	47.6					
#20	34.1					
#40	22.9					
#60	17.8					
#100	12.3					
#200	8.3					

Brown gray poorly graded sand with silt and gravel

Atterberg Limits (ASTM D 4318)
LL= PI=

PL=

Classification

USCS (D 2487)= SP-SM AASHTO (M 145)= A-1-a

Coefficients

 D90=
 13.8932
 D85=
 11.5293
 D60=
 4.2564

 D50=
 2.3420
 D30=
 0.6720
 D15=
 0.1936

 D10=
 0.1088
 Cu=
 39.12
 Cc=
 0.97

Remarks

As received MC = 7.5%

Date Received: 10/5/2017 **Date Tested:** 10/9/2017

Tested By: RZ

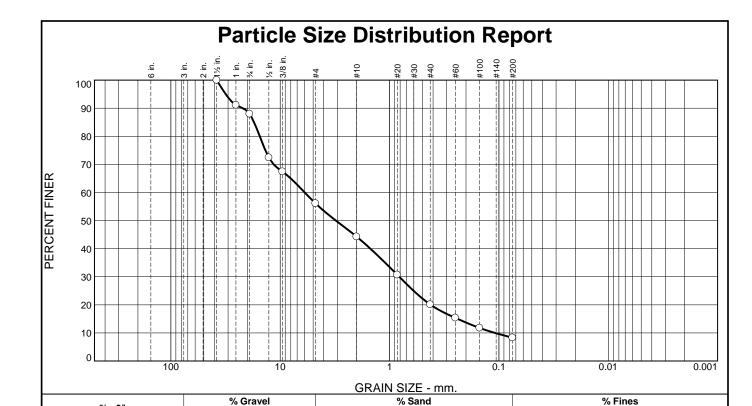
Checked By: MP

Title: Laboratory Manager

* (no specification provided)

CDM Smith

Source of Sample: B-90 Sample Number: S-3


Depth: 4-4.8'

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/1/2017

1.5" 1"	Finer	(Percent)	/V F-:IV
1"	100.0	1	(X=Fail)
-	100.0		
	91.1		
3/4"	88.0		
1/2"	72.4		
3/8"	67.4		
#4	56.1		
#10	44.3		
#20	30.7		
#40	20.1		
#60	15.4		
#100	11.8		
#200	8.3		

Coarse

12.0

Fine

31.9

Coarse

11.8

Material Description

Brown well-graded sand with silt and gravel

Fine

11.8

Atterberg Limits (ASTM D 4318) LL= PI=

PL=

Medium

24.2

Silt

8.3

Clay

 $\begin{array}{cc} & \underline{\text{Classification}} \\ \text{USCS (D 2487)=} & \mathrm{SW-SM} & \underline{\text{AASHTO (M 145)=}} & \mathrm{A-1-a} \end{array}$

Coefficients

 D90=
 21.9441
 D85=
 17.3383
 D60=
 5.9677

 D50=
 3.0977
 D30=
 0.8160
 D15=
 0.2385

 D10=
 0.1086
 Cu=
 54.94
 Cc=
 1.03

Remarks

As received MC = 8.6%

Date Received: 10/5/2017 **Date Tested:** 10/9/2017

Tested By: RZ

Checked By: MP

Title: Laboratory Manager

Source of Sample: B-91 Sample Number: S-1

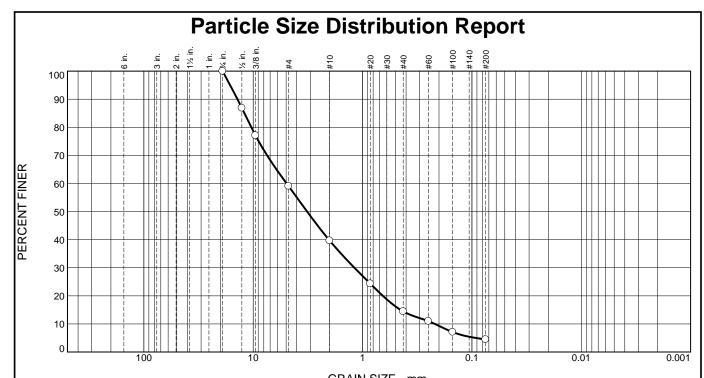
% +3"

0.0

Depth: 5-7'

Date Sampled: 9/1/2017

Client: Massachusetts Water Resources Authority (MWRA)


roject: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

S | Project No: 101038.102170 | Figure

Boston, Massachusetts

CDM Smith

	GRAIN SIZE - mm.						
0/ - 211	% Gr		vel % Sand		% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	40.9	19.4	25.3	9.9	4.5	

Test Re	sults (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/4"	100.0		
1/2"	86.9		
3/8"	77.1		
#4	59.1		
#10	39.7		
#20	24.3		
#40	14.4		
#60	11.0		
#100	7.1		
#200	4.5		
*			

Brown gray well-graded sand with gravel

Atterberg Limits (ASTM D 4318)

PL=

Classification

SW USCS (D 2487)= **AASHTO (M 145)=** A-1-a

Coefficients

D₉₀= 13.9461 **D₅₀=** 3.2134 **D₁₀=** 0.2186 D₆₀= 4.9471 D₁₅= 0.4499 C_c= 1.30 D₈₅= 12.0306 D₃₀= 1.1875 C_u= 22.63

Remarks

As received MC = 8.2%

Date Received: 10/5/2017

Date Tested: 10/9/2017

Tested By: RZ

Checked By: MP

Title: Laboratory Manager

(no specification provided)

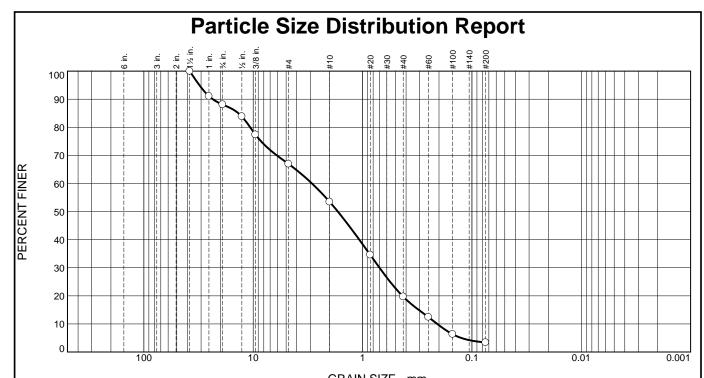
Source of Sample: B-92 Sample Number: S-1

Depth: 5-7'

Date Sampled: 9/5/2017

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Boston, Massachusetts

Project No: 101038.102170

Figure

GRAIN SIZE - mm.								
	0/ - 211	% Gı	ravel		% Sand		% Fines	
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	11.9	21.1	13.5	33.8	16.3	3.4	

Test R	esults (ASTM D	422 & ASTM D	1140)		
Opening	Percent	Spec.*	Pass?		
Size	Finer	(Percent)	(X=Fail)		
1.5"	100.0				
1"	91.1				
3/4"	88.1				
1/2"	83.8				
3/8"	77.4				
#4	67.0				
#10	53.5				
#20	34.6				
#40	19.7				
#60	12.4				
#100	6.3				
#200	3.4				
*					

Material Description Brown poorly graded sand with gravel

Brown poorty graded sand with graves

PL= Atterberg Limits (ASTM D 4318)
LL= PI=

Coefficients

 D₉₀=
 23.4655
 D₈₅=
 13.6386
 D₆₀=
 2.9040

 D₅₀=
 1.6834
 D₃₀=
 0.6999
 D₁₅=
 0.3065

 D₁₀=
 0.2075
 C_u=
 14.00
 C_c=
 0.81

Remarks

As received MC = 3.9%

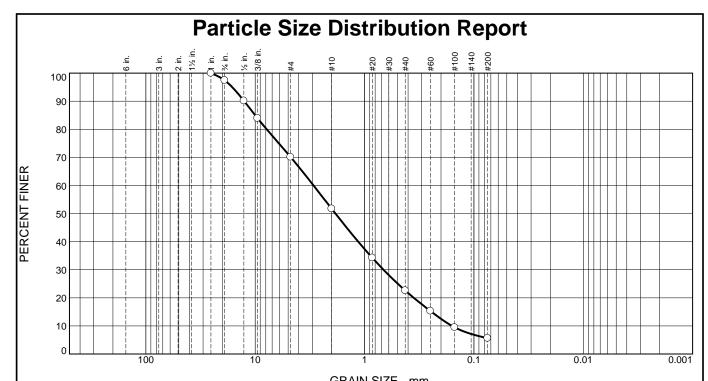
Date Received: 10/5/2017 **Date Tested:** 10/9/2017

Tested By: RZ
Checked By: MP

Title: Laboratory Manager

(no specification provided)

CDM Smith


Source of Sample: B-93 Sample Number: S-2 **Depth:** 2-4'

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 9/5/2017

GRAIN SIZE - IIIIII.							
0/ - 211	% G	ravel		% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	2.5	27.4	18.4	29.1	17.0	5.6	

Test Re	sults (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
1"	100.0		
3/4"	97.5		
1/2"	90.2		
3/8"	84.0		
#4	70.1		
#10	51.7		
#20	34.3		
#40	22.6		
#60	15.3		
#100	9.5		
#200	5.6		
*			

Brown gray poorly graded sand with silt and gravel

Atterberg Limits (ASTM D 4318)
LL= PI=

PL=

Coefficients

 D90=
 12.6098
 D85=
 10.0041
 D60=
 2.9292

 D50=
 1.8454
 D30=
 0.6710
 D15=
 0.2439

 D10=
 0.1585
 Cu=
 18.48
 Cc=
 0.97

Remarks

As received MC = 12.6%

Date Received: 10/5/2017 **Date Tested:** 10/9/2017

Tested By: RZ Checked By: MP

Title: Laboratory Manager

(no specification provided)

CDM Smith

Source of Sample: B-94 Sample Number: S-3 **Depth:** 4-5.3'

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 8/30/2017

GRAIN SIZE - mm.								
	0/ - 211	% Gı	ravel		% Sand		% Fines	
ı	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	27.0	10.3	29.5	24.6	8.6	

Test Re	esults (ASTM D	422 & ASTM D	1140)	
Opening	Percent	Spec.*	Pass?	
Size	Finer	(Percent)	(X=Fail)	
3/4"	100.0			
1/2"	87.6			
3/8"	79.7			
#4	73.0			
#10	62.7			
#20	49.3			
#40	33.2			
#60	23.7			
#100	14.7			
#200	8.6			

Brown poorly graded sand with silt and gravel

Atterberg Limits (ASTM D 4318)
LL= PI=

PL=

Classification

USCS (D 2487)= SP-SM AASHTO (M 145)= A-1-b

Coefficients

 D90=
 13.7196
 D85=
 11.6339
 D60=
 1.6396

 D50=
 0.8814
 D30=
 0.3605
 D15=
 0.1532

 D10=
 0.0939
 Cu=
 17.47
 Cc=
 0.84

Remarks

As received MC = 4.8%

Date Received: 10/5/2017

Date Tested: 10/9/2017

Tested By: RZ

Checked By: MP

Title: Laboratory Manager

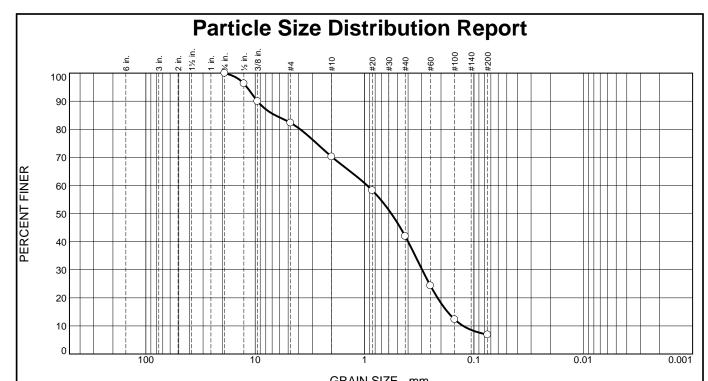
* (no specification provided)

CDM Smith

Source of Sample: B-95 Sample Number: S-2 **Depth:** 2-4'

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)


Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Boston, Massachusetts Project No.

Project No: 101038.102170

Figure

Date Sampled: 8/28/2017

GRAIN SIZE - IIIII.							
0/ - 2	% G	ravel		% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	17.7	12.1	28.3	35.0	6.9	

Test R	esults (ASTM D	422 & ASTM D	1140)	
Opening	Percent	Spec.*	Pass?	
Size	Finer	(Percent)	(X=Fail)	
3/4"	100.0			
1/2"	96.3			
3/8"	90.0			
#4	82.3			
#10	70.2			
#20	58.2			
#40	41.9			
#60	24.3			
#100	12.3			
#200	6.9			
* (no spe	ecification provided	d)		

Light brown poorly graded sand with silt and gravel

Atterberg Limits (ASTM D 4318) LL= PI=

PL=

Classification

USCS (D 2487)= SP-SM **AASHTO** (M 145)= A-1-b

Coefficients

D₆₀= 0.9469 **D₁₅=** 0.1741 **C_c=** 0.75 **D₉₀=** 9.5364 **D₅₀=** 0.5693 **D₁₀=** 0.1254 D₈₅= 6.5604 D₃₀= 0.2974 C_u= 7.55

Remarks

As received MC = 4.2%

Date Received: 10/5/2017 **Date Tested:** 10/9/2017

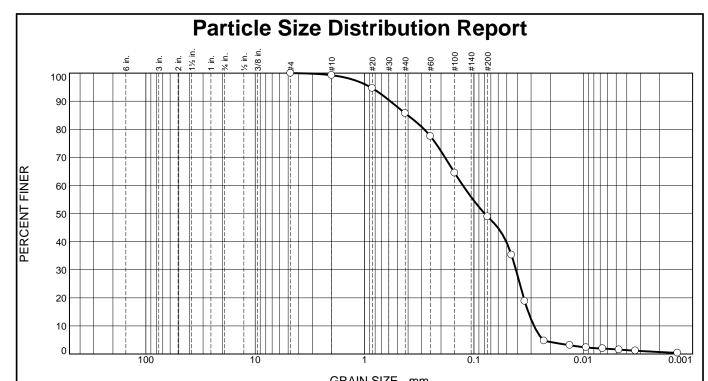
Date Sampled: 8/29/2017

Tested By: RZ Checked By: MP

Title: Laboratory Manager

Depth: 4-6'

Source of Sample: B-96 Sample Number: S-3


CDM Smith Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA **Figure**

Boston, Massachusetts

Project No: 101038.102170

GRAIN SIZE - IIIII.								
	0/ - 211	% G	% Gravel		% Sand		% Fines	
	% +3 "	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	0.0	0.8	13.5	36.8	47.3	1.6

Red-brown silty sand

Test R	esults (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
#4	100.0		
#10	99.2		
#20	94.6		
#40	85.7		
#60	77.5		
#100	64.5		
#200	48.9		
0.0453 mm.	35.3		
0.0343 mm.	18.8		
0.0229 mm.	4.7		
0.0133 mm.	3.1		
0.0094 mm.	2.4		
0.0067 mm.	2.0		
0.0047 mm.	1.6		
0.0033 mm.	1.2		
0.0014 mm.	0.4		

Date Tested: 10/10/2017

Date Sampled: 8/30/2017

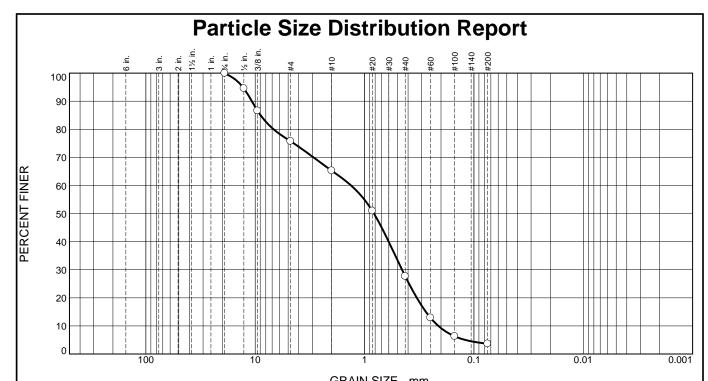
Material Description

* (no specification provided)

Source of Sample: B-97 Depth: 0.5-2' Sample Number: S-1 (Bottom 6')

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Title: Laboratory Manager

Project: Weston Aqueduct Supply Main 3 (WASM3)

Date Received: 10/5/2017

Tested By: RZ Checked By: MP

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

GRAIN SIZE - IIIII.							
0/ - 2	% G	ravel		% Sand		% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	24.3	10.4	37.6	24.0	3.7	

Test Results (ASTM D 422 & ASTM D 1140)						
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
3/4"	100.0					
1/2"	94.6					
3/8"	86.6					
#4	75.7					
#10	65.3					
#20	51.0					
#40	27.7					
#60	12.9					
#100	6.3					
#200	3.7					
*						

Light brown poorly graded sand with gravel

Atterberg Limits (ASTM D 4318)

PL=

Classification

USCS (D 2487)= SP **AASHTO** (M 145)= A-1-b

Coefficients

D₉₀= 10.7328 **D₅₀=** 0.8203 **D₁₀=** 0.2114 $\begin{array}{l} \textbf{D_{60}=} \ 1.3283 \\ \textbf{D_{15}=} \ 0.2750 \\ \textbf{C_{c}=} \ 0.73 \end{array}$ D₈₅= 8.9223 D₃₀= 0.4541 C_u= 6.28

Remarks

As received MC = 3.8%

Date Tested: 10/9/2017

Date Received: 10/5/2017 Tested By: RZ

Checked By: MP

Title: Laboratory Manager

(no specification provided)

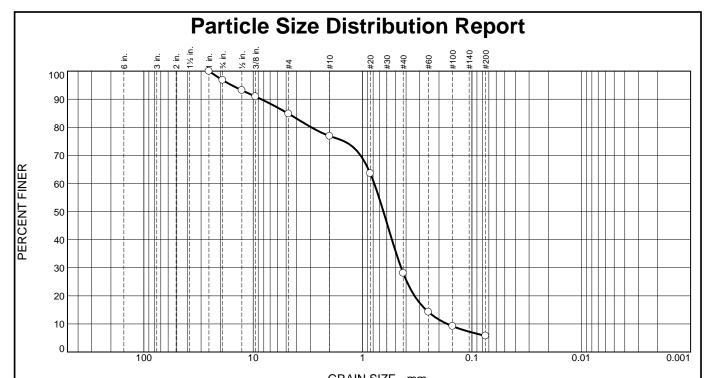
Source of Sample: B-97 Sample Number: S-5

Depth: 8-10'

Date Sampled: 8/30/2017

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Boston, Massachusetts

Project No: 101038.102170

Figure

GRAIN SIZE - mm.							
0/ 0	% Gravel		% Sand		% Fines	% Fines	
% +3"	Coarse	Fine	Coarse	rse Medium Fi	Fine	Silt	Clay
0.0	3.2	12.0	7.9	48.8	22.3	5.8	

Test Results (ASTM D 422 & ASTM D 1140)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
1"	100.0						
3/4"	96.8						
1/2"	93.2						
3/8"	90.9						
#4	84.8						
#10	76.9						
#20	63.6						
#40	28.1						
#60	14.3						
#100	9.2						
#200	5.8						

Brown poorly graded sand with silt and gravel

Atterberg Limits (ASTM D 4318)
LL= PI=

PL=

 Classification

 USCS (D 2487)=
 SP-SM
 AASHTO (M 145)=
 A-1-b

Coefficients

 D90=
 8.4630
 D85=
 4.8376
 D60=
 0.7820

 D50=
 0.6444
 D30=
 0.4436
 D15=
 0.2624

 D10=
 0.1682
 Cu=
 4.65
 Cc=
 1.50

Remarks

As received MC = 13.1%

Date Received: 10/5/2017 **Date Tested:** 10/9/2017

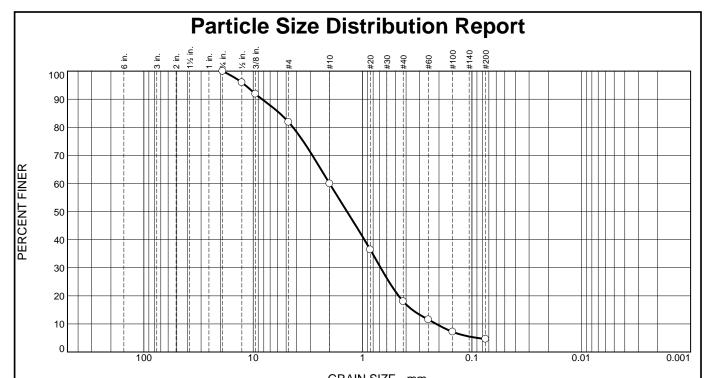
Tested By: RZ

Checked By: MP

Title: Laboratory Manager

* (no specification provided)

CDM Smith


Source of Sample: B-98 Sample Number: S-1 **Depth:** 5-7'

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 8/31/2017

GRAIN SIZE - mm.							
0/ - 211	% Gravel		% Sand		% Fines	% Fines	
% +3"	Coarse	Fine	Coarse Medium	Fine	Silt	Clay	
0.0	0.0	18.1	22.0	41.9	13.4	4.6	

Test Results (ASTM D 422 & ASTM D 1140)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
3/4"	100.0						
1/2"	95.9						
3/8"	91.9						
#4	81.9						
#10	59.9						
#20	36.4						
#40	18.0						
#60	11.5						
#100	7.2						
#200	4.6						
*							

Brown well-graded sand with gravel

PL= Atterberg Limits (ASTM D 4318)
LL= PI=

- --

Coefficients

 D90=
 8.2995
 D85=
 5.7264
 D60=
 2.0050

 D50=
 1.3867
 D30=
 0.6832
 D15=
 0.3500

 D10=
 0.2121
 Cu=
 9.46
 Cc=
 1.10

Remarks

As received MC = 9.1%

Date Received: 10/5/2017 **Date Tested:** 10/9/2017

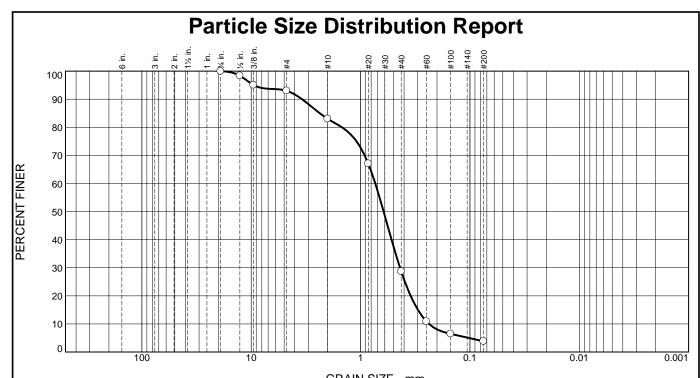
Tested By: RZ

Checked By: MP

Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-99 Depth: 7-9' Sample Number: S-2


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Date Sampled: 8/31/2017

	GRAIN SIZE - mm.						
% +3"	% G	ravel	% Sand			% Fines	
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	7.0	10.0	54.3	24.9	3.8	

Test Re	esults (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/4"	100.0		
1/2"	98.4		
3/8"	95.1		
#4	93.0		
#10	83.0		
#20	67.1		
#40	28.7		
#60	10.9		
#100	6.5		
#200	3.8		

Material Description Light brown poorly graded sand

Atterberg Limits (ASTM D 4318)

PL=

Classification

USCS (D 2487)= SP

AASHTO (M 145)= A-1-b

Coefficients

D₆₀= 0.7334 **D₁₅=** 0.2989 **C_c=** 1.09 **D₉₀=** 3.4285 **D₅₀=** 0.6152 **D₁₀=** 0.2367 D₈₅= 2.3575 D₃₀= 0.4359 C_u= 3.10

Remarks

As received MC = 4.2%

Date Tested: 10/9/2017

Date Received: 10/5/2017 Tested By: RZ

Checked By: MP

Title: Laboratory Manager

(no specification provided)

Source of Sample: B-100 Sample Number: S-3

Depth: 4-6'

Date Sampled: 8/29/2017

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

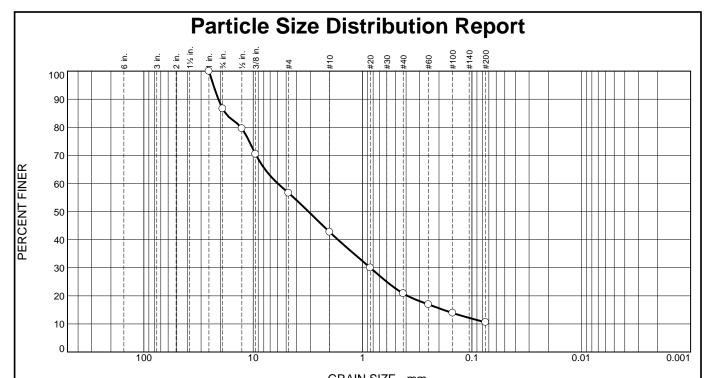
Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Boston, Massachusetts

Project No: 101038.102170

Figure


Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client:	Massachusetts Water Resources Authority		
Project Name:	Weston Aqueduct Supply Main 3	Tested By:	MP
Project Location:	MWRA line, MA	Test Date:	10/9/2017
Project Number:	101038-102170	·	
Boring Number:	B-100	Procedure:	С
Sample Number:	S-1	Temperature:	440° C
Sample Depth (ft):	0.5-2'	-	
Sample Date:	8/29/2017		

AS RECEIVED MOISTURE CONTENT	
Tin Mass (g)	96.87
Wet Mass of Sample & Tin (g)	197.98
Dry Mass of Sample & Tin (g)	181.72
Mass of Water (g)	16.26
Mass of Dry Soil (g)	84.85
Moisture Content (%)	19.2

ASH CONTENT					
Porcelain Dish Mass (g)	96.87				
Porcelain Dish + Oven Dried Soil (g)	181.72				
Mass of Oven Dried Soil (g)	84.85				
Mass of Dish & Burned Soil (g)	179.30				
Mass of Burned Soil (g)	82.43				
Mass of Organic Material (g)	2.42				
Ash Content (%)	97.1				
Organic Content (%)	2.9				

	GRAIN SIZE - mm.							
% +3"	% Gı	ravel	el % Sand			% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	13.4	30.0	13.9	21.9	10.2	10.6		

Test Results (ASTM D6913 & ASTM D1140)								
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X=Fail)					
1"	100.0							
.75"	86.6							
.5"	79.6							
.375"	70.5							
#4	56.6							
#10	42.7							
#20	30.0							
#40	20.8							
#60	16.9							
#100	13.9							
#200	10.6							

Material Description Gray-brown poorly graded sand with silt and gravel

Atterberg Limits (ASTM D 4318) LL= PI= PL=

Classification USCS (D 2487)= SP-SM **AASHTO** (M 145)= A-1-a

Coefficients D₉₀= 20.8388 D₅₀= 3.1244 D₁₀= **D₆₀=** 5.9565 **D₈₅=** 17.9076 D₃₀= 0.8506 C_u= D₁₅= 0.1818 C_c=

Remarks

As received MC = 7.2%

Date Received: 1/31/18 **Date Tested:** 2/5/18

Tested By: MP/SB Checked By: MP

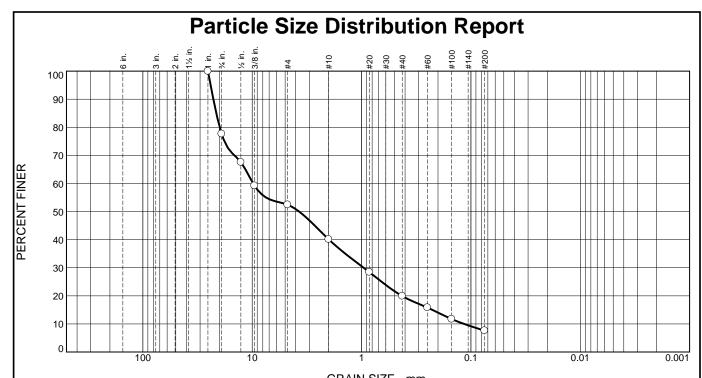
Title: Laboratory Manager

(no specification provided)

Source of Sample: B-101 Sample Number: S-4

Depth: 4-6'

Client: Massachusetts Water Resources Authority (MWRA)


Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 12/21/18

Boston, Massachusetts Project No: 101038.102170

CDM Smith

		GRAIN SIZE - mm.							
	0/ - 2	% Gı	ravel	vel % Sand			% Fines		
	% +3 "	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
	0.0	22.3	25.3	12.3	20.2	12.3	7.6		

Test	Results (ASTM D	6913 & ASTM I	D1140)	
Opening	Percent	Spec.*	Pass?	
Size	Finer	(Percent)	(X=Fail)	
1"	100.0			
.75"	77.7			
.5"	67.6			
.375"	59.2			
#4	52.4			
#10	40.1			
#20	28.5			
#40	19.9			
#60	15.8			
#100	11.7			
#200	7.6			

Gray-brown poorly graded gravel with silt and sand with organics

Atterberg Limits (ASTM D 4318)
LL= PI=

PL=

Coefficients

 D90=
 22.6755
 D85=
 21.3092
 D60=
 9.8051

 D50=
 3.7232
 D30=
 0.9576
 D15=
 0.2253

 D10=
 0.1156
 Cu=
 84.83
 Cc=
 0.81

Remarks

As received MC = 25.5%

Date Received: 1/31/18

Date Tested: 2/5/18

Tested By: MP/SB

Checked By: MP

Title: Laboratory Manager

(no specification provided)

Source of Sample: B-102 Sample Number: S-4

Depth: 6-8'

Date Sampled: 10/4/18

CDM Smith

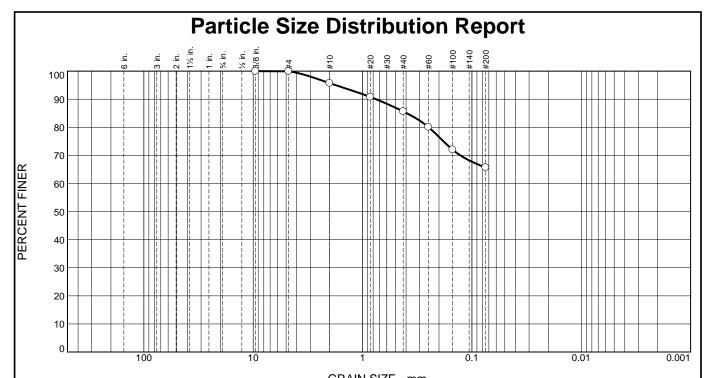
Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts Project 1

Project No: 101038.102170


Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client: Massachusetts Water Resources Authority Weston Aqueduct Supply Main 3 Project Name: Tested By: MWRA line, MA Test Date: 2/2/2018 Project Location: 101038-102170 Project Number: Boring Number: B-102 Procedure: 440° C S-4 Sample Number: Temperature: Sample Depth (ft): 6-8 Sample Date: 12/21/2017

AS RECEIVED MOISTURE CONTENT	
Tin Mass (g)	64.50
Wet Mass of Sample & Tin (g)	115.81
Dry Mass of Sample & Tin (g)	98.28
Mass of Water (g)	17.53
Mass of Dry Soil (g)	33.78
Moisture Content (%)	51.9

ASH CONTENT					
Porcelain Dish Mass (g)	64.50				
Porcelain Dish + Oven Dried Soil (g)	98.28				
Mass of Oven Dried Soil (g)	33.78				
Mass of Dish & Burned Soil (g)	95.64				
Mass of Burned Soil (g)	31.14				
Mass of Organic Material (g)	2.64				
Ash Content (%)	92.2				
Organic Content (%)	7.8				

	GRAIN SIZE - mm.								
	0/ - 21	% Gı	ravel	% Sand			% Fines		
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
	0.0	0.0	0.1	4.2	10.1	19.9	65.7		

Test Re	esults (ASTM D	6913 & ASTM [D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.375"	100.0		
#4	99.9		
#10	95.7		
#20	90.8		
#40	85.6		
#60	80.1		
#100	72.0		
#200	65.7		

Gray-brown sandy organic silt **Atterberg Limits (ASTM D 4318)** PL= Classification USCS (D 2487)= MLAASHTO (M 145)= A-4(0)Coefficients **D₉₀=** 0.7536 **D₈₅=** 0.3936 $D_{60} =$ D₅₀= D₁₀= D₃₀= D₁₅= C_C= Remarks As received MC = 80.2%Date Received: 1/31/18 **Date Tested:** 2/5/18 Tested By: MP/SB Checked By: MP

Material Description

(no specification provided)

Source of Sample: B-103 Sample Number: S-4

Depth: 6-8'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Title: Laboratory Manager

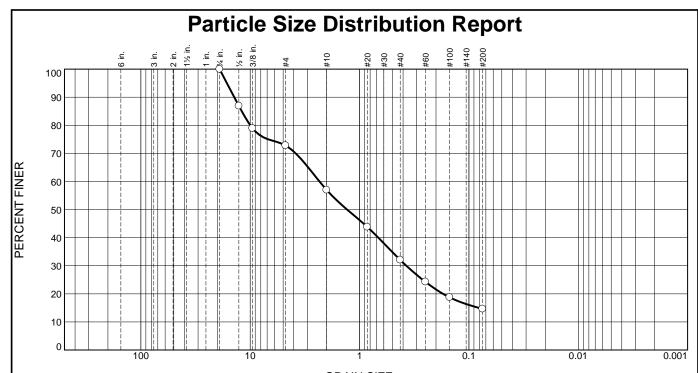
Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 12/22/18

Project No: 101038.102170

Boston, Massachusetts


Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client:	Massachusetts Water Resources Authority		
Project Name:	Weston Aqueduct Supply Main 3	Tested By:	MP
Project Location:	MWRA line, MA	Test Date:	2/1/2018
Project Number:	101038-102170	_	
Boring Number:	B-103	Procedure:	С
Sample Number:	S-4	Temperature:	440° C
Sample Depth (ft):	6-8	_	
Sample Date:	12/22/2017		

AS RECEIVED MOISTURE CONTENT	
Tin Mass (g)	105.29
Wet Mass of Sample & Tin (g)	153.41
Dry Mass of Sample & Tin (g)	131.89
Mass of Water (g)	21.52
Mass of Dry Soil (g)	26.60
Moisture Content (%)	80.9

ASH CONTENT				
Porcelain Dish Mass (g)	105.29			
Porcelain Dish + Oven Dried Soil (g)	131.89			
Mass of Oven Dried Soil (g)	26.60			
Mass of Dish & Burned Soil (g)	129.40			
Mass of Burned Soil (g)	24.11			
Mass of Organic Material (g)	2.49			
Ash Content (%)	90.6			
Organic Content (%)	9.4			

	GRAIN SIZE - mm.							
0/ - 211		% Gravel			% Sand		% Fines	
ı	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	27.2	15.8	24.9	17.5	14.6	

Test R	esults (ASTM De	6913 & ASTM [D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.75	100.0		
.5	86.9		
.375	78.9		
#4	72.8		
#10	57.0		
#20	43.8		
#40	32.1		
#60	24.3		
#100	18.7		
#200	14.6		
* (no spe	cification provided	D	

Gray silty sand with gravel and organics

Atterberg Limits (ASTM D 4318)

PL=

Classification

USCS (D 2487)= SM **AASHTO** (M 145)= A-1-b

Coefficients

D₉₀= 13.9927 D₅₀= 1.3001 D₁₀= D₆₀= 2.3250 D₁₅= 0.0810 C_c= **D₈₅=** 11.9466 D₃₀= 0.3734 C_u=

Remarks

As recieved MC = 28.4%

Date Tested: 2/1/18

Date Received: 1/30/18 Tested By: SB

Checked By: MP

Title: Laboratory Manager

(no specification provided)

Source of Sample: B-104 Sample Number: S-2

Depth: 8-10'

Date Sampled: 1/8/18

CDM Smith

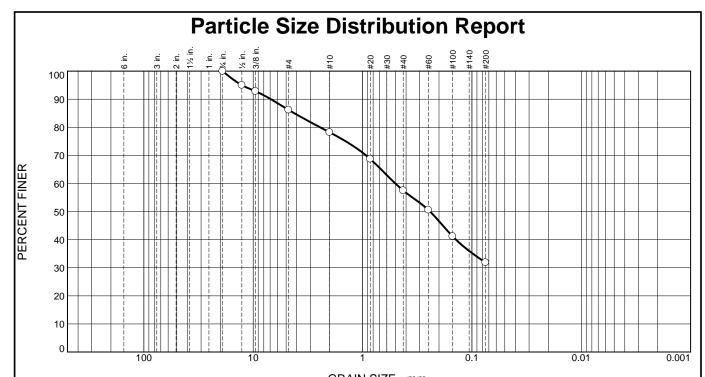
Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts

Project No: 101038.102170


Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client: Massachusetts Water Resources Authority Weston Aqueduct Supply Main 3 Project Name: Tested By: MWRA line, MA Test Date: 2/1/2018 Project Location: 101038-102170 Project Number: Boring Number: B-104 Procedure: S-2 Temperature: 440° C Sample Number: Sample Depth (ft): 8-10 Sample Date: 1/8/2018

AS RECEIVED MOISTURE CONTENT	
Tin Mass (g)	90.31
Wet Mass of Sample & Tin (g)	150.87
Dry Mass of Sample & Tin (g)	137.48
Mass of Water (g)	13.39
Mass of Dry Soil (g)	47.17
Moisture Content (%)	28.4

ASH CONTENT				
Porcelain Dish Mass (g)	90.31			
Porcelain Dish + Oven Dried Soil (g)	137.48			
Mass of Oven Dried Soil (g)	47.17			
Mass of Dish & Burned Soil (g)	135.48			
Mass of Burned Soil (g)	45.17			
Mass of Organic Material (g)	2.00			
Ash Content (%)	95.8			
Organic Content (%)	4.2			

	GRAIN SIZE - mm.							
0/ . 21		% G	% Gravel % Sand		% Fines			
ı	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	13.8	8.0	20.7	25.6	31.9	

Test Re	esults (ASTM D	422 & ASTM D	1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
3/4"	100.0		
1/2"	95.0		
3/8"	92.8		
#4	86.2		
#10	78.2		
#20	68.7		
#40	57.5		
#60	50.6		
#100	41.2		
#200	31.9		
*			

	<u>Material</u>	Descripti	<u>on</u>	
Brown silty sand				
Λ.44	arbara Lim	ito /ACTM	D 4240\	
PL=	erberg Lim LL=	IIIS (ASTIVI	PI=	
	Class	sification		
USCS (D 2487)=	SM Class	AASHTO ((M 145)=	A-2-4(0)
	Coe	fficients		
D₉₀= 6.8986	D ₈₅ = 4.2		D ₆₀ = 0	0.5018
D₅₀= 0.2414	$D_{30} =$		D ₁₅ =	
D ₁₀ =	c _u =		cc=	
		emarks		
As received MC =	= 11.4%			
Date Received:	10/5/2017	Doto T	Tootod:	10/0/2017
		Date 1	estea:	10/9/2017
Tested By:				
Checked By:	MP			
Title:	Laboratory 1	Manager		

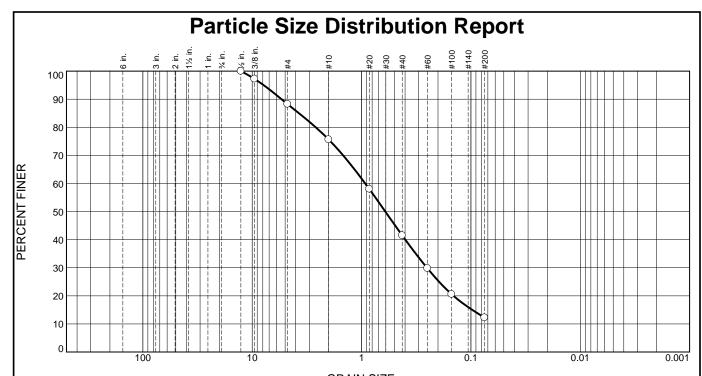
(no specification provided)

Source of Sample: B-105 Sample Number: S-4 **Depth:** 6-8'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)


Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Boston, Massachusetts

Project No: 101038.102170

Figure

Date Sampled: 9/12/2017

GRAIN SIZE - mm.								
0/ . 21		% G	% Gravel % Sand		% Fines			
ı	% + 3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	11.7	12.6	34.2	29.3	12.2	

Test Results (ASTM D 422 & ASTM D 1140)								
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X=Fail)					
1/2"	100.0							
3/8"	97.2							
#4	88.3							
#10	75.7							
#20	58.0							
#40	41.5							
#60	29.8							
#100	20.6							
#200	12.2							
*	rification provide							

	<u>Material</u>	Description	<u>on</u>
Dark brown silty	sand		
A44	arhara Limi	to /ACTM	D 4240)
PL=	erberg Limi LL=	IS (ASTIVI	<u>D 43 (6)</u> Pl=
	Class	ification	
USCS (D 2487)=			M 145)= A-1-b
	Coef	ficients	•
D₉₀= 5.3927	$D_{85} = 3.7$	382	D₆₀= 0.9261
D₅₀= 0.6064	D₃₀= 0.2	525	D ₁₅ = 0.0971 C _c =
D ₁₀ =	c _u =		oc=
A		marks	
As received MC =	= 14.0%		
Date Received:	10/5/2017	Date Te	ested: 10/9/2017
Tested By:		Duto I	10/5/2017
_			
Checked By:			
	Laboratory N	Innagar	

* (no specification provided)

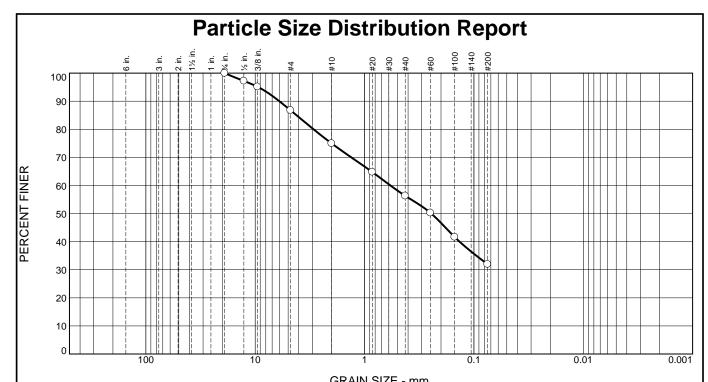
Source of Sample: B-107 Sample Number: S-1

Depth: 0.5-2'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)


Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Boston, Massachusetts

Project No: 101038.102170

Figure

Date Sampled: 9/12/2017

	GRAIN SIZE - IIIII.							
0/ - 211	% G	ravel % Sand % Fines						
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	13.2	11.8	18.7	24.3	32.0		

Test Results (ASTM D 422 & ASTM D 1140)								
Opening	Percent	Spec.*	Pass?					
Size	Finer	(Percent)	(X=Fail)					
3/4"	100.0							
1/2"	97.2							
3/8"	95.2							
#4	86.8							
#10	75.0							
#20	64.8							
#40	56.3							
#60	50.3							
#100	41.7							
#200	32.0							
*								

	<u>Material</u>	Description	<u>on</u>	
Brown silty sand				
Λ++	erberg Lim	ite (ASTM	D 4318)	
PL=	LL=	ILS (ASTIVI	PI=	
USCS (D 2487)=		sification AASHTO (I	VI 145)=	A-2-4(0)
D ₉₀ = 6.0126 D ₅₀ = 0.2454 D ₁₀ =	Coe D ₈₅ = 4.1 D ₃₀ = C _u =	fficients 881	D ₆₀ = (D ₁₅ = C _c =	0.5801
	Re	marks		
As received MC =	9.6%			
Date Received: Tested By:		Date Te	ested:	10/9/2017
Checked By:	MP			
Title:	Laboratory N	Manager		

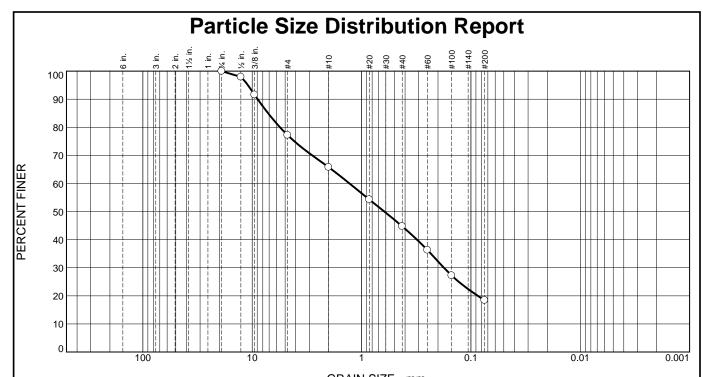
(no specification provided)

Source of Sample: B-107 Sample Number: S-4 **Depth:** 6-8'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)


Medford, Somerville, Arlington, Belmont, Waltham and Weston, MA

Boston, Massachusetts

Project No: 101038.102170

Figure

Date Sampled: 9/12/2017

GRAIN SIZE - mm.							
0/ - 21	% +3"				% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	22.8	11.4	21.1	26.3	18.4	

Test Results (ASTM D6913 & ASTM D1140)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
.75"	100.0						
.5"	97.9						
.375"	91.6						
#4	77.2						
#10	65.8						
#20	54.3						
#40	44.7						
#60	36.3						
#100	27.2						
#200	18.4						

	Material Descri	<u>ption</u>
Brown silty sand v	vith gravel	
Λ44,	orbora Limita (AC	TM D 4240)
PL=	erberg Limits (AS LL=	PI=
	Classification	nn.
USCS (D 2487)=		O (M 145)= A-1-b
-	Coefficient	s
D₉₀= 8.9183	D ₈₅ = 7.1542	D ₆₀ = 1.2889
D₅₀= 0.6190 D₁₀=	D ₃₀ = 0.1765 C ₁₁ =	D ₁₅ = C _c =
D ₁₀ -	u	O _C -
As received MC =	Remarks	
As received wic =	10.270	
Date Received:	1/31/18 Dat	e Tested: 2/5/18
Tested By:	MP/SB	
Checked By:		
litie:	Laboratory Manager	

* (no specification provided)

Source of Sample: B-108 Sample Number: S-2

Depth: 8-10'

CDM Smith

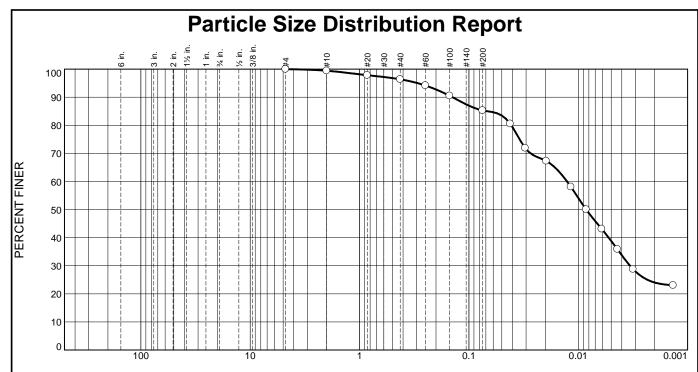
Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 1/8/18

Boston, Massachusetts Project No: 101038.102170


Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client: Massachusetts Water Resources Authority Weston Aqueduct Supply Main 3 Project Name: Tested By: MWRA line, MA Test Date: 2/1/2018 Project Location: 101038-102170 Project Number: Boring Number: B-110 Procedure: S-3 Temperature: 440° C Sample Number: Sample Depth (ft): 4-6 Sample Date: 12/19/2017

AS RECEIVED MOISTURE CONTENT	
Tin Mass (g)	96.87
Wet Mass of Sample & Tin (g)	188.25
Dry Mass of Sample & Tin (g)	152.97
Mass of Water (g)	35.28
Mass of Dry Soil (g)	56.10
Moisture Content (%)	62.9

ASH CONTENT					
Porcelain Dish Mass (g)	96.87				
Porcelain Dish + Oven Dried Soil (g)	152.97				
Mass of Oven Dried Soil (g)	56.10				
Mass of Dish & Burned Soil (g)	148.57				
Mass of Burned Soil (g)	51.70				
Mass of Organic Material (g)	4.40				
Ash Content (%)	92.2				
Organic Content (%)	7.8				

			(<u> GRAIN SIZE -</u>	· mm.		
0/ .3"	% Gr	ravel		% Sand	I	% Fines	
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.6	3.0	11.1	46.5	38.8

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
#4	100.0		
#10	99.4		
#20	97.8		
#40	96.4		
#60	94.2		
#100	90.5		
#200	85.3		
0.0419 mm.	80.6		
0.0306 mm.	71.9		
0.0196 mm.	67.3		
0.0117 mm.	58.1		
0.0085 mm.	50.0		
0.0061 mm.	43.1		
0.0044 mm.	35.9		
0.0032 mm.	28.8		
0.0014 mm.	23.0		

Dark brown organic clay with sand

Atterberg Limits (ASTM D 4318)

Coefficients

D₉₀= 0.1415 D₈₅= 0.0672 D₆₀= 0.0127 D₅₀= 0.0085 D₃₀= 0.0034 D₁₅= C_c=

Remarks

As received MC = 80.0%

Date Received: 1/31/18 Date Tested: 2/6/18

Tested By: MP/SB

Checked By: MP

Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-110 Sample Number: S-5 **Depth:** 8-10'

Date Sampled: 12/19/18

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

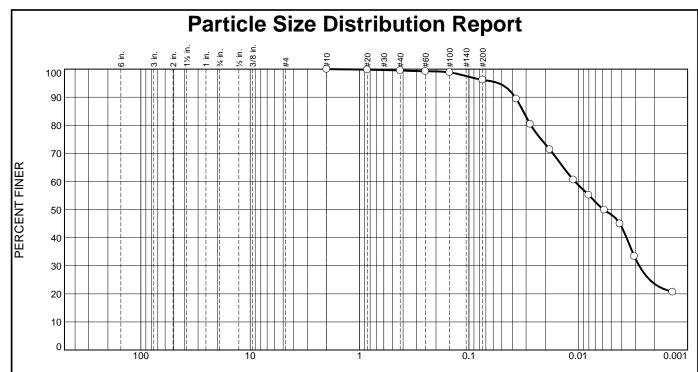
Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts

Project No: 101038.102170

	SOIL DATA									
SYMBOL SOURCE SAMPLE NO.		NATURAL DEPTH WATER CONTENT (%)		PLASTIC LIQUID LIMIT LIMIT (%) (%)		PLASTICITY INDEX (%)	uscs			
•	B-110	S-5	8-10'	80.0	41	98	57	ОН		
•	B-110	S-7	19-21'	31.8	17	33	16	CL		


Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts Project No.: 101038.102170

Tested By: AS	Checked Bv: MP
---------------	----------------

				(<u> GRAIN SIZE -</u>	· mm.			
ľ	0/ .2"	% Gr	ravel	% Sand			% Fines		
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
	0.0	0.0	0.0	0.0	0.5	3 3	47.9	48 3	

	ts (ASTM D6913		
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
#10	100.0		
#20	99.8		
#40	99.5		
#60	99.2		
#100	98.8		
#200	96.2		
0.0369 mm.	89.4		
0.0275 mm.	80.4		
0.0182 mm.	71.4		
0.0111 mm.	60.6		
0.0080 mm.	55.2		
0.0058 mm.	49.9		
0.0042 mm.	45.0		
0.0031 mm.	33.4		
0.0014 mm.	20.7		

Gray lean clay

Atterberg Limits (ASTM D 4318)

LL= 33 PI= 16

PL= 17

USCS (D 2487)=

CL CL AASHTO (M 145)= A-6(15)

Coefficients

D₉₀= 0.0377 D₈₅= 0.0318 D₆₀= 0.0107 D₅₀= 0.0059 D₃₀= 0.0028 D₁₅= C_c=

Remarks

As received MC = 31.8%

Date Received: 1/31/18 Date Tested: 2/5/18

Tested By: MP/SB

Checked By: MP

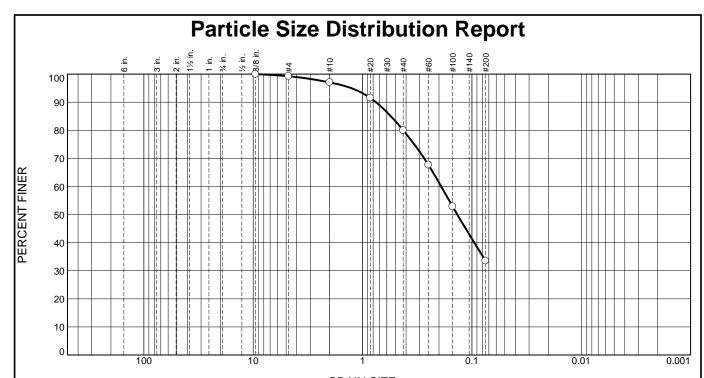
Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-110 Sample Number: S-7

Depth: 19-21'

Date Sampled: 12/19/18


CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts Project No: 101038.102170

	GRAIN SIZE - mm.								
	0/ - 211	% Gr	ravel		% Sand		% Fines		
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
	0.0	0.0	0.7	22	17.1	46.5	33.5		

Test Re	esults (ASTM D	6913 & ASTM I	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.375"	100.0		
#4	99.3		
#10	97.1		
#20	91.5		
#40	80.0		
#60	67.7		
#100	52.9		
#200	33.5		

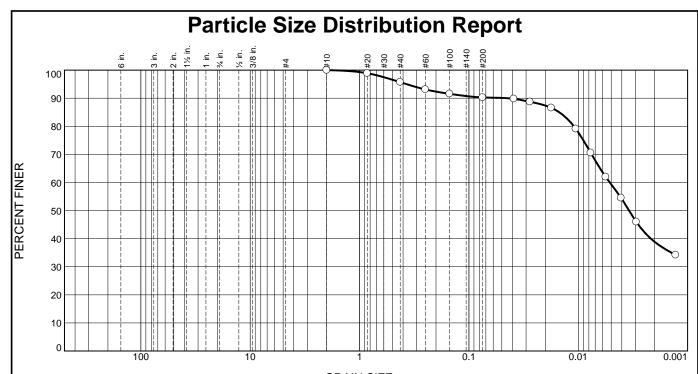
	<u>Material</u>	<u>Description</u>	
Brown silty sand			
Δ++	erhera Limi	ts (ASTM D 431	8)
PL=	LL=	PI=	<u>o,</u>
USCS (D 2487)=		sification AASHTO (M 145)	= A-2-4(0)
		ficients	
D₉₀= 0.7540 D₅₀= 0.1360	D ₈₅ = 0.5		0.1909
D ₁₀ = 0.1300	D ₃₀ = C _u =	D ₁₅ = C _c =	
	Re	marks	
As received MC =	26.2%		
Date Received:	1/31/18	Date Tested:	2/5/18
Tested By:	MP/SB		
Checked By:	MP		
Title:	Laboratory N	1 anager	

* (no specification provided)

Source of Sample: B-111 Sample Number: S-3B **Depth:** 5.5-6'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 12/18/17

Boston, Massachusetts

Project No: 101038.102170

GRAIN SIZE - mm.								
0/ .2"	% G	% Gravel		% Sand		% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	0.0	0.0	43	5.4	31.0	59.3	

Test Resul	ts (ASTM D6913	& D7928 & ASTM D1140)				
Opening	Percent	Spec.*	Pass?			
Size	Finer	(Percent)	(X=Fail)			
#10	100.0					
#20	98.9					
#40	95.7					
#60	93.1					
#100	91.6					
#200	90.3					
0.0389 mm.	89.8					
0.0276 mm.	88.7					
0.0176 mm.	86.6					
0.0105 mm.	79.1					
0.0077 mm.	70.6					
0.0056 mm.	62.0					
0.0041 mm.	54.5					
0.0029 mm.	46.0					
0.0013 mm.	34.2					

Dark gray lean clay with organics

Atterberg Limits (ASTM D 4318) PL=

Classification

USCS (D 2487)= CL**AASHTO** (M 145)= A-7-6

Coefficients D₉₀= 0.0440 D₅₀= 0.0034 D₁₀= **D₈₅=** 0.0149 **D₆₀=** 0.0051

D₃₀= D₁₅= C_C=

Remarks

As received MC = 55.7%

Date Received: 1/31/18 **Date Tested:** 2/6/18

Tested By: MP/SB Checked By: MP

Title: Laboratory Manager

(no specification provided)

Source of Sample: B-112 **Depth: 2-4' Date Sampled:** 12/18/17 Sample Number: S-2

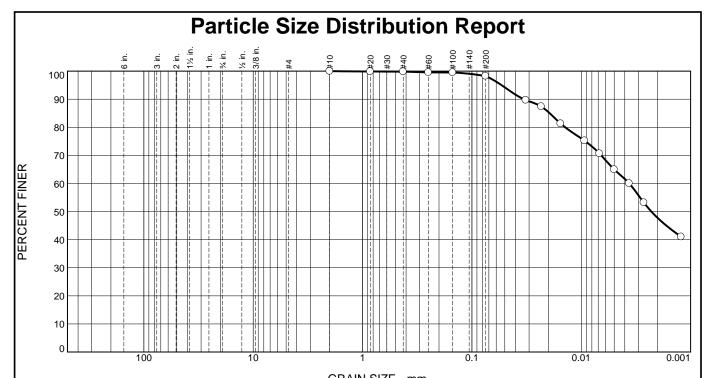
CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts Project No: 101038.102170


Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client: Massachusetts Water Resources Authority Weston Aqueduct Supply Main 3 Project Name: Tested By: MWRA line, MA Test Date: 2/5/2018 Project Location: 101038-102170 Project Number: Boring Number: B-112 Procedure: S-2 440° C Sample Number: Temperature: Sample Depth (ft): 2-4 Sample Date: 12/18/2017

AS RECEIVED MOISTURE CONTENT	
Tin Mass (g)	126.67
Wet Mass of Sample & Tin (g)	187.92
Dry Mass of Sample & Tin (g)	166.01
Mass of Water (g)	21.91
Mass of Dry Soil (g)	39.34
Moisture Content (%)	55.7

ASH CONTENT	
Porcelain Dish Mass (g)	126.67
Porcelain Dish + Oven Dried Soil (g)	166.01
Mass of Oven Dried Soil (g)	39.34
Mass of Dish & Burned Soil (g)	163.68
Mass of Burned Soil (g)	37.01
Mass of Organic Material (g)	2.33
Ash Content (%)	94.1
Organic Content (%)	5.9

	GRAIN SIZE - mm.							
% +3"	% Gravel			% Sand		% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	0.0	0.0	0.2	1.6	33.2	65.0	

Opening	Percent	Spec.*	Pass?		
Size	Finer	(Percent)	(X=Fail)		
#10	100.0				
#20	99.9				
#40	99.8				
#60	99.6				
#100	99.5				
#200	98.2				
0.0322 mm.	89.7				
0.0232 mm.	87.4				
0.0154 mm.	81.3				
0.0093 mm.	75.2				
0.0068 mm.	70.7				
0.0050 mm.	65.0				
0.0036 mm.	60.0				
0.0027 mm.	53.2				
0.0012 mm.	41.0				

Gray lean clay Atterberg Limits (ASTM D 4318) **PL=** 21 LL= 46 Classification USCS (D 2487)= CL**AASHTO** (M 145)= A-7-6(27) Coefficients D₉₀= 0.0335 D₅₀= 0.0023 D₁₀= **D₆₀=** 0.0036 **D₈₅=** 0.0194 D₃₀= D₁₅= C_C= Remarks As recieved MC = 38.7%Date Received: 1/30/18 **Date Tested:** 2/2/18 Tested By: SB Checked By: MP

Material Description

* (no specification provided)

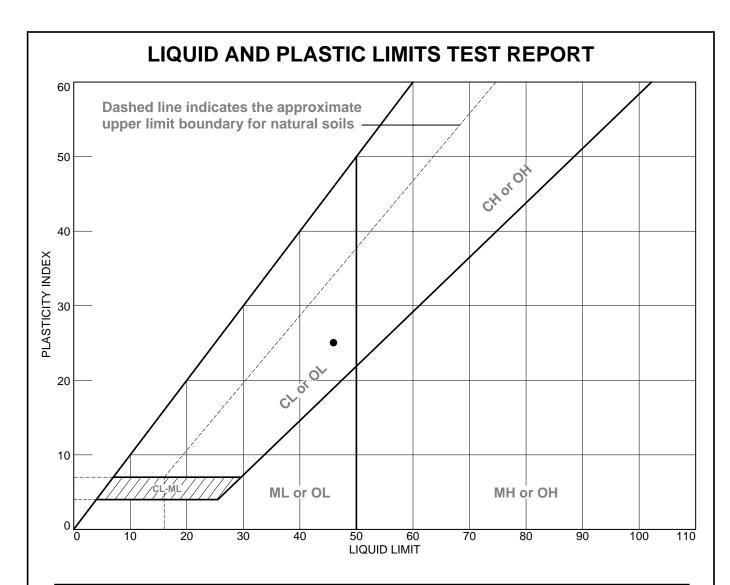
Source of Sample: B-112 Sample Number: S-6

Depth: 14-16'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)

Title: Laboratory Manager


Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 12/18/17

Project No: 101038.102170

Boston, Massachusetts

	SOIL DATA								
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS	
•	B-112	S-6	14-16'	38.7	21	46	25	CL	

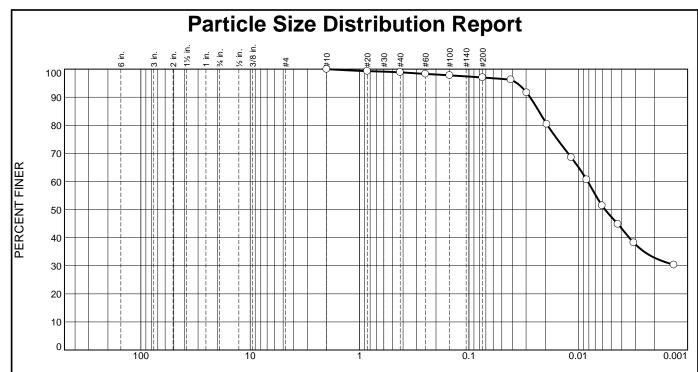
Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts Project No.: 101038.102170

Tested By: AS	Checked Bv: MP
---------------	----------------


Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client: Massachusetts Water Resources Authority Weston Aqueduct Supply Main 3 Project Name: Tested By: MWRA line, MA Test Date: 2/2/2018 Project Location: 101038-102170 Project Number: Boring Number: B-113 Procedure: S-3A Temperature: 440° C Sample Number: Sample Depth (ft): 4-5 Sample Date: 12/20/2017

AS RECEIVED MOISTURE CONTENT	
Tin Mass (g)	96.89
Wet Mass of Sample & Tin (g)	166.50
Dry Mass of Sample & Tin (g)	121.24
Mass of Water (g)	45.26
Mass of Dry Soil (g)	24.35
Moisture Content (%)	185.9

ASH CONTENT					
Porcelain Dish Mass (g)	96.89				
Porcelain Dish + Oven Dried Soil (g)	121.24				
Mass of Oven Dried Soil (g)	24.35				
Mass of Dish & Burned Soil (g)	116.10				
Mass of Burned Soil (g)	19.21				
Mass of Organic Material (g)	5.14				
Ash Content (%)	78.9				
Organic Content (%)	21.1				

GRAIN SIZE - mm.							
0/ - 211	% Gravel		% Sand		% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.0	1.1	1 9	49.6	47.4

Test Results (ASTM D6913 & D7928 & ASTM D1140)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
#10	100.0						
#20	99.3						
#40	98.9						
#60	98.3						
#100	97.8						
#200	97.0						
0.0413 mm.	96.3						
0.0296 mm.	91.6						
0.0194 mm.	80.4						
0.0116 mm.	68.6						
0.0084 mm.	60.7						
0.0061 mm.	51.4						
0.0043 mm.	44.8						
0.0031 mm.	38.2						
0.0013 mm.	30.3						

Dark gray fat clay with organics

Atterberg Limits (ASTM D 4318)

LL= 96 PI= 60

Coefficients

D₉₀= 0.0276 D₈₅= 0.0229 D₆₀= 0.0082 D₅₀= 0.0057 D₃₀= D₁₅= C_c=

Remarks

As received MC = 85.5%

Date Received: 1/31/18 Date Tested: 2/6/18

Tested By: MP/SB

Checked By: MP

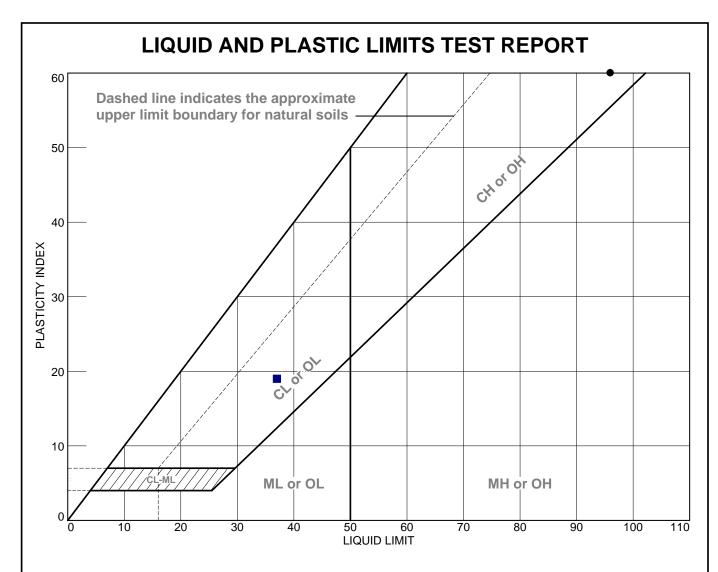
Title: Laboratory Manager

* (no specification provided)

Source of Sample: B-113 Sample Number: S-5 **Depth:** 9-11'

Date Sampled: 12/20/17

Project: Weston Aqueduct Supply Main 3 (WASM3)


Client: Massachusetts Water Resources Authority (MWRA)

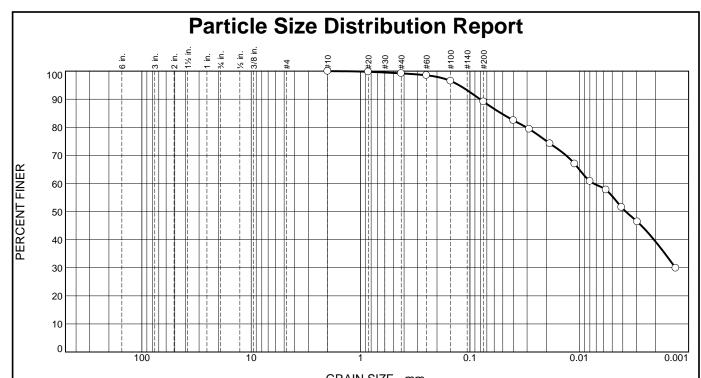
Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Project No: 101038.102170

CDM Smith

Boston, Massachusetts

SOIL DATA									
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs	
•	B-113	S-5	9-11'	85.5	36	96	60	CH/OH	
•	B-113	S-6B	14.5-16'	35.3	18	37	19	CL	


Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts Project No.: 101038.102170

Tested By: AS	Checked Bv: MP

GRAIN SIZE - mm.							
% +3"	% G	% Gravel % Sand			% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	0.0	0.0	0.0	0.8	10.1	33.6	55.5

Test Results (ASTM D6913 & D7928 & ASTM D1140)							
Opening	Percent	Spec.*	Pass?				
Size	Finer	(Percent)	(X=Fail)				
#10	100.0						
#20	99.8						
#40	99.2						
#60	98.5						
#100	96.5						
#200	89.1						
0.0400 mm.	82.5						
0.0287 mm.	79.4						
0.0185 mm.	74.2						
0.0110 mm.	67.0						
0.0080 mm.	60.8						
0.0057 mm.	57.7						
0.0041 mm.	51.5						
0.0029 mm.	46.4						
0.0013 mm.	29.9						

Gray lean clay

Atterberg Limits (ASTM D 4318) LL= 37

PL= 18

USCS (D 2487)= CL

Classification **AASHTO (M 145)=** A-6(17)

Coefficients

D₉₀= 0.0808 D₅₀= 0.0038 D₁₀= **D₆₀=** 0.0074 **D₈₅=** 0.0518 D₃₀= 0.0013 C_u= D₁₅= C_C=

Remarks

As received MC = 35.3%

Date Tested: 2/6/18

Date Received: 1/31/18 Tested By: MP/SB

Checked By: MP

Title: Laboratory Manager

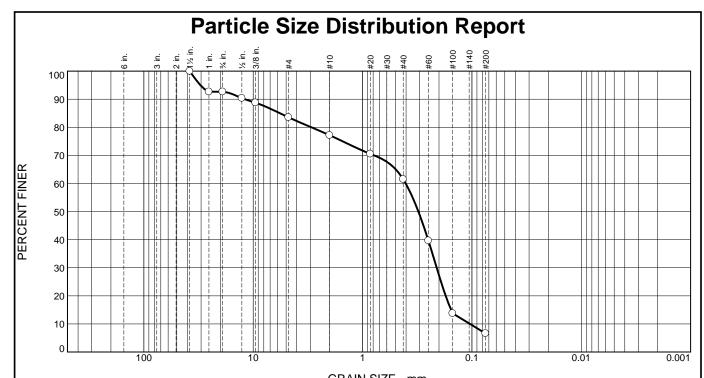
* (no specification provided)

Source of Sample: B-113 Sample Number: S-6B

Depth: 14.5-16'

Date Sampled: 12/20/17

CDM Smith


Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts

Project No: 101038.102170

GRAIN SIZE - mm.								
0/ - 2"	% G	ravel	% Sand			% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	7.3	9.2	6.3	15.7	54.9	6.6		

PL=

	Test R	esults (ASTM De	6913 & ASTM [D1140)		
	Opening	Percent	Spec.*	Pass?		
	Size	Finer	(Percent)	(X=Fail)		
	1.5	100.0				
	1	92.7				
	.75	92.7				
	.5	90.4				
	.375	88.8				
	#4	83.5				
	#10	77.2				
	#20	70.5				
	#40	61.5				
	#60	39.7				
	#100	13.8				
	#200	6.6				
_	* (no spe	ecification provided)			

Material Description

Brown poorly graded sand with silt and gravel

Atterberg Limits (ASTM D 4318) LL= PI=

Classification USCS (D 2487)= SP-SM **AASHTO** (M 145)= A-3

Coefficients

D₆₀= 0.4030 **D₁₅=** 0.1550 **C_c=** 1.05 **D₉₀=** 11.9549 **D₅₀=** 0.3086 **D₁₀=** 0.1042 D₈₅= 5.6922 D₃₀= 0.2099 C_u= 3.87

Remarks

As recieved MC = 14.6%

Date Received: 1/30/18 **Date Tested:** 2/5/18

Tested By: SB Checked By: MP

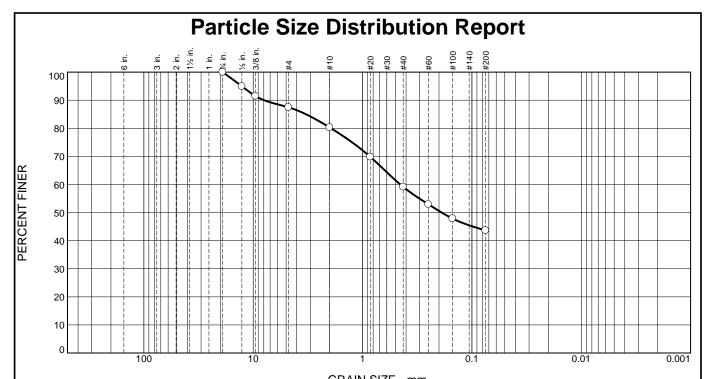
Title: Laboratory Manager

Source of Sample: B-114 Sample Number: S-1

Client: Massachusetts Water Resources Authority (MWRA)

Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA


Date Sampled: 1/9/18

Project No: 101038.102170

Depth: 6-8'

CDM Smith

Boston, Massachusetts

	GRAIN SIZE - mm.								
	0/ - 211	% Gı	ravel	I % Sand			% Fines		
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
	0.0	0.0	12.5	7.2	21.2	15.4	43.7		

Test R	esults (ASTM D	6913 & ASTM [D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.75	100.0		
.5	95.0		
.375	91.5		
#4	87.5		
#10	80.3		
#20	69.8		
#40	59.1		
#60	53.0		
#100	47.9		
#200	43.7		

Dark gray silty san	nd with organ	ics		
PL=	erberg Limi LL=	ts (ASTN	<u>/I D 4318)</u> PI=	
USCS (D 2487)=		ification AASHTO	(M 145)=	A-4(0)
D₉₀= 7.9661 D₅₀= 0.1889 D₁₀=	Coef D ₈₅ = 3.2 D ₃₀ = C _u =	ficients 948	D ₆₀ = (D ₁₅ = C _c =).4517
As recieved MC =		marks		
Date Received: Tested By:		Date ⁻	Tested:	2/5/18
Checked By:	MP			
Title:	Laboratory N	lanager		

* (no specification provided)

Source of Sample: B-115 Sample Number: S-2 **Depth:** 8-10'

CDM Smith

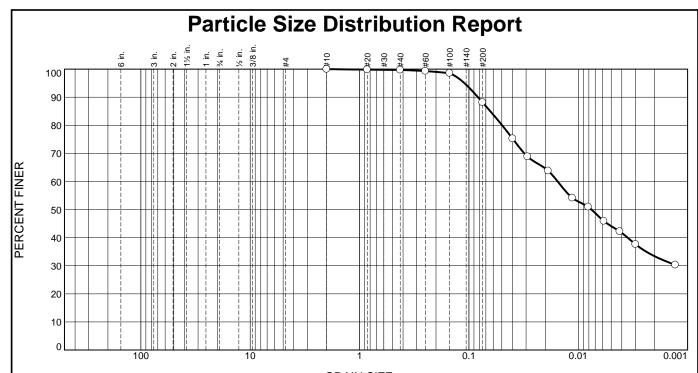
Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 1/10/18

Boston, Massachusetts Project No: 101038.102170


Geotechnical Engineering Laboratory

Standard Test Method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils(ASTM D2974)

Client: Massachusetts Water Resources Authority Weston Aqueduct Supply Main 3 Project Name: Tested By: MWRA line, MA Test Date: 2/5/2018 Project Location: 101038-102170 Project Number: Boring Number: B-115 Procedure: S-2 Temperature: 440° C Sample Number: Sample Depth (ft): 8-10 Sample Date: 1/10/2018

AS RECEIVED MOISTURE CONTENT	
Tin Mass (g)	96.88
Wet Mass of Sample & Tin (g)	158.98
Dry Mass of Sample & Tin (g)	134.88
Mass of Water (g)	24.10
Mass of Dry Soil (g)	38.00
Moisture Content (%)	63.4

ASH CONTENT	
Porcelain Dish Mass (g)	96.88
Porcelain Dish + Oven Dried Soil (g)	134.88
Mass of Oven Dried Soil (g)	38.00
Mass of Dish & Burned Soil (g)	132.82
Mass of Burned Soil (g)	35.94
Mass of Organic Material (g)	2.06
Ash Content (%)	94.6
_	
Organic Content (%)	5.4

	GRAIN SIZE - mm.							
0/ .2"	% Gravel			% Sand	I	% Fines		
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
	0.0	0.0	0.0	0.0	0.3	11.5	44 1	44 1

Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
#10	100.0		
#20	99.8		
#40	99.7		
#60	99.3		
#100	98.6		
#200	88.2		
0.0398 mm.	75.3		
0.0291 mm.	68.8		
0.0188 mm.	63.8		
0.0113 mm.	54.2		
0.0081 mm.	50.9		
0.0058 mm.	45.9		
0.0042 mm.	42.2		
0.0030 mm.	37.6		
0.0013 mm.	30.3		

Material Description Gray lean clay Atterberg Limits (ASTM D 4318) **PL=** 18 LL= 38 Classification USCS (D 2487)= CL**AASHTO (M 145)=** A-6(17) Coefficients D₉₀= 0.0826 D₅₀= 0.0076 D₁₀= **D₆₀=** 0.0154 **D₈₅=** 0.0637 D₃₀= D₁₅= C_C= Remarks As received MC = 32.5%Date Received: 1/31/18 **Date Tested:** 2/6/18Tested By: MP/SB Checked By: MP Title: Laboratory Manager

* (no specification provided)

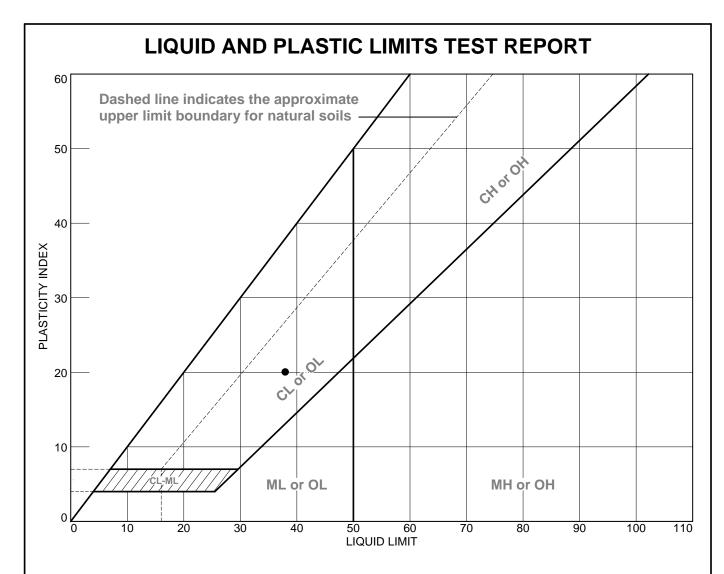
Source of Sample: B-115

Sample Number: S-4

Depth: 19-21'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

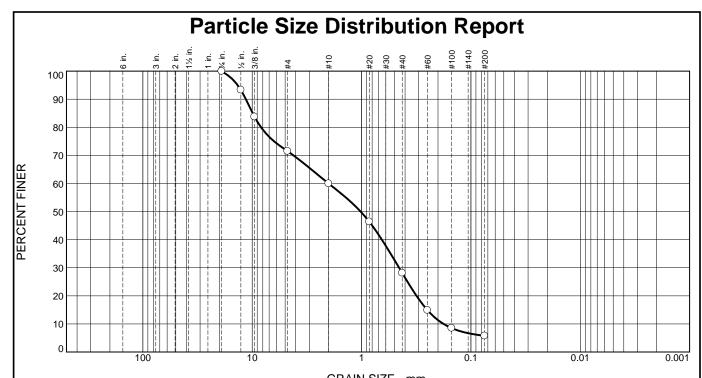
Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 1/10/18

Boston, Massachusetts

Project No: 101038.102170

	SOIL DATA										
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	uscs			
•	B-115	S-4	19-21'	32.5	18	38	20	CL			


Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts Project No.: 101038.102170

Tested By: AS Checked By: MP

GRAIN SIZE - mm.								
0/ - 211	% Gravel			% Sand		% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	28.5	11.5	31.9	22.4	5.7		

Test Ro	esults (ASTM D	6913 & ASTM I	D1140)
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
.75	100.0		
.5	93.3		
.375	83.8		
#4	71.5		
#10	60.0		
#20	46.4		
#40	28.1		
#60	14.9		
#100	8.5		
#200	5.7		

Dark gray poorly graded sand with silt and gravel

Atterberg Limits (ASTM D 4318) LL= PI=

PL=

 Classification

 USCS (D 2487)=
 SP-SM
 AASHTO (M 145)=
 A-1-b

Coefficients

 D90=
 11.4343
 D85=
 9.8979
 D60=
 2.0042

 D50=
 1.0198
 D30=
 0.4538
 D15=
 0.2513

 D10=
 0.1778
 Cu=
 11.27
 Cc=
 0.58

Remarks

As recieved MC = 11.0%

Date Tested: 2/5/18

Date Received: 1/30/18 Tested By: SB

Checked By: MP

Title: Laboratory Manager

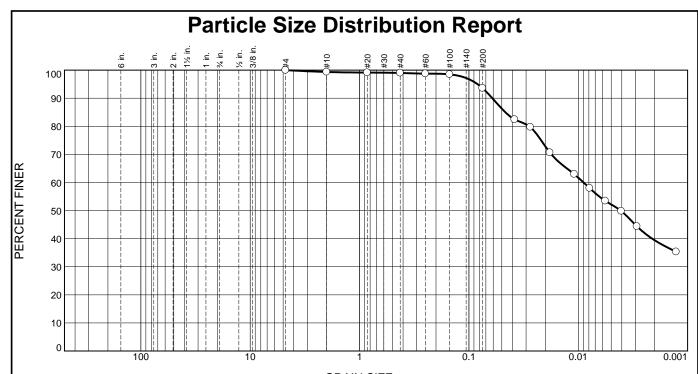
* (no specification provided)

Source of Sample: B-116 Sample Number: S-2

Depth: 8-10'

Date Sampled: 1/9/18

CDM Smith


Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts

Project No: 101038.102170

	GRAIN SIZE - mm.								
0/ - 211	0/ .3"	% Gravel			% Sand	I	% Fines		
	% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
	0.0	0.0	0.0	0.7	0.3	5.4	41.4	52.2	

Opening	Percent	Spec.*	Pass?	
Size	Finer	(Percent)	(X=Fail)	
#4	100.0			
#10	99.3			
#20	99.1			
#40	99.0			
#60	98.8			
#100	98.5			
#200	93.6			
0.0382 mm.	82.4			
0.0274 mm.	79.7			
0.0182 mm.	70.7			
0.0109 mm.	63.0			
0.0079 mm.	58.0			
0.0057 mm.	53.4			
0.0040 mm.	49.8			
0.0029 mm.	44.4			
0.0013 mm.	35.3			

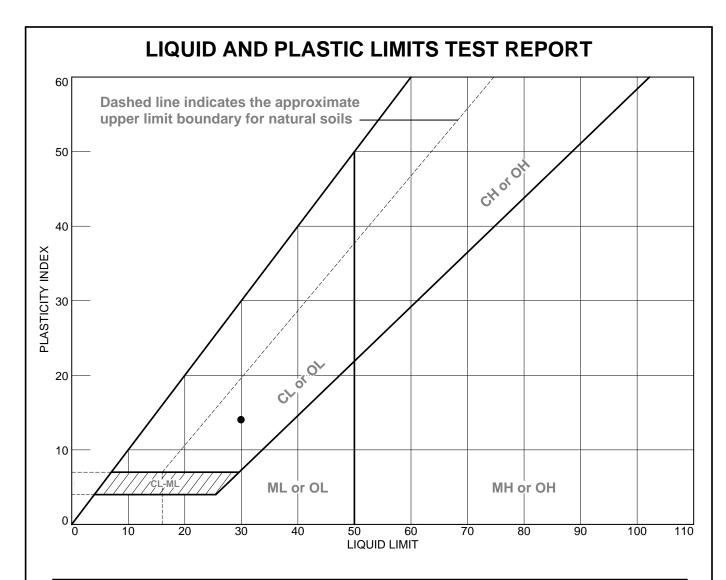
<u> Material Description</u>						
Gray lean clay						
Atterberg Limits (ASTM D 4318)						
PL= 16						
Classification						
USCS (D 2487)= CL AASHTO (M 145)= A-6(12)						
Coefficients						
$D_{90} = 0.0610$ $D_{85} = 0.0465$ $D_{60} = 0.0089$						
D ₅₀ = 0.0041 D ₃₀ = D ₁₅ =						
C_{0} C_{0} C_{0}						
Remarks						
As received $MC = 29.9\%$						
Date Received: 1/31/18 Date Tested: 2/6/18						
Tested By: MP/SB						
Checked By: MP						
Title: Laboratory Manager						

* (no specification provided)

Source of Sample: B-116 Sample Number: S-3 **Depth:** 14-16'

CDM Smith

Client: Massachusetts Water Resources Authority (MWRA)


Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Date Sampled: 1/9/18

Boston, Massachusetts

Project No: 101038.102170

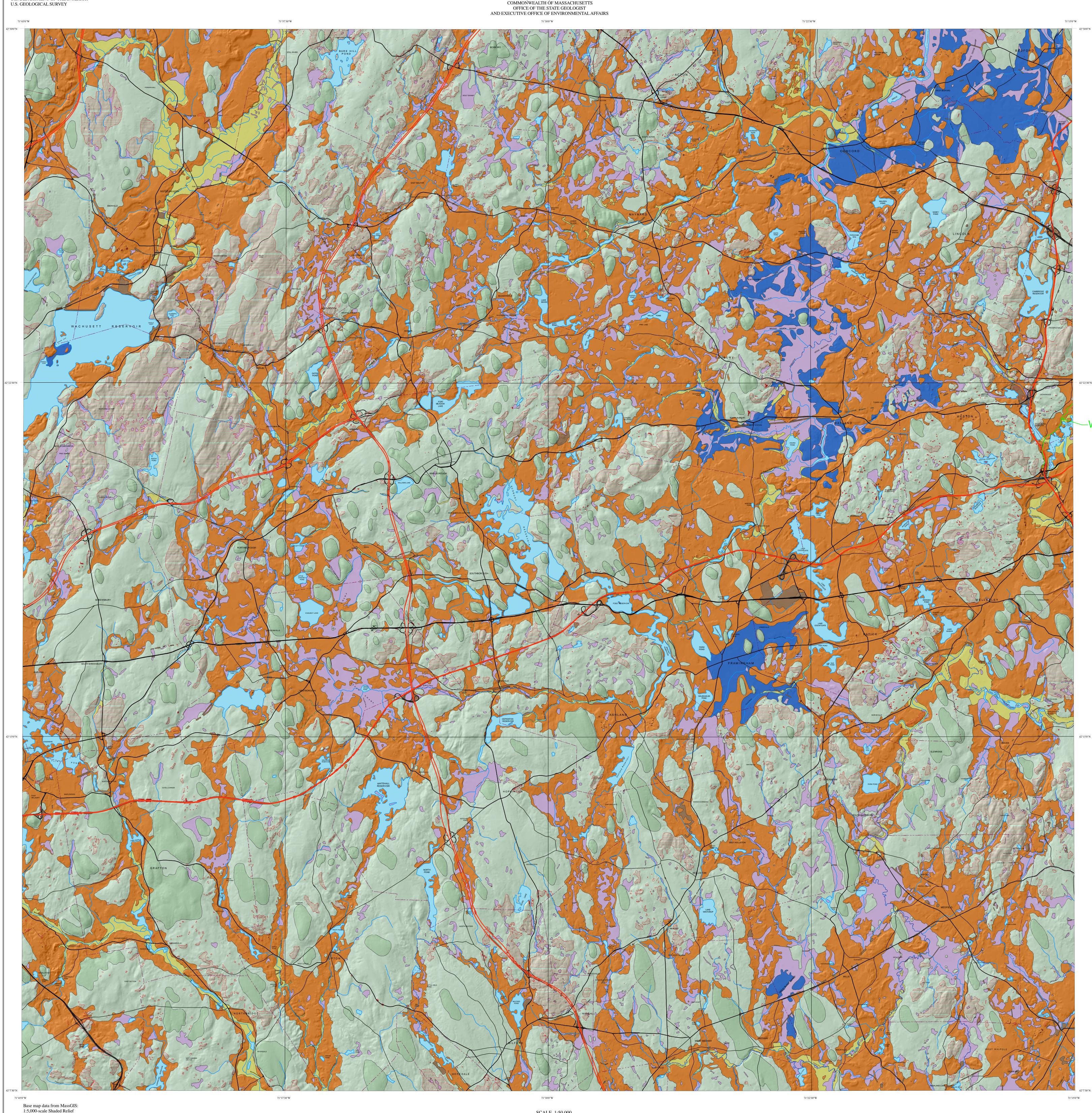
	SOIL DATA							
SYMBOL	SOURCE	SAMPLE NO.	DEPTH	NATURAL WATER CONTENT (%)	PLASTIC LIMIT (%)	LIQUID LIMIT (%)	PLASTICITY INDEX (%)	USCS
•	B-116	S-3	14-16'	29.9	16	30	14	CL

Client: Massachusetts Water Resources Authority (MWRA)

Project: Weston Aqueduct Supply Main 3 (WASM3)

Medford, Somerville, Arlington, Belmont, Waltham & Weston, MA

Boston, Massachusetts Project No.: 101038.102170


Tested By: AS	Checked Bv: MP

Appendix E

Regional Geology Maps

Surficial Geologic Map of the Clinton-Concord-Grafton-Medfield 12-Quadrangle Area in East Central Massachusetts, 2006

SURFICIAL GEOLOGIC MAP OF THE CLINTON-CONCORD-GRAFTON-MEDFIELD 12-QUADRANGLE AREA IN EAST CENTRAL MASSACHUSETTS Compiled by Janet R. Stone and Byron D. Stone

DESCRIPTION OF MAP UNITS POSTGLACIAL DEPOSITS

Artificial fill—Earth materials and manmade materials that have been artificially emplaced, primarily in highway and railroad embankments, and in dams; may also include landfills, urban development areas, and filled

Floodplain alluvium—Sand, gravel, silt, and some organic material, stratified and well sorted to poorly sorted, beneath the floodplains of modern streams. The texture of alluvium commonly varies over short distances both laterally and vertically, and generally is similar to the texture of adjacent glacial deposits. Along smaller streams, alluvium is commonly less than 5 ft thick. The most extensive deposit of alluvium on the map is along the Charles, Assabet, and Concord Rivers where the texture is predominantly sand, fine gravel, and silt, and total thickness is as much as 25 ft. Alluvium typically overlies thicker glacial stratified

Swamp deposits—Organic muck and peat that contain minor amounts of sand, silt, and clay, stratified and poorly sorted, in kettle depressions or poorly drained areas. Most swamp deposits are less than about 10 ft thick. Swamp deposits overlie glacial deposits or bedrock. They locally overlie glacial till even where they occur within thin glacial meltwater deposits.

GLACIAL STRATIFIED DEPOSITS

Sorted and stratified sediments composed of gravel, sand, silt, and clay (as defined in particle size diagram) deposited in layers by glacial meltwater. These sediments occur as four basic textural units—gravel deposits, sand and gravel deposits, sand deposits, and fine deposits. On this interim map, gravel, sand and gravel, and sand deposits are not differentiated and are shown as Coarse Deposits where they occur at land surface. Fine Deposits also are shown where they occur at land surface. Textural changes occur both areally and vertically (fig. 2), however subsurface textural variations are not shown on this interim map.

Coarse deposits include: Gravel deposits composed mainly of gravelsized clasts; cobbles and boulders predominate; minor amounts of sand within gravel beds, and sand comprises few separate layers. Gravel layers generally are poorly sorted and bedding commonly is distorted and faulted due to postdepositional collapse related to melting of ice. Sand and gravel deposits composed of mixtures of gravel and sand within individual layers and as alternating layers. Sand and gravel layers generally range from 25 to 50 percent gravel particles and from 50 to 75 percent sand particles. Layers are well to poorly sorted; bedding may be distorted and faulted due to postdepositional collapse. Sand deposits composed mainly of very coarse to fine sand, commonly in well-sorted layers. Coarser layers may contain up to 25 percent gravel particles, generally granules and pebbles; finer layers may contain some very fine sand, silt, and clay.

Fine deposits include very fine sand, silt, and clay that occurs as wellsorted, thin layers of alternating silt and clay, or thicker layers of very fine sand and silt. Very fine sand commonly occurs at the surface and grades downward into rhythmically bedded silt and clay varves. Locally, this map unit may include areas underlain by fine sand.

Thin till—Nonsorted, nonstratified matrix of sand, some silt, and little

crystalline rocks. Fine-grained bedrock sources include the red Mesozoic sedimentary rocks of the Connecticut River lowland, marble in the western

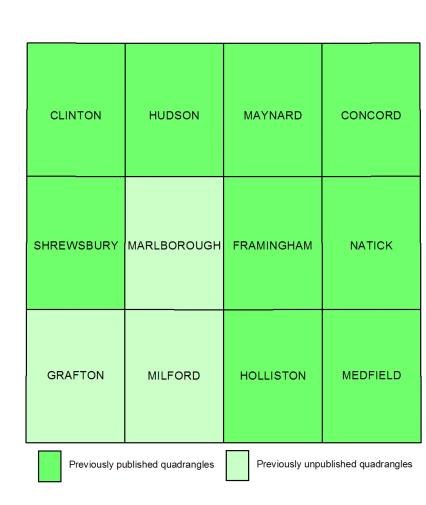
GLACIAL TILL DEPOSITS

clay containing scattered gravel clasts and few large boulders; in areas where till is generally less than 10-15 ft thick and including areas of bedrock outcrop where till is absent. Predominantly upper till of the last glaciation; loose to moderately compact, generally sandy, commonly stony. Two facies are present in some places; a looser, coarser-grained ablation facies, melted out from supraglacial position; and an underlying more compact, finer-grained lodgement facies deposited subglacially. In general, both ablation and lodgement facies of upper till derived from finegrained bedrock are finer grained, more compact, less stony and have fewer surface boulders than upper till derived from coarser grained

river valleys, and fine-grained schists in upland areas.

stained with iron and manganese oxides.

Thick till— Nonsorted, nonstratified matrix of sand, some silt, and little clay containing scattered gravel clasts and few large boulders at the surface; in the shallow subsurface, compact, nonsorted matrix of silt, very fine sand, and some clay containing scattered small gravel clasts in areas where till is greater than 10-15 ft thick, chiefly in drumlin landforms in which till thickness commonly exceeds 100 ft (maximum recorded thickness is 230 ft). Although upper till is the surface deposit, the lower till constitutes the bulk of the material in these areas. Lower till is moderately to very compact, and is commonly finer-grained and less stony than upper till. An oxidized zone, the lower part of a soil profile formed during a period of interglacial weathering, is generally present in the upper part of


the lower till. This zone commonly shows closely spaced joints that are

BEDROCK AREAS

Bedrock outcrops and areas of abundant outcrop or shallow **bedrock**— Solid color shows extent of individual bedrock outcrops; line pattern indicates areas of shallow bedrock or areas where small outcrops are too numerous to map individually; in areas of shallow bedrock, surficial materials are less than 5 ft thick.

PARTICLE DIAMETER **GRAVEL PARTICLES** SAND PARTICLES FINE PARTICLES

Grain-size classification used in this report, modified from Wentworth (1922)

7.5-minute quadrangles in this compilation

SOURCES OF DATA

See explanatory pamphlet for references **Clinton Quadrangle** Map units were reproduced from Koteff, 1966. Glacial Stratified Deposits in this quadrangle include deposits of glacial Lakes Nashua, Assabet, and Leominster, and other smaller valley deposits. Fine-grained glacial stratified deposits at land surface include glacial Lake Nashua lake-bottom deposits (unit Qnbb of Koteff, 1966). Areas of thick till shown on this map were inferred from photographic image and topographic analysis and drumlin symbols shown by Koteff (1966).

Hudson and Maynard Quadrangles Map units were reproduced from Hansen (1956). Glacial Stratified Deposits in this quadrangle include various glacial lake and stream deposits. Fine-grained glacial stratified deposits at land surface include lake-bottom deposits of glacial Lake Sudbury (parts of unit Qsg of Hansen, 1956); this unit has been extended beneath adjacent water bodies and postglacial deposits on this map. Drumlin till unit was reproduced from the published map; other areas of thick till were inferred from photographic image and

Concord Quadrangle Map units were reproduced from Koteff (1964). Glacial Stratified Deposits in this

topographic analysis.

quadrangle include deposits of glacial lakes Sudbury and Concord, and other smaller valley deposits. Fine-grained glacial stratified deposits at land surface include lake-bottom deposits of glacial Lakes Sudbury and Concord (unit Qlsb and Qlcb of Koteff, 1964); these units have been extended beneath adjacent water bodies and postglacial deposits on this map. Thick till areas shown on this map were inferred from photographic image and topographic analysis and drumlin symbols shown by Koteff (1964).

Shrewsbury Quadrangle Map units were reproduced from Shaw (1969). Glacial Stratified Deposits in this quadrangle include deposits of glacial Lakes Assabet and Nashua, and other smaller valley deposits. Thick till areas shown on this map were inferred from photographic image and topographic analysis and drumlin symbols shown by Shaw (1969).

Marlborough Quadrangle Stone, B.D., 1982, Unpublished field maps

Hildreth, C.T., and Stone, B.D., 2004, Surficial geologic map of the Marlborough Quadrangle, unpublished data.

Framingham Quadrangle Map units were reproduced from Nelson (1974). Glacial Stratified Deposits in this

quadrangle include deposits of glacial Lakes Charles and Sudbury, and other smaller valley deposits. Fine-grained glacial stratified deposits at land surface include lakebottom deposits of glacial Lakes Sudbury and Charles (unit Qlsb and Qlcb of Nelson, 1974); these units have been extended beneath adjacent water bodies and postglacial deposits on this map. Some contacts between till and glacial stratified deposits have been modified from Nelson (1974). Thick till areas shown on this map were inferred from photographic image and topographic analysis and drumlin symbols shown by Nelson

Natick Quadrangle Map units were reproduced from Nelson (1974). Glacial Stratified Deposits in this

Grafton Quadrangle

quadrangle include deposits of glacial Lakes Charles and Sudbury, and other smaller valley deposits. Fine-grained glacial stratified deposits at land surface include lakebottom deposits of glacial lake Sudbury (unit Qlsb of Nelson, 1974); this unit has been extended beneath adjacent water bodies and postglacial deposits on this map. Thick till areas shown on this map were inferred from photographic image and topographic analysis and drumlin symbols shown by Nelson (1974).

Haselton, G.M., and Fontaine, E., 1982, Unpublished field maps Distribution of bedrock outcrops from Walsh, G.W., 2005, Bedrock Geologic Map of the Grafton quadrangle, unpublished data.

Milford Quadrangle Haselton, G.M., and Fontaine, E., 1982, Unpublished field map

Holliston Quadrangle

Map units were reproduced from Volckman (1975). Glacial Stratified Deposits in this quadrangle include deposits of glacial Lake Medfield, and other smaller valley deposits. Fine-grained glacial stratified deposits at land surface include lake-bottom deposits of glacial Lake Medfield (unit Qm2 of Volckman, 1975); this unit has been extended beneath adjacent water bodies and postglacial deposits on this map. Thick till areas shown on this map were inferred from photographic image and topographic analysis and drumlin symbols shown by Volckman (1975).

Medfield Quadrangle

Map units were reproduced from Volckman (1975). Glacial Stratified Deposits in this quadrangle include deposits of glacial Lake Medfield, and other smaller valley deposits. Thick till areas shown on this map were inferred from photographic image and topographic analysis and drumlin symbols shown by Volckman (1975).

1:100,000-scale Hydrography

Geographic names from USGS

1:5,000-scale EOT Major Roads

1:25,000-scale Digital Quadrangle Template

Surficial Geologic Map of the Natick Quadrangle, Middlesex and Norfolk Counties, Massachusetts, 1974 INTRODUCTION

The Natick quadrangle is an area of about 55 square miles

in eastern Massachusetts centered about 12 miles west of

Boston. Although much of the topography is controlled by

lithology and structure of the bedrock, a considerable part of

the topography has been modified by glaciation. Bedrock,

most of which is concealed by a cover of surficial deposits, is

principally exposed in the northern half of the quadrangle.

Glacial features include drumlins, eskers or ice-channel fillings,

kames, kame terraces, gently sloping kame deltas, and flat-

lying lake-bottom deposits. A thin veneer of till covers a large

part of the hills in the quadrangle, and most of the younger

stratified glacial deposits lie at the lower levels, having been

Most of the quadrangle is drained by the Charles River,

which flows northeastward and empties into Boston Harbor.

A smaller area in the northwestern and western parts is

drained by the Sudbury River, which flows northward into the

Concord River, hence to the Merrimack River, and finally to

SURFICIAL DEPOSITS

Poorly sorted and mostly nonstratified loose to well-com-

pacted till is widely dispersed throughout the quadrangle. It

is most prevalent in the northern, central, and eastern parts,

where it forms a thin veneer of variable thickness over much

of the bedrock. A large part of the till is concealed by over-

Glacial-lake and glacial-stream deposits

down in or graded to the various stages of glacial Lake Charles (Clapp, 1904, p. 198) and Sudbury (Goldthwait, 1905, p. 274).

These deposits, which are widespread, particularly in the

southern half and western part of the map area, have been

grouped chronologically; the deposits are successively younger

northward. The older deposits were laid down in Lake Charles,

which formed as the glacial meltwaters were dammed by

earlier deposits and ice. With time, as the ice front retreated

northward and successively lower outlets were utilized,

younger stages of Lake Charles and Sudbury. The idea of

mapping groups of glacial deposits according to their chrono-

The distribution of materials is somewhat heterogeneous

throughout the area underlain by lake deposits, because of the

coalescing and overlapping of deltas and the many ice-front

positions from which the sand and gravel originated. Sorting

and degree of stratification of the deposits, as well as the

textures, vary widely. The deltaic deposits most commonly

have south-dipping foreset beds of silt, sand, and pebbly sand

with minor gravelly beds: these are overlain by gently south-

dipping topset beds of coarse pebbly to cobbly gravel. The

gravel has large clasts (boulders and cobbles) which are mostly

granitic in composition, ranging from granite to granodiorite.

Lesser amounts of siliceous gneiss, quartzite, metamorphosed

volcanic rock of intermediate to mafic composition, and gabbro

Lake-bottom deposits of well-sorted and thin stratified beds

of fine-grained silt and sand are present in the northwestern

part of the quadrangle. Clay may be present below the beds

of sand and silt but was not seen in the Natick quadrangle.

bottom deposits in the adjoining Concord quadrangle to the

Glacial-stream deposits

are not clearly graded to any lake level are present in the

north-central and northeastern parts of the quadrangle. In

part, these deposits form kames and kame terraces deposited

GLACIAL AND POSTGLACIAL HISTORY

Glacial ice moved across the Natick quadrangle in a generally

south to southeast direction. This direction is recorded in

the alinement of drumlins, together with grooves and striae

bearing. The effects of glacial erosion are small. The sur-

ficial deposits in the area between Cochituate and Wellesley

are at least 165 feet thick, and it is possible that a preglacial

valley in this area (Clapp, 1904, p. 201) was slightly overdeep-

ened by ice movements and later filled up with glacial ma-

terial. This valley is outlined on the map by bedrock contours.

These contours are based on well depths and show the altitude

of the bedrock surface under the thick cover of glacial de-

posits. The valley trends southeast from near Cochituate

toward Wellesley; near Lake Waban it turns northeast. The

northeast part of the valley follows the trend of and is obvi-

ously controlled by a major fault in the bedrock (Nelson,

unpub. data) which divides pre- from post-Devonian rock. This

covered valley probably represents the preglacial drainage

Till (Qt), deposited directly by the ice, is the oldest glacial

deposit, and, although relatively thin, it is widespread over

much of the quadrangle. Hansen (1956, p. 61) and Koteff

(1964) both report that till of two ages is present in adjoining

quadrangles to the northwest and north, respectively. Only

one till has been observed in the Natick quadrangle, and it

matches the description of the younger one discussed by Koteff

(1964); if the older till is present, it is buried by younger de-

posits. The till mapped in the Natick quadrangle probably

correlates with youngest till of Wisconsin age that Koteff

During retreat of the ice from the Natick and adjacent

quadrangles, melt waters were dammed by hills to the west,

south, and east and by the ice front to the north, and glacial

Lakes Charles and Sudbury were formed. Cols in drainage

divides to the south and east served as spillways and control-

led the lake levels. As the ice retreated farther north, lower

spillways were uncovered and the lakes were successively

lowered to the altitudes of the new spillways. Each succes-

sive level represents a lake stage, and gravel and sand were

Commonly, sand and gravel were deposited in contact with

the stagnant ice front, as well as around and over isolated

stagnant ice blocks that became separated from the main ice

sheet. When sand and gravel were deposited directly into

the lakes, deltas were formed. Relatively level sand and

gravel plains formed in places where deltas coalesced and

Both Lakes Charles and Sudbury occupied parts of the

Natick quadrangle. Lake Charles, the older of the two lakes,

has a complex history that is represented by five stages in the

Natick quadrangle. During each successively lower stage,

glacial deposits were laid down. Although the spillways that

controlled the stage levels of the lakes are located outside the

map area, the lake stage levels can be determined within the

quadrangle by the altitudes of the tops of foreset beds in delta

deposits. Four such altitudes have been obtained within the map area and one altitude from a nearby delta in the adjoin-

ing Framingham quadrangle. The locations of the deltas and

the altitudes of the tops of foreset beds are: just north of Sher-

born in the southwest part of the quadrangle, altitude 178

feet; near East Natick in the west-central part of map, alti-

tude 179 feet; near Cochituate close to the west edge of map,

altitude 178 feet; just west of Happy Hollow in the Framing-

ham quadrangle, altitude 179 feet; and just east of Morses

Because the delta positions are widespread throughout the

quadrangle, it is necessary to know what the postglacial tilt

of the land has been, before the altitude differences between

the various lake stages can be determined. Koteff (1963)

found that postglacial tilt in the adjoining Concord quadran-

gle was between 5 and 6 feet per mile; therefore, using Koteff's

tilt value and projecting the known lake levels, the relative levels of the different stages can be found. The lake stages,

named after geographic locations near the deltas and listed

in order of decreasing altitude, are the Sherborn, East Natick,

Cochituate, Happy Hollow, and Morses Pond stages.

Pond in the center of the map area, altitude 150 feet.

elsewhere where groups of deltas are closely spaced.

for the Sudbury River (Clapp, 1904, p. 201).

(1964) described in the Concord quadrangle.

deposited in or graded to each level.

Glacial-stream deposits (or outwash) forming valley fill that

Koteff (1964) reports that some silty clay is present in lake-

logic relationships was proposed by Jahns (1941, 1953).

younger deposits were laid down in or graded to successively

Most of the stratified deposits in the quadrangle were laid

lying stratified surficial material.

are also present.

in contact with stagnant ice.

the Atlantic Ocean at the northeast corner of the state.

deposited in or graded to glacial lakes formed during deglacia-

tion, when melt waters were temporarily dammed by ice.

The oldest lake deposits (Qlc1)and associated ice-contact deposits (Qc1) were formed during the Sherborn stage. These

eposits are present in the southwestern part of the quadran-

gle and were laid down during the highest known level that

Lake Charles attained in the Natick quadrangle. The next

younger lake deposits (Qlc2) were formed during the East

Natick stage when the lake level was lowered about 12 feet.

These deposits occupy a large part of the Dug Pond-Lake

Cochituate-Natick area. Later, during the Cochituate stage

after the lake level was lowered about 10 feet more, the lake

deposits (Qlc3) formed. Extensive ice-contact deposits (Qc2)

were formed during the following Happy Hollow stage, when

the lake level was about 5 feet lower than that of the preced-

ing Cochituate stage. During this stage, the stagnant ice

The youngest lake deposits (Qlc4) were formed during the

Morses Pond stage, when the lake level was about 14 feet

lower than that of the Happy Hollow stage. These deposits

are exposed over a large area in the Wellesley Fells-Wellesley

Deposition in front of stagnant ice created a sandy and

gravelly kame complex (Qc3) of considerable extent in the eastern part of the quadrangle; some of the topographic fea-

tures include eskers, kame terraces, kame deltas, and kettles. Deposits associated with these features were probably laid down during the Morses Pond stage just after or perhaps, in

part, contemporaneously with the ice-contact deposits (Qc2)

just north of Dudley Pond and with the deposits of outwash

The distribution of the deposits of Lake Charles, especially

those of the Morses Pond stage, suggests that the ice front

retreated at a faster rate in the western part of the Natick

quadrangle then elsewhere in the quadrangle. The area from

Dug Pond to Cochituate in the western part of the map is part

of a broad lowland that extends westward well into the Fram-

ingham quadrangle. This lowland is bordered on the east by

the somewhat higher terrain in the central part of the quad

ing lowland centered around East Natick.

graded to the Morses Pond stage.

earlier than Qo2.

ously with QIs1 and QIs2.

ity of Wayland.

rangle. These highlands are broken by a southeasterly trend-

As the ice melted in the lowlands to the west, ice probably

remained in parts of the East Natick lowlands. Deposits of

the East Natick stage are present on the west side of Morses

Pond, whereas deposits of the Morses Pond stage (29 feet

lower lake altitude) are present on the east side. This, to-

gether with the fact that numerous ice-contact slopes are present in the lowlands from Pickerel Pond to Lake Waban,

strongly suggests that the ice front or large blocks of ice oc-

cupied the lowlands from the East Natick stage through

at least parts of the Morses Pond stage. It is believed that

ice in this area and possibly in the adjacent highlands formed

a southward-extending lobe in the central part of the quad-

rangle. By the time the spillway that controlled the altitude

of the Morses Pond stage was uncovered, the ice lobe had largely melted, and sand and gravel were deposited in or

With continued wastage of the ice after deposition of the

Morses Pond stage lake deposits, a lower spillway for Lake

Charles was uncovered to the east of the quadrangle near the

Blue Hills. The lake was then greatly lowered or completely

of sand and pebbly gravel with some cobbles were deposited

along broad stretches of the Charles River. Deposits of sand

and gravel of uncertain origin (Qsg) also occupy a part of the Charles River in the vicinity of Newton, in the northeastern

part of the quadrangle, and in a small area near Weston Sta-

deposited in a broad valley (Qo1) in the north-central part of

the quadrangle and along the western side of Reeves Hill

(Qo2) in the northwestern part. Deposition of Qo2 was, in

part, contemporaneous with Qo1, which began and ended

Sand and gravel were laid down during five stages of Lake

Sudbury in the northern part of the Natick quadrangle. The

earliest deposits (Qls1) were those that were laid down in or

graded to a small irregular relatively high-level lake approxi-

mately 2 miles southeast of Wayland; the lake developed be-

tween the ice front to the north and hills to the south and is

herein called the Wayland stage of Lake Sudbury. This lake

east that was at a lower level, and which is here called the

high level of the Weston stage. These lakes were at first

separated from each other by uplands and ice, but, with con-

tinued ice retreat, the Wayland stage eventually dropped to

the level of the Weston stage. A spillway about 195 feet in

altitude, located southeast of Weston Reservoir, was the prin-

cipal outlet for the high level of the Weston stage; gravel and

sand deposited during this stage are shown as QIs2 on the

map. Ice-contact deposits Qc4 were formed contemporane-

The spillway controlling the low level of the Weston stage is located southeast of Weston at an altitude of 177 feet. When

this outlet was uncovered, the high level of the Weston stage

The next lower outlet for Lake Sudbury is about 0.6 mile

north of the previous spillway, just north of Weston Station

in the Concord quadrangle at an altitude of about 160 feet.

This outlet controlled the first part or upper level of the

Cherry Brook stage (Koteff, 1963). Deposits of sand and

gravel (Qls4) associated with the upper-level Cherry Brook

stage (Koteff, 1963) are present in the area west of Cherry

the north edge of the map between Wayland and Weston.

This spillway controlled the lower level of the Cherry Brook

stage. The deposits (QIs5) of the lower level are in the vicin-

Cherry Brook stage. The sand and gravel (Qo3) in the val-

leys draining into Stony Brook and a part of the Charles River

near Waltham are the youngest glacial stream deposits in the

Late- and postglacial surficial deposits include wind-blown

silt and fine sand, stream-terrace deposits, alluvium, and

swamp deposits. The wind-blown sand, which probably was

deposited prior to the extensive development of soils after

glaciation, is widely dispersed throughout the map area. The

than 2 feet; hence, they are too thin to show on the map.

thickness seldom exceeds 3 feet and is most commonly less

The stream-terrace deposits (Qrt) are not extensive; they

are shown along the Charles River at several places where the

river valley is fairly broad. Stream-terrace deposits are mostly

derived from upstream glacial-stream and glacial-lake de-

posits. Alluvium (Qal) is present as thin patches in many

small streams and along the broader flood plains of the Charles

in the quadrangle. They were formed during postglacial

APPLIED GEOLOGY

Gravel and sand are the most important surficial resources

in the quadrangle. Much gravel and sand has been extracted

from ice-contact deposits, from glacial-lake and glacial-stream

deposits, and, to a lesser extent, from lake-bottom deposits.

The most extensive gravel and sand deposits are those laid

down during the various stages of Lake Charles in the south-

ern half of the quadrangle. Gravel and sand are extracted

sporadically from several pits shown on the map; for example,

in 1971, gravel and sand were extracted from a large pit com-

plex west of Morses Pond. Because much of the area under-

lain by the thick sand and gravel deposits is presently occupied

by business complexes, schools, housing developments, estates. or parks, exploitation of these deposits is not feasable at the

Organic material in the numerous swamps, plus the deposits

of wind-blown silt, when thick enough, could be used as a soil-

enriching material. Most of the till could be used as subgrade

system, mainland zone

zone 19, shown in blue

Base from U.S. Geological Survey, 1958

10,000-foot grid based on Massachusetts coordinate

1000-meter Universal Transverse Mercator grid ticks,

periods in poorly drained areas.

material for highways.

Relatively thin swamp deposits (Qs) are widely dispersed

Lake-bottom deposits (QIsb) were laid down during the

The next lower outlet at about 155 feet in altitude is near

was lowered about 20 feet; the surficial materials deposited

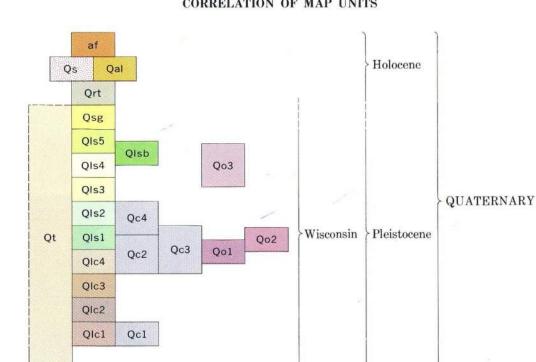
during the low-level stage are shown as QIs3 on the map.

As the ice front retreated, outwash sand and gravel were

After Lake Charles was drained, deposits consisting chiefly

drained, thus ending its history in the Natick quadrangle.

front was just north of Happy Hollow


Hills vicinity

(Qo1 and Qo2).

MATERTOWN 3.8 MI. \$71°15'

NTERCHANGES 41 & 42 (JUNC. MASS. 2) 3.8 MI. 1 (128

GQ-1151

DESCRIPTION OF MAP UNITS

Yellowish-orange wind-blown silt and sand, generally less than 2 ft. thick, is irregularly spread over surficial deposits but has not been mapped separately

ARTIFICIAL FILL AND GRADED AREAS - Partly cut and partly filled.

sand. Overlies alluvium, river-terrace deposits, till, lacustrine, and ice-contact deposits

mostly derived from older glacial deposits. Occupies flood plain of the Charles RIVER TERRACE DEPOSITS (HOLOCENE) — Pale-brown, light-tan, yel-

relationship to nearby surficial deposits is unclear. Two unrelated deposits, one near Weston Station and the other along the Charles River near Newton GLACIAL-STREAM DEPOSITS (WISCONSIN)—Light-yellowish-brown mod-

erately well sorted and stratified gravel, coarse pebbly sand, and medium sand. Forms broad flat areas or terraces adjacent to streams. Locally mantled by swamp deposits; locally merges with ice-contact deposits. Distribution of collapse structures erratic. Oldest is Qo1

Outwash on west side of Reeves Hill

High-level outwash in north-central part of quadrangle

GLACIAL-LAKE AND GLACIAL-STREAM DEPOSITS (WISCONSIN) -

Deposits of Lake Sudbury Low level of Cherry Brook stage

Qls2 High level of Weston stage QIs1 Wayland stage

Deposits of Lake Charles Morses Pond stage

Cochituate stage East Natick stage

> locally associated with ice-channel fillings; e, esker. Deposited by melt-water streams that flowed from adjacent stagnant ice fronts; gradational with glacial-lake deposits to south. Oldest is Qc1

Qc4 Formed when stagnant ice mass was in eastern part of map

Formed when stagnant ice mass was in vicinity of Dudley Pond

Formed when stagnant ice mass was near Sherborn

LAKE-BOTTOM DEPOSITS (WISCONSIN) - Yellowish-brown to grayishorange well-sorted and stratified fine sand and silt; clay probably present at

depth but has not been observed in surface exposures. Deposits exposed in northwestern part of quadrangle but thicknesses are unknown; shown only

silt; some clay-sized materials. Clay content variable; texture ranges from compact to loose and sandy; forms a veneer over much of bedrock. Thicknesses are not known, but the till is thickest in the drumlins; elsewhere the thickness is estimated to be less than 20 ft. Derived from bedrock and sur-

ficial material; deposited directly by glacial ice

- Contact — Approximately located

Drumlin or drumlinoid hill—Line indicates inferred direction of ice flow

→ Glacial striation — Arrow indicates inferred direction of ice flow. Tip of arrow at point of observation

Sand and gravel pits

Well — Data from U.S. Geological Survey; depth given in feet

Material classification - Number indicates thickness, in feet; g, gravel; s, sand; sl, silt; p, pebbles; c, cobbles; b, boulders; f, fine sand; m, medium sand; letter symbols indicate size distribution in order of decreasing abundance

Delta — Number indicates altitude of top of foreset beds Generalized sand and gravel distribution within stratified deposits - In most exposures exceeding 8 ft. in thickness, sand and gravel are present; therefore,

Mostly sand

______ Contours — Showing altitude of the bedrock surface where bedrock is concealed by surficial deposits. Datum is mean sea level; contour interval 25 ft.

CORRELATION OF MAP UNITS

Geology concealed in places by construction

SWAMP DEPOSITS (HOLOCENE) — Brownish-black muck, peat, silt, and

ALLUVIUM (HOLOCENE) — Pale-brown, light-brown, pale-yellowish-brown, and grayish-orange poorly stratified sand, silt, and gravel with minor clay;

lowish-brown gravel, sand, and silt along the Charles River. Deposits are moderately well sorted and stratified, but stratification is not always distinct SAND AND GRAVEL UNDIFFERENTIATED (HOLOCENE AND PLEIS-TOCENE) — Yellowish-brown stratified sand and gravel of varied texture;

Outwash associated with Stony Brook drainage and Charles River near Wal-

Light-yellowish-brown to gray gravel, sand, and silt laid down in or graded to the various lake levels of Lakes Charles and Sudbury; includes ice-contact fillings, kame terraces, deltas, and some undivided outwash; e, esker. Collapse structures, knobs, and kettles locally abundant. Gravel commonly overlies pebbly sand and sand; sorting and stratification are less well developed in the gravel than in sand and silt; large clasts in gravel are subrounded to rounded; textures are variable. Topset beds of delta deposits are poorly to moderately sorted and stratified; both topsets and foresets dip south; bottomset beds have not been observed. Large flat-topped deltas and associated deposits were derived from melt-water streams issuing from various stagnant ice fronts as the glacier receded north. As much as 165 ft. of mixed sand and gravel and possibly some till present in parts of area formerly covered by

QIs4 High level of Cherry Brook stage Qls3 Low level of Weston stage

Qlc3 Qlc2

Sherborn stage ICE-CONTACT DEPOSITS (WISCONSIN) - Light-yellowish-brown generally poorly sorted and stratified gravel and sand of varying sizes; deposits characterized by collapse structures, kettles, and knobs, very irregular in thickness;

Formed when stagnant ice mass was southeast of Wayland

Qc3 Qc2

Qc1

for the Cherry Brook stage of glacial Lake Sudbury TILL (WISCONSIN) - Light-gray to greenish-gray poorly stratified and poorly sorted heterogeneous mixture of gravel, boulders, cobbles, pebbles, sand, and

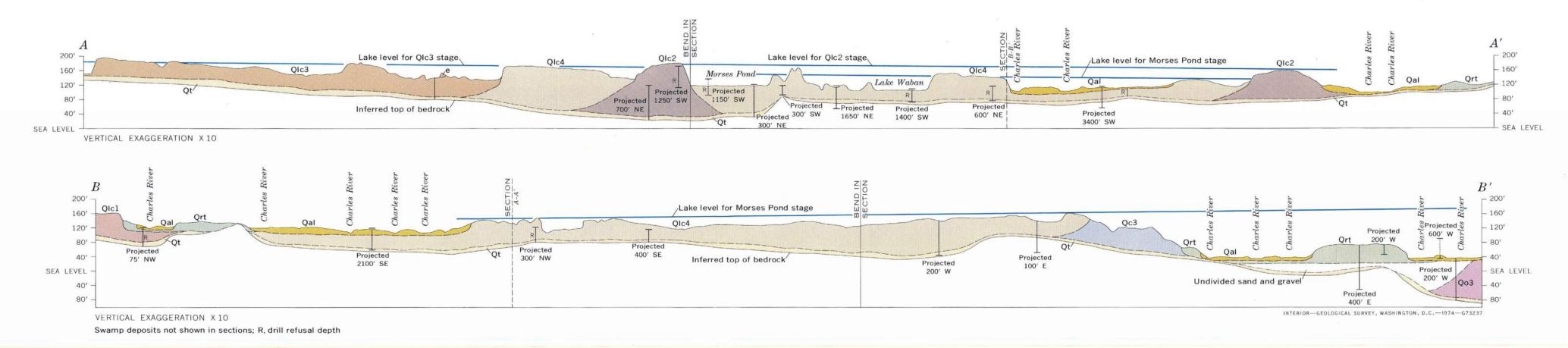
BEDROCK EXPOSURES — Solid color represents individual outcrops; ruled pattern indicates closely spaced outcrops where surficial deposits are thin

Melt-water channel — Glacial melt-water channel or spillway cut in bedrock or

surficial materials. Arrow indicates inferred direction of flow

the distribution of surficial material is highly generalized

Very fine sand


Mixed sand and gravel

REFERENCES Clapp, F. G., 1904, Relations of gravel deposits in the northern part of glacial Lake Charles, Massachusetts: Jour. Geology, v. 12, p. 198-214. Goldthwait, J. W., 1905, The sand plains of glacial Lake Sudbury: Harvard Coll. Mus. Comp. Zoology Bull., v. 42, p. 263-301. Hansen, W. R., 1956, Geology and mineral resources of the Hudson and Maynard quad-

America Bull., v. 52, p. 1910. _1953, Surficial geology of the Ayer quadrangle, Massachusetts: U.S. Geol Survey Geol. Quad. Map GQ-21. Koteff, Carl, 1963, Glacial lakes near Concord, Massachusetts: U.S. Geol. Survey Prof

rangles, Massachusetts: U.S. Geol. Survey Bull. 1038, 104 p. Jahns, R. H., 1941, Outwash chronology in northeastern Massachusetts [abs.]: Geol. Soc

Paper 475-C, p. C142-C144. 1964, Surficial geology of the Concord quadrangle, Massachusetts: U.S Geol. Survey Geol. Quad. Map GQ-331.

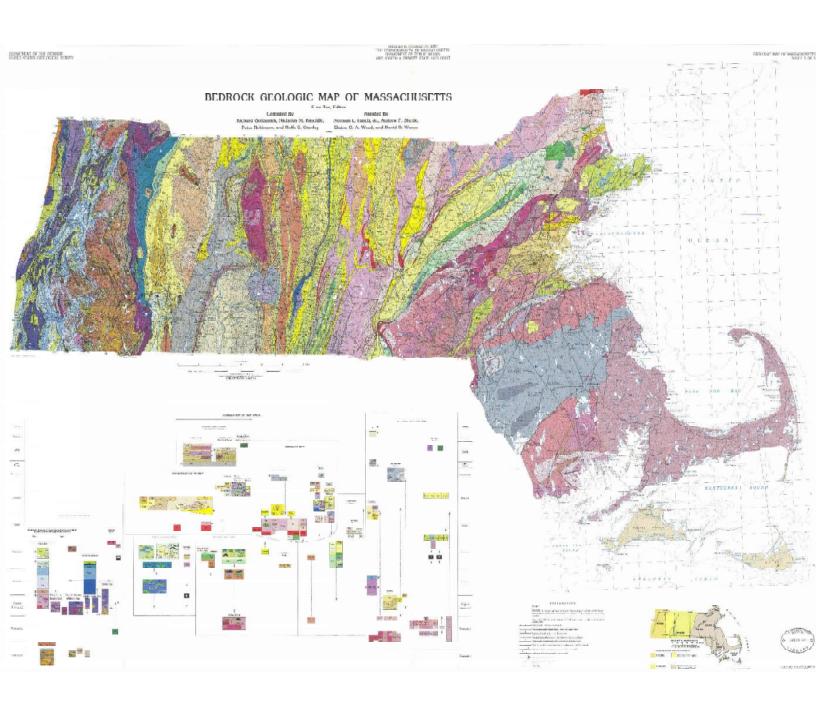
DATUM IS MEAN SEA LEVEL

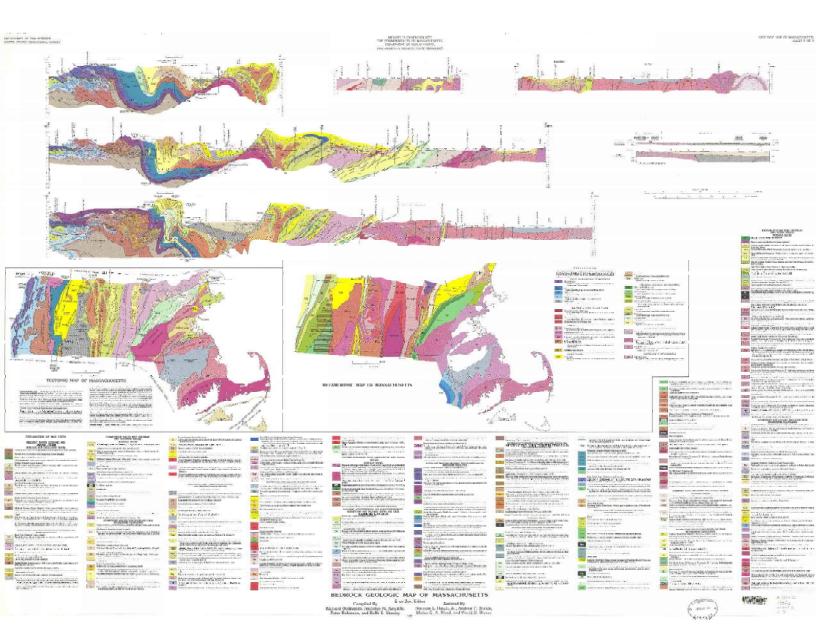
1 .5 0

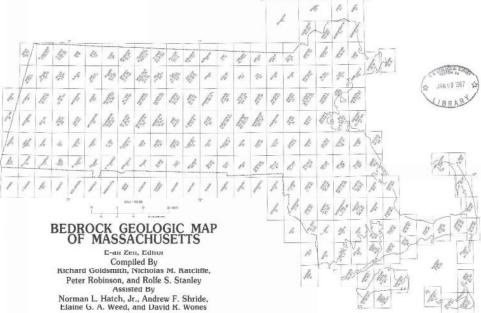
PREPARED IN COOPERATION WITH

THE COMMONWEALTH OF MASSACHUSETTS

DEPARTMENT OF PUBLIC WORKS


Hundreds





Geology mapped in 1970 by A. E. Nelson;

Bedrock Geologic Map of Massachusetts, 1983

1983

All: Man Ment. 1971. The beliesce purion of part at its Fraheld Europack vogli. Homeshandth: New York. On College of New York. All: Case. 6 pt (1984) 22.

York. On College of New York. All: Case. 6 pt (1984) 22.

York. On College of New York. All: Case. 6 pt (1984) 22.

York. On College of New York. All: Case. 2012. Case. 2012.

An American Company of the Company o

Communication of the Communica

[Section M.]
 [Sect

HII. Harmood, U. S., 1979b. Gedrook geslings: rasp of the Redolk quadrangle. Connection U.B. Geological Servey Geslings Quadrage Map 60-1519, scale 125,000. Distribut.
 HIII. Hencood, I. S. 1975b, Behood perlager may not be behind the partial partial general processor of the Connection U.S. Geological Survey Geologic Quadrangle Map CQ-1518, scale 128,000 (S.

Consense U.S. Geologic Eveny Geology Coulomy New QC-3331, and USBNO ye. The Shoused, D.S. of Builder, N. H., 1985, proposition claim Ciliano Cornel and State of the College Consense of the North Agent contrast, Circupture and Art North Agent contrast, Circupture and College Consense of the North Agent contrast, Circupture and State Online Consense North College Consense of the Association (No. College Consense Association College College Consense College Co

Segminhouse, M.S. (eds.), 155 — Embourgers, Nr. Ungoles, Nr. 1987, progradual and control of the control of the

Compared to the Compared Service (Compared Service) (Compared Service

H. I. Codeput Servey Deposit of Servey in the Management of Servey A. D. 1970. Before gaining on the Servey in the Servey Servey

Poulla, L. M., and Kouyi, E. S., 1930, Tanking of the Teams quadrangic Anna Setting Sh. ser., 58, p. 557-200. Black Williamshare, N. Alaine, Handel QL, Quen, A. W. 1971. Breitek, geology of Bhode Island. U.S. Geologial J. 1954, slep. [Objective, Georgiacile, Univariate Providence, Black, 1448.

January L., and J. Lapherter. Companies. International States and Associated Proceedings of the Conference of the Conference

18. Martin, N. 19. (2015). A price of some comments for Service and an enhanced relative price forms from the Control of Service and Serv

Recent Streeming of Stomatomers Geology Despites (1). Stockholm)

Reduced, Their and Dispited, O. N. serviced delice. 2777, Annier, October (1) (Stomatomers)

Reduced, Their and Dispited, O. N. serviced delice. 2777, Annier, October (1) (Stomatomers)

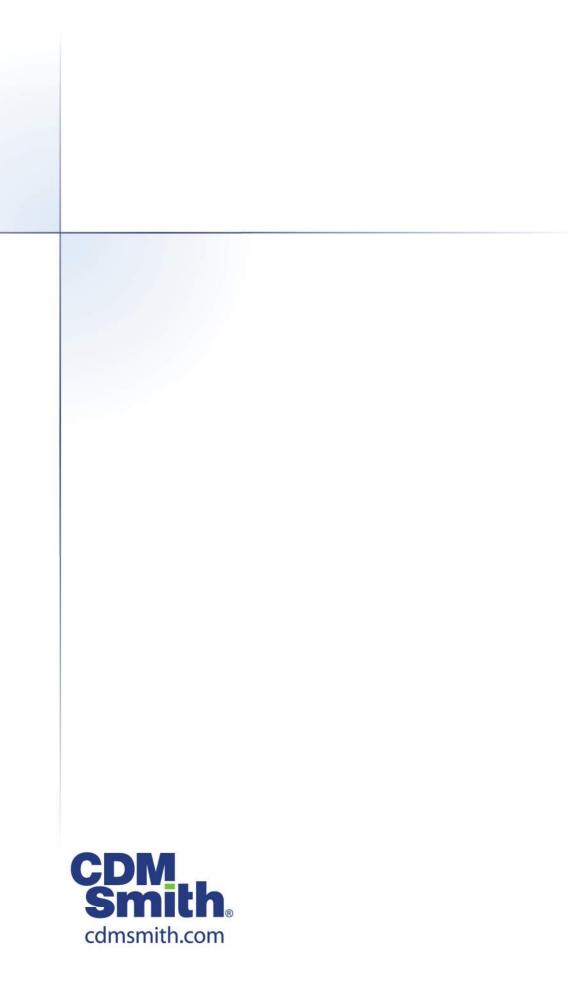
Reduced, Their and Cream (1, 17, articular) disp. 277, Andread, University of Resemblance

Reduced and Cream (1, 17, articular) disp. 277, Andread, University of Resemblance

Reduced and Cream (1) (Stomatomers) and an office of the Cream (1) (Stomatomers)

Reduced (1) (Stomatomers) and Annie (1) (Stomatomers) and an office of the Cream (1) (Stomatomers)

Reduced (1) (Stomatomers) and Annie (1) (Stomatomers) and an office of the Cream (1) (Stomatomers)


Reduced (1) (Stomatomers) and Annie (1) (Stomatomers) and an office of the Cream (1) (Stomatomers)

Reduced (1) (Stomatomers) and Annie (1) (Stomatomers) and Annie (1) (Stomatomers)

Reduced (1) (Stomatomers) and Annie (1) (Stomatomers) and Anni

Galler, R. L., and Hard, N. L., & confederation, 1992. Remarkans, Theodore Str., St. (2011).
 Hadderd, H. G., approximation (A. 1971). The incompared the interface of t

Service M. S. C. Service and C. S. Service M. S. Service M.

